Big Pure-projective modules

Dolors Herbera
Universitat Autònoma de Barcelona ongoing joint work with Pavel Příhoda and Roger Wiegand

Porto, June 13, 2015

Overview

General aim:

Study the direct summands of $M^{(I)}$ where M is a finitely generated module over a commutative local noetherian ring R and for arbitrary I. We can reduce to I countable.

Overview

General aim:

Study the direct summands of $M^{(I)}$ where M is a finitely generated module over a commutative local noetherian ring R and for arbitrary I. We can reduce to $/$ countable.

```
Tools: The category }\operatorname{Add}(M)\mathrm{ is equivalent to the category of pro-
jective modules over S = End commutative, noetherian semilocal ring. We do know how projective modules over noetherian semilocal rings behave. (H.- Prihoda 2010)
```


Overview

General aim:

Study the direct summands of $M^{(I)}$ where M is a finitely generated module over a commutative local noetherian ring R and for arbitrary I. We can reduce to $/$ countable.

> Tools: The category $\operatorname{Add}(M)$ is equivalent to the category of projective modules over $S=\operatorname{End}_{R}(M)$, and S is a, non necessarily commutative, noetherian semilocal ring. We do know how projective modules over noetherian semilocal rings behave. (H.- Prihoda 2010)

First basic question:

Can we construct modules in $\operatorname{Add}(M)$ that are not direct sum of finitely generated ones?

Overview

General aim:

Study the direct summands of $M^{(I)}$ where M is a finitely generated module over a commutative local noetherian ring R and for arbitrary I. We can reduce to $/$ countable.

> Tools: The category $\operatorname{Add}(M)$ is equivalent to the category of projective modules over $S=\operatorname{End}_{R}(M)$, and S is a, non necessarily commutative, noetherian semilocal ring. We do know how projective modules over noetherian semilocal rings behave. (H.- Prihoda 2010)

First basic question:

Can we construct modules in $\operatorname{Add}(M)$ that are not direct sum of finitely generated ones?YES!!!

The monoid language

S ring, associative with unit
$V(S)=$ set of isomorphism classes of finitely generated projective right S-modules.
$V^{*}(S)=$ set of isomorphism classes of countably generated projective right S-modules.

The monoid language

S ring, associative with unit
$V(S)=$ set of isomorphism classes of finitely generated projective right S-modules.
$V^{*}(S)=$ set of isomorphism classes of countably generated projective right S-modules.

Both are commutative monoids with the addition induced by the direct sum

$$
\left\langle P_{1}\right\rangle+\left\langle P_{2}\right\rangle=\left\langle P_{1} \oplus P_{2}\right\rangle
$$

The monoid language

S ring, associative with unit
$V(S)=$ set of isomorphism classes of finitely generated projective right S-modules.
$V^{*}(S)=$ set of isomorphism classes of countably generated projective right S-modules.

Both are commutative monoids with the addition induced by the direct sum

$$
\left\langle P_{1}\right\rangle+\left\langle P_{2}\right\rangle=\left\langle P_{1} \oplus P_{2}\right\rangle
$$

Similarly one defines for a finitely generated R-module M the monoids
$V(M)=$ set of isomorphism classes of direct summands of M^{n} for some n.
$V^{*}(M)=$ set of isomorphism classes of direct summands of $M^{(\mathbb{N})}$

The monoid language

S ring, associative with unit
$V(S)=$ set of isomorphism classes of finitely generated projective right S-modules.
$V^{*}(S)=$ set of isomorphism classes of countably generated projective right S-modules.

Both are commutative monoids with the addition induced by the direct sum

$$
\left\langle P_{1}\right\rangle+\left\langle P_{2}\right\rangle=\left\langle P_{1} \oplus P_{2}\right\rangle
$$

Similarly one defines for a finitely generated R-module M the monoids
$V(M)=$ set of isomorphism classes of direct summands of M^{n} for some n.
$V^{*}(M)=$ set of isomorphism classes of direct summands of $M^{(\mathbb{N})}$

$$
V(M) \cong V(S) \quad \text { and } \quad V^{*}(M) \cong V^{*}(S)
$$

The dimension function for semilocal rings

A ring S is semilocal if modulo its Jacobson radical is semisimple artinian. That is $S / J(S) \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)$ with $D_{1}, \ldots D_{k}$ division rings.

Fix an ordered set V_{1}, \ldots, V_{k} of representatives of the isomorphism classes of the simple right S-modules such that $\operatorname{End}_{S}\left(V_{i}\right) \cong D_{i}$ for $i=1, \ldots, k$.

A right S-module P satisfies that $P / P J(S) \cong V_{1}^{\left(I_{1}\right)} \oplus \cdots \oplus V_{k}^{\left(I_{k}\right)}$ where I_{i} are sets uniquely determined by its cardinality.

The dimension function for semilocal rings

A ring S is semilocal if modulo its Jacobson radical is semisimple artinian. That is $S / J(S) \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)$ with $D_{1}, \ldots D_{k}$ division rings.

Fix an ordered set V_{1}, \ldots, V_{k} of representatives of the isomorphism classes of the simple right S-modules such that $\operatorname{End}_{S}\left(V_{i}\right) \cong D_{i}$ for $i=1, \ldots, k$.
A right S-module P satisfies that $P / P J(S) \cong V_{1}^{\left(I_{1}\right)} \oplus \cdots \oplus V_{k}^{\left(I_{k}\right)}$ where I_{i} are sets uniquely determined by its cardinality.

We associate to the isomorphism class of P its dimension

$$
\operatorname{dim}(\langle P\rangle)=\left(a_{1}, \ldots, a_{k}\right) \in\left(\mathbb{N}_{0} \cup\{\infty\}\right)^{k}=\left(\mathbb{N}_{0}^{*}\right)^{k}
$$

where

- if I_{i} is finite, a_{i} is the cardinality of I_{i}
- $a_{i}=\infty$ otherwise.

The dimension function for semilocal rings

A ring S is semilocal if modulo its Jacobson radical is semisimple artinian. That is $S / J(S) \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)$ with $D_{1}, \ldots D_{k}$ division rings.

Fix an ordered set V_{1}, \ldots, V_{k} of representatives of the isomorphism classes of the simple right S-modules such that $\operatorname{End}_{S}\left(V_{i}\right) \cong D_{i}$ for $i=1, \ldots, k$.
A right S-module P satisfies that $P / P J(S) \cong V_{1}^{\left(I_{1}\right)} \oplus \cdots \oplus V_{k}^{\left(I_{k}\right)}$ where I_{i} are sets uniquely determined by its cardinality.

We associate to the isomorphism class of P its dimension

$$
\operatorname{dim}(\langle P\rangle)=\left(a_{1}, \ldots, a_{k}\right) \in\left(\mathbb{N}_{0} \cup\{\infty\}\right)^{k}=\left(\mathbb{N}_{0}^{*}\right)^{k}
$$

where

- if I_{i} is finite, a_{i} is the cardinality of I_{i}
- $a_{i}=\infty$ otherwise.

$$
\operatorname{dim}(\langle S\rangle)=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}
$$

Monoid morphisms

Still S is a general semilocal ring.....

$$
\operatorname{dim}: V(S) \rightarrow \mathbb{N}_{0}^{k}
$$

is a monoid morphism, which is injective.
What is $\operatorname{dim}(V(S))$? Ans: Facchini, H. 2000

$$
\operatorname{dim}: V^{*}(S) \rightarrow\left(\mathbb{N}_{0}^{*}\right)^{k}
$$

is a monoid morphism,

Monoid morphisms

Still S is a general semilocal ring.....

$$
\operatorname{dim}: V(S) \rightarrow \mathbb{N}_{0}^{k}
$$

is a monoid morphism, which is injective.
What is $\operatorname{dim}(V(S))$? Ans: Facchini, H. 2000

$$
\operatorname{dim}: V^{*}(S) \rightarrow\left(\mathbb{N}_{0}^{*}\right)^{k}
$$

is a monoid morphism, which is injective!!! (Prihoda 2007)

$$
\text { What is } \operatorname{dim}\left(V^{*}(S)\right) \text { ? We do not know, in general }
$$

The case of non necessarily commutative noetherian rings

Theorem
(H., Prihoda 2010) Let A be a submonoid of $\left(\mathbb{N}_{0}^{*}\right)^{k}$ containing $\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$. Then the following statements are equivalent:
(1) A is is the set of solutions in \mathbb{N}_{0}^{*} of a system of homogeneous diophantic linear equations and of congruences

$$
E_{1}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)=E_{2}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right) \quad \text { and } \quad D\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right) \in\left(\begin{array}{c}
m_{1} \mathrm{~N}_{0}^{*} \\
\vdots \\
m_{n} \mathrm{~N}_{0}^{*}
\end{array}\right)
$$

where the coefficients of the matrices D, E_{1} and E_{2} as well as m_{1}, \ldots, m_{n} are elements of \mathbb{N}_{0} and $m_{i}>1$.
(2) There exist a noetherian semilocal ring S with $\operatorname{dim}\left(V^{*}(S)\right)=A$.
In the above situation, $\operatorname{dim}(V(S))=A \cap \mathbb{N}_{0}^{k}$.

Solving systems in \mathbb{N}_{0}^{*} has some surprises...

Some examples with $k=2$:

- The solutions of $x=y$ in \mathbb{N}_{0} are $B=\left\{(n, n) \mid n \in \mathbb{N}_{0}\right\}$ and the solutions in \mathbb{N}_{0}^{*} are $A_{1}=B \bigcup\{(\infty, \infty)\}=B+\infty \cdot B$

Solving systems in \mathbb{N}_{0}^{*} has some surprises...

Some examples with $k=2$:

- The solutions of $x=y$ in \mathbb{N}_{0} are $B=\left\{(n, n) \mid n \in \mathbb{N}_{0}\right\}$ and the solutions in \mathbb{N}_{0}^{*} are $A_{1}=B \bigcup\{(\infty, \infty)\}=B+\infty \cdot B$
- The solutions of $2 x=y+x$ are

$$
A_{2}=A_{1}+(\infty, 0) \mathbb{N}_{0}
$$

Solving systems in \mathbb{N}_{0}^{*} has some surprises...

Some examples with $k=2$:

- The solutions of $x=y$ in \mathbb{N}_{0} are $B=\left\{(n, n) \mid n \in \mathbb{N}_{0}\right\}$ and the solutions in \mathbb{N}_{0}^{*} are $A_{1}=B \bigcup\{(\infty, \infty)\}=B+\infty \cdot B$
- The solutions of $2 x=y+x$ are

$$
A_{2}=A_{1}+(\infty, 0) \mathbb{N}_{0}
$$

- The solutions of $2 x+y=2 y+x$ are

$$
A_{3}=A_{1}+(\infty, 0) \mathbb{N}_{0}+(0, \infty) \mathbb{N}_{0}
$$

In the above take, for example, $\left(n_{1}, n_{2}\right)=(1,1)$

Solving systems in \mathbb{N}_{0}^{*} has some surprises...

Some examples with $k=2$:

- The solutions of $x=y$ in \mathbb{N}_{0} are $B=\left\{(n, n) \mid n \in \mathbb{N}_{0}\right\}$ and the solutions in \mathbb{N}_{0}^{*} are $A_{1}=B \bigcup\{(\infty, \infty)\}=B+\infty \cdot B$
- The solutions of $2 x=y+x$ are

$$
A_{2}=A_{1}+(\infty, 0) \mathbb{N}_{0}
$$

- The solutions of $2 x+y=2 y+x$ are

$$
A_{3}=A_{1}+(\infty, 0) \mathbb{N}_{0}+(0, \infty) \mathbb{N}_{0}
$$

In the above take, for example, $\left(n_{1}, n_{2}\right)=(1,1)$

- Fix $m>1$. The solutions of

$$
2 x+y=2 y+x \text { and } x+m y \in m \mathbb{N}_{0}^{*} \text { are }
$$

$$
A_{4}=m A_{1}+(\infty, 0) \mathbb{N}_{0}+(0, \infty) \mathbb{N}_{0}+(\infty, 1) \mathbb{N}_{0}+(1, \infty) \mathbb{N}_{0}
$$

In the above take, for example, $\left(n_{1}, n_{2}\right)=(m, m)$

Finitely generated modules

Let R be a local commutative noetherian ring, with completion \hat{R}. Let M_{R} be a finitely generated right R-module with endomorphism ring S. Then

$$
M \otimes_{R} \hat{R} \cong L_{1}^{n_{1}} \oplus \cdots \oplus L_{k}^{n_{k}}
$$

with L_{1}, \ldots, L_{k} indecomposable \hat{R}-modules.
If N is a countably generated module in $\operatorname{Add}(M)$ we set

$$
\operatorname{dim}(\langle N\rangle)=\operatorname{dim}\left(\left\langle\operatorname{Hom}_{R}(M, N)\right\rangle\right)=\left(a_{1}, \ldots, a_{k}\right)
$$

and this means

$$
M \otimes_{R} \hat{R} \cong L_{1}^{\left(a_{1}\right)} \oplus \cdots \oplus L_{k}^{\left(a_{k}\right)}
$$

Finitely generated modules

Let R be a local commutative noetherian ring, with completion \hat{R}. Let M_{R} be a finitely generated right R-module with endomorphism ring S. Then

$$
M \otimes_{R} \hat{R} \cong L_{1}^{n_{1}} \oplus \cdots \oplus L_{k}^{n_{k}}
$$

with L_{1}, \ldots, L_{k} indecomposable \hat{R}-modules. If N is a countably generated module in $\operatorname{Add}(M)$ we set

$$
\operatorname{dim}(\langle N\rangle)=\operatorname{dim}\left(\left\langle\operatorname{Hom}_{R}(M, N)\right\rangle\right)=\left(a_{1}, \ldots, a_{k}\right)
$$

and this means

$$
M \otimes_{R} \hat{R} \cong L_{1}^{\left(a_{1}\right)} \oplus \cdots \oplus L_{k}^{\left(a_{k}\right)}
$$

$\operatorname{dim}(V(M))$ was determined by Roger Wiegand (2001) :

- Diophantic monoids for torsion free modules over analitically unramified local domains of Krull dimension 1.
- The general case for modules over local domains of Krull dimension 2

Main realization Theorem

Theorem
Consider submonoid of \mathbb{N}_{0}^{k}, containing $\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$, defined by a system of equations $E_{1} \mathbf{X}=E_{2} \mathbf{X}$ where E_{i} have entries in \mathbb{N}_{0}. Set F be a matrix of suitable size which all its entries 1 .

Then there exists a local noetherian domain R of Krull dimension 1 with reduced completion \hat{R}, and a finitely generated torsion free R-module M such that $\operatorname{dim}_{R}\left(V^{*}(M)\right)$ is the set of solutions of the system

$$
\left(E_{1}+F\right) \mathbf{X}=\left(E_{2}+F\right) \mathbf{X}
$$

Here, any module of the form $L_{1}^{\left(a_{1}\right)} \oplus \cdots \oplus L_{k}^{\left(a_{k}\right)}$ is extended from an R-module provided that at least one a_{i} is infinite

Thanks for your kind attention!!!

