
Abstract

A three-parameter family $B=B(a, b, c)$ of weighted Hankel matrices is introduced with the entries $$
B_{j, k}=\frac{\Gamma(j+k+a)}{\Gamma(j+k+b+c)} \sqrt{\frac{\Gamma(j+b) \Gamma(j+c) \Gamma(k+b) \Gamma(k+c)}{\Gamma(j+a) j!\Gamma(k+a) k!}},
$$

$j, k \in \mathbb{Z}_{+}$, assuming that a, b, c are positive and $a<b+c, b<a+c, c<a+b$. The famous Hilbert matrix given by $B_{j, k}=1 /(j+k+\theta)$ is included as a particular case for $a=b=\theta, c=0$. The direct sum

$$
B(a, b, c) \oplus B(a+1, b+1, c)
$$

is shown to commute with a discrete analogue of the dilatation operator. It follows that there exists a three-parameter family $T(a, b, c)$ of real symmetric Jacobi matrices such that $T(a, b, c)$ commutes with $B(a, b, c)$. The members of the orthogonal polynomial sequence associated with $T(a, b, c)$ are the continuous dual Hahn polynomials. Since the corresponding measure of orthogonality is known explicitly, a unitary mapping U diagonalizing $T(a, b, c)$ can be constructed explicitly. The spectrum of $T(a, b, c)$ is simple and therefore U diagonalizes $B(a, b, c)$ as well. It turns out that the spectrum of B as an operator on $\ell^{2}\left(\mathbb{Z}_{+}\right)$is purely absolutely continuous,

$$
\operatorname{spec} B(a, b, c)=[0, M(a, b, c)] \text {, with } M(a, b, c)=\frac{\Gamma((b+c-a) / 2)^{2}}{\Gamma(b+c-a)} .
$$

If the assumption $c<a+b$ is relaxed while the remaining inequalities on a, b, c are all supposed to be valid, the spectrum contains also a finite discrete part lying above the upper threshold of the continuous spectrum.
Based on a joint work with Tomás Kalvoda, to appear in Linear and Multilinear Algebra.

