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Motivation and problem statement

Class An

Notation
Denote by An the set of foliations of C2 given by

ẋ = p(x , y),

ẏ = q(x , y),

where p, q are polynomials, deg p ≤ n, deg q ≤ n.

Convention
We consider only n ≥ 2.
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Motivation and problem statement

Limit and identical cycles

Let c be a non-trivial closed loop on a leaf.
Let [c] be the free homotopy class of c .

Definition
If Mc 6= id, then [c] is called a limit cycle.

Definition
If Mc = id, then [c] is called an identical cycle.
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Motivation and problem statement

Properties of a generic foliation F ∈ An

For a generic foliation F ∈ An,
all leaves are dense in C2 (Khudai–Verenov, 1962); (Ilyashenko,
78); (Scherbakov, 1984)
there are infinitely many independent limit cycles (Ilyashenko,
1978); (Scherbakov, Ortiz–Bobadilla, Rosales–Gonzalez, 1998);
F is rigid, i.e., topological equivalence implies affine equivalence
(Ilyashenko, 1978), (Scherbakov, 1984), (Nakai, 1994).

Definition
A set of limit cycles of a foliation is called homologically independent
if for any leaf L all the cycles located on this leaf are linearly
independent in H1(L).
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Motivation and problem statement

Anosov conjecture

Conjecture (D.Anosov)
For a generic foliation F ∈ An,

countably many of its leaves are topological cylinders, others are
topological discs.
different limit cycles are located on different leaves.
there are no identical cycles.

Theorem (T. Firsova, 2006; T. Golenishcheva–Kutuzova,
2006)
For a foliation from some residual subset of the space of analytic
foliations of C2, countably many of its leaves are topological
cylinders, others are topological discs.
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Motivation and problem statement

Anosov conjecture

Question
How rare are foliations F ∈ An with a leaf L such that
dimH1(L) > 1? such that dimH1(L) =∞?

Theorem (D.Volk, 2006)
In a dense subset of An, any foliation has a separatrix connection.
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Motivation and problem statement

Main theorems

Theorem (NG, Yu. Kudryashov)
In a dense subset of An, any foliation has a leaf with at least
(n+1)(n+2)

2 − 4 handles.

Theorem (NG, Yu. Kudryashov)
Let Asym

n be the subspace of An, n ≥ 2, given by

p(x , y) = −p(x ,−y), q(x , y) = q(x ,−y).

For a foliation F from some open dense subset of Asym
n , all leaves

of F (except for a finite set of algebraic leaves) have infinite genus.
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The main tool: monodromy at infinity
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The main tool: monodromy at infinity

Extension to CP2

Change of coordinates

u =
1
x
; v =

y

x
; dτ = −un−1dt


u̇ = un+1p

(
1
u
,
v

u

)
=: up̃(u, v)

v̇ = vunp

(
1
u
,
v

u

)
− unq

(
1
u
,
v

u

)
=: h(u, v).

The leaf at infinity
Let { a1, . . . , an+1 } be the roots of h(0, v). Generically, ai 6= aj .
(0, aj) are singularities of the extended foliation, and
L∞ = { u = 0 } \ { (0, aj) | 1 ≤ j ≤ n + 1 } is its leaf.
Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 10 / 27



The main tool: monodromy at infinity

Extension to CP2

Change of coordinates

u =
1
x
; v =

y

x
; dτ = −un−1dt


u̇ = un+1p

(
1
u
,
v

u

)
=: up̃(u, v)

v̇ = vunp

(
1
u
,
v

u

)
− unq

(
1
u
,
v

u

)
=: h(u, v).

The leaf at infinity
Let { a1, . . . , an+1 } be the roots of h(0, v). Generically, ai 6= aj .
(0, aj) are singularities of the extended foliation, and
L∞ = { u = 0 } \ { (0, aj) | 1 ≤ j ≤ n + 1 } is its leaf.
Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 10 / 27



The main tool: monodromy at infinity

Extension to CP2

Change of coordinates

u =
1
x
; v =

y

x
; dτ = −un−1dt


u̇ = un+1p

(
1
u
,
v

u

)
=: up̃(u, v)

v̇ = vunp

(
1
u
,
v

u

)
− unq

(
1
u
,
v

u

)
=: h(u, v).

The leaf at infinity
Let { a1, . . . , an+1 } be the roots of h(0, v). Generically, ai 6= aj .
(0, aj) are singularities of the extended foliation, and
L∞ = { u = 0 } \ { (0, aj) | 1 ≤ j ≤ n + 1 } is its leaf.
Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 10 / 27



The main tool: monodromy at infinity

Monodromy group at infinity

M1
M2

M3

L∞
a1 a3

a2

Choose O ∈ L∞ and take loops
γj ⊂ L∞ around aj starting from
O.
The monodromy (pseudo)group at
infinity is generated by the
monodromy maps Mj := Mγj

along γj .

Limit cycles correspond to isolated fixed points of monodromy maps.
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The main tool: monodromy at infinity

Generic monodromy groups and generic foliations

Generic pseudogroup in (C, 0) Generic foliation from An

• Orbits are dense in (C, 0) • Leaves are dense in CP2

• Infinite number of • Infinite number of
isolated fixed points independent limit cycles

• Rigidity • Rigidity
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Using monodromy at infinity

Approximating a linear map

Genericity assumptions
|M ′1(0)| 6= 1, hence M1 is linearizable;

⇑
〈M ′1(0),M ′2(0)〉 is dense in C∗.

Approximating z 7→ τz in the Schwartz chart for M1

Choose k , l such that (Mk
1 ◦M l

2)
′(0) ≈ τ .

Then M−N1 ◦ (Mk
1 ◦M l

2) ◦MN
1 (z) uniformly tends to

(Mk
1 ◦M l

2)
′(0)z ≈ τz as N →∞.

Corollary (Orbits are dense; (Ilyashenko, 78))
Under above genericity assumptions, all orbits of the monodromy
pseudogroup are dense in some neighborhood of the origin.
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Using monodromy at infinity

How to construct limit cycles

Genericity assumptions
〈M ′1(0),M ′2(0)〉 is dense in C∗.
M1 ◦M2 6= M2 ◦M1.

One limit cycle

z0 is a fixed point of z 7→ z0
M2(z0)

M2(z).

Choose M ∈ 〈M1,M2〉 close to × z0
M2(z0)

.

Then M ◦M2 has an isolated fixed point
near z0.
It corresponds to a limit cycle.
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Using monodromy at infinity

How to construct limit cycles

Genericity assumptions
〈M ′1(0),M ′2(0)〉 is dense in C∗.
M1 ◦M2 6= M2 ◦M1.

Infinitely many limit cycles
Repeat the construction near points z1, z2, . . . to obtain
infinitely many limit cycles.
The homological independence is not trivial.
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A leaf with many handles

Refinement of Volk’s Theorem
on the density of separatrix connections

B(F)

A(F)

S

L∞
a1 a3

a2

Lemma (D. Volk; NG, Yu. Kudryashov)
Given a rigid foliation F ,

a neighborhood F ∈ U ⊂ An;
two holomorphic functions A,B : U → S ;

there exists γ : S1 → L∞ such that
Mγ(A(F)) = B(F) defines a codimension-one
analytic submanifold in U .

HereM is such that
M ′1(0) and M ′2(0) are constants onM;
〈M ′1(0),M ′2(0)〉 is dense in C, so we can approximate z 7→ τz .
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A leaf with many handles

Refinement of Volk’s Theorem
on the density of separatrix connections

B(F)

A(F)

S

L∞
a1 a3

a2

Lemma (D. Volk; NG, Yu. Kudryashov)
Given a rigid foliation F ,

a neighborhood F ∈ U ⊂M, dimM > 6;
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A leaf with many handles

One handle

Take one limit cycle corresponding to
M−N1 ◦ (Mk

1M
l
2) ◦MN

1 ◦M2(z).
Use the refined Volk’s Theorem to obtain another one in a
submanifold of codimension one.
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A leaf with many handles

One handle

Take one limit cycle corresponding to
M−N1 ◦ (Mk

1M
l
2) ◦MN

1 ◦M2(z).
Use the refined Volk’s Theorem to obtain another one in a
submanifold of codimension one.

Prove that two cycles intersect transversally at one point.

Result
InM1 ⊂ An with codimM1 = 1, any F ∈M1 has one handle.
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A leaf with many handles

Many handles

InM1 ⊂ An with codimM1 = 1, we have one handle.
Repeat construction insideM1.
We getM2, codimM2 = 2: each foliation F ∈M2 has 2
handles on different leaves, etc.;

Use the refined Volk’s Theorem to
take all handles into one leaf.

The codimension is 2g − 1, so g ≈ 1
2 dimAn =

(n+1)(n+2)
2 .
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Leaves with infinitely many handles

Outline

1 Motivation and problem statement

2 The main tool: monodromy at infinity

3 Using monodromy at infinity

4 A leaf with many handles

5 Leaves with infinitely many handles

6 Bounded limit cycles

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 20 / 27



Leaves with infinitely many handles

Infinite genus for
p(x , y) = −p(x ,−y), q(x , y) = q(x ,−y)

a leaf of a
well-
defined
foliation

a leaf of F

Intersections
with y = 0

(x , y 2)

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 21 / 27



Bounded limit cycles

Outline

1 Motivation and problem statement

2 The main tool: monodromy at infinity

3 Using monodromy at infinity

4 A leaf with many handles

5 Leaves with infinitely many handles

6 Bounded limit cycles
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Bounded limit cycles

Infinitely many limit cycles

Theorem (Yu.Ilyashenko, 1978)
For n ≥ 2, each foliation F from some full-measure subset of An

possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez,
L. Ortiz-Bobadilla, 1998)
For n ≥ 3, each foliation outside some real-analytic subset of An

possesses infinitely many homologically independent limit cycles.

Theorem (NG, Yu. Kudryashov, 2015)
For n ≥ 2, each foliation outside some real-analytic subset of An

possesses infinitely many homologically independent limit cycles.
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Bounded limit cycles

Advantages of our approach

The cycles are uniformly bounded.
Subsequently, the construction survives under perturbations in
Bn+1.
We estimate multipliers of the cycles instead of

∮
x dy − y dx ,

and this is much simpler.

Definition
Bn+1 is the space of foliations in CP2 which are polynomial of degree
at most n + 1 in each affine chart.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 24 / 27



Bounded limit cycles

Advantages of our approach

The cycles are uniformly bounded.
Subsequently, the construction survives under perturbations in
Bn+1.
We estimate multipliers of the cycles instead of

∮
x dy − y dx ,

and this is much simpler.

Definition
Bn+1 is the space of foliations in CP2 which are polynomial of degree
at most n + 1 in each affine chart.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 24 / 27



Bounded limit cycles

Advantages of our approach

The cycles are uniformly bounded.
Subsequently, the construction survives under perturbations in
Bn+1.
We estimate multipliers of the cycles instead of

∮
x dy − y dx ,

and this is much simpler.

Definition
Bn+1 is the space of foliations in CP2 which are polynomial of degree
at most n + 1 in each affine chart.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynomial foliations of C2AMS-EMS-SPM ’15 24 / 27



Bounded limit cycles

Plan of the proof

Find a domain 0 /∈ D and monodromy maps fj
such that

fj contract in D;
the images of D under fj cover D.

Any long composition of fj has a fixed point which
produces a limit cycle.
Multipliers tend to 0.
Fixed points are dense in D.
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Bounded limit cycles

Homological independence

Observation
If homologically dependent cycles are simple and disjoint, the
dependence is of the form ci1 ± · · · ± cik = 0 in H1(L).

Thus(∮
ci1
± · · · ±

∮
cik

)
(x dy − y dx) = 0;

the multipliers satisfy µ±1
i1
· · · · · µ±1

ik
= 1.

It is enough to construct cj such that
cj are simple and disjoint;
their multipliers rapidly tend to 0.
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Bounded limit cycles

Thank you for your attention!
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