Ends of moduli spaces of Higgs bundles

Hartmut Weiss (CAU Kiel)

joint with Rafe Mazzeo, Jan Swoboda and Frederik Witt

Special Session *Higgs Bundles and Character Varieties* Joint International Meeting of the AMS, EMS and SPM Porto, June 2015

Hitchin's equation

Setting

X compact Riemann surface, $\pi: E \to X$ complex rank-2 vector bundle

- Auxiliary data: g compatible Riemannian metric on X, h hermitian metric on E
- ► Fixed determinant case: A₀ fixed unitary connection on E, consider unitary connections of the form

$$A = A_0 + \alpha, \quad \alpha \in \Omega^1(\mathfrak{su}(E))$$

and trace-free Higgs-field $\Phi \in \Omega^{1,0}(\mathfrak{sl}(E))$

Hitchin's equation

$$F_A^{\perp} + [\Phi \wedge \Phi^*] = 0, \quad \bar{\partial}_A \Phi = 0$$

where F_A^{\perp} is the trace-free part of the curvature

Hitchin's equation

Basic question

Consider sequence (A_n, Φ_n) of solutions

- ||Φ_n||_{L²} ≤ C < ∞: Uhlenbeck compactness ⇒ (A_n, Φ_n) subconverges to solution (A_∞, Φ_∞)
- $\|\Phi_n\|_{L^2} \to \infty$: (A_n, Φ_n) exiting end of the moduli space

Question

What is the degeneration behavior of a diverging sequence of solutions?

Ultimate goals:

- Describe asymptotics of Hyperkahler metric
- Compute space of L²-harmonic forms

The limiting fiducial solution

Consider trivial rank-2 vector bundle over $\ensuremath{\mathbb{C}}$ and the Higgs field

$$\Phi = \begin{pmatrix} 0 & 1 \\ z & 0 \end{pmatrix} dz, \quad \Longrightarrow \det \Phi = -z dz^2.$$

Goal: Find hermitian metric H_∞ on $\mathbb{C}^{ imes}$ such that

$$ar{\partial}(H^{-1}_{\infty}\partial H_{\infty})=0, \quad [\Phi\wedge\Phi^{*_{H_{\infty}}}]=0.$$

Ansatz: Rotationally symmetric

$$H_{\infty} = \begin{pmatrix} \alpha(r) & b(r) \\ \overline{b}(r) & \beta(r) \end{pmatrix}$$

with α, β real valued, $\alpha > 0$ and $\alpha \beta - |b|^2 = 1$.

The (limiting) fiducial solution

Short Calculation \Longrightarrow

The unique solution is given by

$$H_{\infty} = \begin{pmatrix} r^{1/2} & 0\\ 0 & r^{-1/2} \end{pmatrix}$$

and the corresponding pair

$$A_{\infty}^{fid} := \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{dz}{z} - \frac{d\bar{z}}{\bar{z}} \end{pmatrix}, \quad \Phi_{\infty}^{fid} := \begin{pmatrix} 0 & r^{1/2} \\ zr^{-1/2} & 0 \end{pmatrix} dz$$

solves the decoupled equation

$$F_{A_{\infty}}=0, \quad [\Phi_{\infty}\wedge (\Phi_{\infty})^*]=0, \quad \bar{\partial}_{A_{\infty}}\Phi_{\infty}=0$$

on \mathbb{C}^{\times} .

Limiting configurations Globally

Fix $q \in H^0(K_X^2)$ with simple zeroes. Let $X^{\times} = X \setminus q^{-1}(0)$. A *limiting configuration* associated with q is a pair $(A_{\infty}, \Phi_{\infty})$ on X^{\times} such that

after fixed choice of holomorphic coordinate and unitary frame.

Existence

Fix $q \in H^0(K^2_X)$ with simple zeroes. Let $X^{\times} = X \setminus q^{-1}(0)$.

Theorem (MSWW)

For each pair (A, Φ) with $\overline{\partial}_A \Phi = 0$ and det $\Phi = q$ there exists a complex gauge transformation g_{∞} on X^{\times} such that $(A, \Phi)^{g_{\infty}}$ is a limiting configuration.

Note: det Φ simple zeroes $\implies (\bar{\partial}_A, \Phi)$ stable Higgs bundle

Proof:

- Normalize the Higgs field on X[×]
- Gauge away the curvature

Hitchin: Interpretation as parabolic Higgs bundles

Moduli space

Fix $q \in H^0(K_X^2)$ with simple zeroes.

 $\mathcal{M}_{\infty}(q) :=$ space of limiting configurations associated with q $\gamma :=$ genus of X

Theorem (MSWW)

 $\mathcal{M}_{\infty}(q)$ is a torus of real dimension $6\gamma - 6$.

Note: generic fiber of Hitchin fibration Prym variety associated with q (= complex torus of dimension $3\gamma - 3$)

Hitchin: direct identification of $\mathcal{M}_{\infty}(q)$ with Prym variety

Desingularization

The (desingularized) fiducial solution

Now look for nonsingular solutions of Hitchin's equation

$$\bar{\partial}(H_t^{-1}\partial H_t) + t^2[\Phi \wedge \Phi^{*_{H_t}}] = 0$$

on $\mathbb C$ for $t<\infty.$ H_t rotationally symmetric \Longrightarrow

$$H_t = \begin{pmatrix} r^{1/2} e^{h_t(r)} & 0\\ 0 & r^{-1/2} e^{-h_t(r)} \end{pmatrix}$$

where after substitution $h_t(r) = \psi(\rho)$ with $\rho = \frac{8}{3}tr^{3/2}$ and ψ solves Painlevé type III equation

$$\psi^{\prime\prime}+rac{\psi^{\prime}}{
ho}=rac{1}{2}\sinh(2\psi).$$

 $\implies \exists ! \text{ solution } h_t \text{ satisfying } h_t(r) + \frac{1}{2}\log(r) \to 0 \text{ as } r \searrow 0 \text{ and } h_t(r) \to 0 \text{ as } r \nearrow \infty.$

Desingularization

The (desingularized) fiducial solution

The corresponding pair

$$A_t^{fid} = f_t(r) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \left(\frac{dz}{z} - \frac{d\bar{z}}{\bar{z}} \right),$$

$$\Phi_t^{fid} = \begin{pmatrix} 0 & r^{1/2} e^{h_t(r)} \\ zr^{-1/2} e^{-h_t(r)} & 0 \end{pmatrix} dz$$

where $f_t(r) = \frac{1}{8} + \frac{1}{4}r\partial_r h_t$ solves Hitchin's equation

$$\mathcal{F}_{A_t} + t^2 [\Phi_t \wedge \Phi_t^*] = 0, \quad ar{\partial}_{A_t} \Phi_t = 0$$

on $\mathbb C$ (called the *fiducial solution* by Gaiotto, Moore and Neitzke). Key properties:

- $(A_t^{fid}, \Phi_t^{fid})$ nonsingular on $\mathbb C$
- ► $(A_t^{fid}, \Phi_t^{fid}) \rightarrow (A_{\infty}^{fid}, \Phi_t^{fid})$ as $t \rightarrow \infty$ locally uniformly on \mathbb{C}^{\times} and exponentially fast in t.

Desingularization

Globally

Theorem (MSWW)

For each limiting configuration $(A_{\infty}, \Phi_{\infty})$ there exists a family (A_t, Φ_t) of solutions to Hitchin's equation

$$F_{A_t} + t^2 [\Phi_t \wedge \Phi_t^*] = 0, \quad \bar{\partial}_{A_t} \Phi_t = 0$$

such that $(A_t, \Phi_t) \to (A_\infty, \Phi_\infty)$ as $t \to \infty$ locally uniformly on X^{\times} and exponentially fast in t.

Proof:

- ▶ glue A_t^{fid} to A_∞ using partition of unity to obtain approximate solution
- deform into actual solution for large t

Work in progress

- multiple zeroes
- determination of asymptotics of Hyperkahler metric

$$g_{HK} = g_{sf} + O(e^{-\delta t})$$

where is g_{sf} is the so-called *semi-flat metric*

higher rank (touches thesis work of Laura Fredrickson)