Genera of non-algebraic leaves of polynomial foliations of \mathbb{C}^2 Based on a joint work with Yu. Kudryashov

Nataliya Goncharuk natalka@mccme.ru

Department of Mathematics Higher School of Economics;

Independent University of Moscow

AMS-EMS-SPM joint meeting, 2015

Outline

Motivation and problem statement

- 2 The main tool: monodromy at infinity
- Using monodromy at infinity
- 4 A leaf with many handles
- 5 Leaves with infinitely many handles
- 6 Bounded limit cycles

Class
$$\mathcal{A}_n$$

Notation

Denote by \mathcal{A}_n the set of foliations of \mathbb{C}^2 given by

 $\dot{x} = p(x, y),$ $\dot{y} = q(x, y),$

where p, q are polynomials, deg $p \le n$, deg $q \le n$.

Convention

We consider only $n \ge 2$.

- ∢ ⊢⊒ →

э

Class
$$\mathcal{A}_n$$

Notation

Denote by \mathcal{A}_n the set of foliations of \mathbb{C}^2 given by

 $\dot{x} = p(x, y),$ $\dot{y} = q(x, y),$

where p, q are polynomials, deg $p \le n$, deg $q \le n$.

Convention

We consider only $n \ge 2$.

э

Limit and identical cycles

- Let c be a non-trivial closed loop on a leaf.
- Let [c] be the free homotopy class of c.

Definition If $M_c \neq id$, then [c] is called a *limit cycle*.

Definition

If $M_c = id$, then [c] is called an *identical cycle*.

Limit and identical cycles

- Let c be a non-trivial closed loop on a leaf.
- Let [c] be the free homotopy class of c.

Definition

If $M_c \neq id$, then [c] is called a *limit cycle*.

Definition

If $M_c = id$, then [c] is called an *identical cycle*.

Limit and identical cycles

- Let c be a non-trivial closed loop on a leaf.
- Let [c] be the free homotopy class of c.

Properties of a generic foliation $\mathcal{F} \in \mathcal{A}_n$

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- all leaves are dense in C² (Khudai–Verenov, 1962); (Ilyashenko, 78); (Scherbakov, 1984)
- there are infinitely many independent limit cycles (Ilyashenko, 1978); (Scherbakov, Ortiz–Bobadilla, Rosales–Gonzalez, 1998);
- \mathcal{F} is rigid, i.e., topological equivalence implies affine equivalence (Ilyashenko, 1978), (Scherbakov, 1984), (Nakai, 1994).

Definition

A set of limit cycles of a foliation is called *homologically independent* if for any leaf L all the cycles located on this leaf are linearly independent in $H_1(L)$.

- ∢ ศ⊒ ▶

Properties of a generic foliation $\mathcal{F} \in \mathcal{A}_n$

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- all leaves are dense in C² (Khudai–Verenov, 1962); (Ilyashenko, 78); (Scherbakov, 1984)
- there are infinitely many independent limit cycles (Ilyashenko, 1978); (Scherbakov, Ortiz–Bobadilla, Rosales–Gonzalez, 1998);
- \mathcal{F} is rigid, i.e., topological equivalence implies affine equivalence (Ilyashenko, 1978), (Scherbakov, 1984), (Nakai, 1994).

Definition

A set of limit cycles of a foliation is called *homologically independent* if for any leaf L all the cycles located on this leaf are linearly independent in $H_1(L)$.

< 行い

Properties of a generic foliation $\mathcal{F} \in \mathcal{A}_n$

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- all leaves are dense in C² (Khudai–Verenov, 1962); (Ilyashenko, 78); (Scherbakov, 1984)
- there are infinitely many independent limit cycles (Ilyashenko, 1978); (Scherbakov, Ortiz–Bobadilla, Rosales–Gonzalez, 1998);
- *F* is rigid, i.e., topological equivalence implies affine equivalence (Ilyashenko, 1978), (Scherbakov, 1984), (Nakai, 1994).

Definition

A set of limit cycles of a foliation is called *homologically independent* if for any leaf L all the cycles located on this leaf are linearly independent in $H_1(L)$.

Conjecture (D.Anosov)

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- countably many of its leaves are topological cylinders, others are topological discs.
- different limit cycles are located on different leaves.
- there are no identical cycles.

Theorem (T. Firsova, 2006; T. Golenishcheva–Kutuzova, 2006)

For a foliation from some residual subset of the space of analytic foliations of \mathbb{C}^2 , countably many of its leaves are topological cylinders, others are topological discs.

Conjecture (D.Anosov)

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- countably many of its leaves are topological cylinders, others are topological discs.
- different limit cycles are located on different leaves.
- there are no identical cycles.

Theorem (T. Firsova, 2006; T. Golenishcheva–Kutuzova, 2006)

For a foliation from some residual subset of the space of analytic foliations of \mathbb{C}^2 , countably many of its leaves are topological cylinders, others are topological discs.

Conjecture (D.Anosov)

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- countably many of its leaves are topological cylinders, others are topological discs.
- different limit cycles are located on different leaves.
- there are no identical cycles.

Theorem (T. Firsova, 2006; T. Golenishcheva–Kutuzova, 2006)

For a foliation from some residual subset of the space of analytic foliations of \mathbb{C}^2 , countably many of its leaves are topological cylinders, others are topological discs.

Conjecture (D.Anosov)

For a generic foliation $\mathcal{F} \in \mathcal{A}_n$,

- countably many of its leaves are topological cylinders, others are topological discs.
- different limit cycles are located on different leaves.
- there are no identical cycles.

Theorem (T. Firsova, 2006; T. Golenishcheva–Kutuzova, 2006)

For a foliation from some residual subset of the space of analytic foliations of \mathbb{C}^2 , countably many of its leaves are topological cylinders, others are topological discs.

Question

How rare are foliations $\mathcal{F} \in \mathcal{A}_n$ with a leaf L such that dim $H_1(L) > 1$? such that dim $H_1(L) = \infty$?

Theorem (D.Volk, 2006)

In a dense subset of A_n , any foliation has a separatrix connection.

Question

How rare are foliations $\mathcal{F} \in \mathcal{A}_n$ with a leaf L such that dim $H_1(L) > 1$? such that dim $H_1(L) = \infty$?

Theorem (D.Volk, 2006)

In a dense subset of A_n , any foliation has a separatrix connection.

Main theorems

Theorem (NG, Yu. Kudryashov)

In a dense subset of A_n , any foliation has a leaf with at least $\frac{(n+1)(n+2)}{2} - 4$ handles.

Theorem (NG, Yu. Kudryashov)

Let \mathcal{A}_n^{sym} be the subspace of \mathcal{A}_n , $n \geq 2$, given by

$$p(x, y) = -p(x, -y), \quad q(x, y) = q(x, -y).$$

For a foliation \mathcal{F} from some open dense subset of \mathcal{A}_n^{sym} , all leaves of \mathcal{F} (except for a finite set of algebraic leaves) have infinite genus.

(🗆) (🖓) (E) (E) (

Main theorems

Theorem (NG, Yu. Kudryashov)

In a dense subset of A_n , any foliation has a leaf with at least $\frac{(n+1)(n+2)}{2} - 4$ handles.

Theorem (NG, Yu. Kudryashov)

Let \mathcal{A}_n^{sym} be the subspace of \mathcal{A}_n , $n \geq 2$, given by

$$p(x,y) = -p(x,-y), \quad q(x,y) = q(x,-y).$$

For a foliation \mathcal{F} from some open dense subset of \mathcal{A}_n^{sym} , all leaves of \mathcal{F} (except for a finite set of algebraic leaves) have infinite genus.

(🗆) (🖓) (E) (

Outline

Motivation and problem statement

- 2) The main tool: monodromy at infinity
- 3 Using monodromy at infinity
- 4 A leaf with many handles
- 5 Leaves with infinitely many handles
- 6 Bounded limit cycles

Extension to $\mathbb{C}P^2$

Change of coordinates

$$u=rac{1}{x};$$
 $v=rac{y}{x};$ $d au=-u^{n-1}dt$

$$\begin{cases} \dot{u} = u^{n+1} p\left(\frac{1}{u}, \frac{v}{u}\right) &=: u \tilde{p}(u, v) \\ \dot{v} = v u^n p\left(\frac{1}{u}, \frac{v}{u}\right) - u^n q\left(\frac{1}{u}, \frac{v}{u}\right) &=: h(u, v). \end{cases}$$

The leaf at infinity

Let $\{a_1, \ldots, a_{n+1}\}$ be the roots of h(0, v). Generically, $a_i \neq a_j$. (0, a_j) are singularities of the extended foliation, and $L_{\infty} = \{u = 0\} \setminus \{(0, a_j) \mid 1 \leq j \leq n+1\}$ is its leaf.

Extension to $\mathbb{C}P^2$

Change of coordinates

$$u = \frac{1}{x};$$
 $v = \frac{y}{x};$ $d\tau = -u^{n-1}dt$

$$\begin{cases} \dot{u} = u^{n+1} p\left(\frac{1}{u}, \frac{v}{u}\right) &=: u \tilde{p}(u, v) \\ \dot{v} = v u^n p\left(\frac{1}{u}, \frac{v}{u}\right) - u^n q\left(\frac{1}{u}, \frac{v}{u}\right) &=: h(u, v). \end{cases}$$

The leaf at infinity

Let $\{a_1, \ldots, a_{n+1}\}$ be the roots of h(0, v). Generically, $a_i \neq a_j$. (0, a_j) are singularities of the extended foliation, and $L_{\infty} = \{u = 0\} \setminus \{(0, a_j) \mid 1 \leq j \leq n+1\}$ is its leaf.

10 / 27

Extension to $\mathbb{C}P^2$

Change of coordinates

$$u=rac{1}{x};$$
 $v=rac{y}{x};$ $d au=-u^{n-1}dt$

$$\begin{cases} \dot{u} = u^{n+1} p\left(\frac{1}{u}, \frac{v}{u}\right) &=: u \tilde{p}(u, v) \\ \dot{v} = v u^n p\left(\frac{1}{u}, \frac{v}{u}\right) - u^n q\left(\frac{1}{u}, \frac{v}{u}\right) &=: h(u, v). \end{cases}$$

The leaf at infinity

Let $\{a_1, \ldots, a_{n+1}\}$ be the roots of h(0, v). Generically, $a_i \neq a_j$. (0, a_j) are singularities of the extended foliation, and $L_{\infty} = \{u = 0\} \setminus \{(0, a_j) \mid 1 \leq j \leq n+1\}$ is its leaf.

Monodromy group at infinity

Choose $O \in L_{\infty}$ and take loops $\gamma_j \subset L_{\infty}$ around a_j starting from O. The monodromy (pseudo)group at infinity is generated by the monodromy maps $M_j := M_{\gamma_j}$ along γ_j .

Limit cycles correspond to isolated fixed points of monodromy maps.

Generic monodromy groups and generic foliations

Generic pseudogroup in $(\mathbb{C}, 0)$

- \bullet Orbits are dense in $(\mathbb{C},0)$
- Infinite number of isolated fixed points
- Rigidity

Generic foliation from \mathcal{A}_n

- Leaves are dense in $\mathbb{C}P^2$
- Infinite number of independent limit cycles

• Rigidity

Outline

- Motivation and problem statement
- 2 The main tool: monodromy at infinity
- Using monodromy at infinity
 - 4 A leaf with many handles
 - 5 Leaves with infinitely many handles
 - 6 Bounded limit cycles

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximating $z \mapsto \tau z$ in the Schwartz chart for M_1

- Choose k, l such that $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- Then M₁^{-N} (M₁^k M₂^l) M₁^N(z) uniformly tends to (M₁^k ◦ M₂^l)'(0)z ≈ τz as N → ∞.

Corollary (Orbits are dense; (Ilyashenko, 78))

Under above genericity assumptions, all orbits of the monodromy pseudogroup are dense in some neighborhood of the origin.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AM

AMS-EMS-SPM '15

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximating $z \mapsto \tau z$ in the Schwartz chart for M_1

- Choose k, l such that $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- Then M₁^{-N} (M₁^k M₂^l) M₁^N(z) uniformly tends to (M₁^k ◦ M₂^l)'(0)z ≈ τz as N → ∞.

Corollary (Orbits are dense; (Ilyashenko, 78))

Under above genericity assumptions, all orbits of the monodromy pseudogroup are dense in some neighborhood of the origin.

14 / 27

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximating $z \mapsto \tau z$ in the Schwartz chart for M_1

≏

- Choose k, l such that $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- Then $M_1^{-N} \circ (M_1^k \circ M_2^l) \circ M_1^N(z)$ uniformly tends to $(M_1^k \circ M_2^l)'(0)z \approx \tau z$ as $N \to \infty$.

Corollary (Orbits are dense; (Ilyashenko, 78))

Under above genericity assumptions, all orbits of the monodromy pseudogroup are dense in some neighborhood of the origin.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AM

AMS-EMS-SPM '15

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximating $z \mapsto \tau z$ in the Schwartz chart for M_1

≙

14 / 27

• Choose k, I such that $(M_1^k \circ M_2^I)'(0) \approx \tau$.

• Then $M_1^{-N} \circ (M_1^k \circ M_2^l) \circ M_1^N(z)$ uniformly tends to $(M_1^k \circ M_2^l)'(0)z \approx \tau z$ as $N \to \infty$.

Corollary (Orbits are dense; (Ilyashenko, 78))

Under above genericity assumptions, all orbits of the monodromy pseudogroup are dense in some neighborhood of the origin.

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximating $z \mapsto \tau z$ in the Schwartz chart for M_1

≙

- Choose k, I such that $(M_1^k \circ M_2^I)'(0) \approx \tau$.
- Then $M_1^{-N} \circ (M_1^k \circ M_2^l) \circ M_1^N(z)$ uniformly tends to $(M_1^k \circ M_2^l)'(0)z \approx \tau z$ as $N \to \infty$.

Corollary (Orbits are dense; (Ilyashenko, 78))

Under above genericity assumptions, all orbits of the monodromy pseudogroup are dense in some neighborhood of the origin.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AN

AMS-EMS-SPM '15

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximating $z \mapsto \tau z$ in the Schwartz chart for M_1

≙

- Choose k, I such that $(M_1^k \circ M_2^I)'(0) \approx \tau$.
- Then $M_1^{-N} \circ (M_1^k \circ M_2^l) \circ M_1^N(z)$ uniformly tends to $(M_1^k \circ M_2^l)'(0)z \approx \tau z$ as $N \to \infty$.

Corollary (Orbits are dense; (Ilyashenko, 78))

Under above genericity assumptions, all orbits of the monodromy pseudogroup are dense in some neighborhood of the origin.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AMS-EMS-SPM '15

'15 14 / 27

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)} M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- Then M M₂ has an isolated fixed point near z₀.
- It corresponds to a limit cycle.

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)} M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- It corresponds to a limit cycle.

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)}M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- Then *M* ∘ *M*₂ has an isolated fixed point near *z*₀.
- It corresponds to a limit cycle.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AMS

AMS-EMS-SPM '15

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)}M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- Then *M* ∘ *M*₂ has an isolated fixed point near *z*₀.
- It corresponds to a limit cycle.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AMS

AMS-EMS-SPM '15

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)} M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- Then *M* ∘ *M*₂ has an isolated fixed point near *z*₀.
- It corresponds to a limit cycle.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AM

AMS-EMS-SPM '15

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)} M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- Then *M* ∘ *M*₂ has an isolated fixed point near *z*₀.

• It corresponds to a limit cycle.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AMS-

AMS-EMS-SPM '15

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

One limit cycle

- z_0 is a fixed point of $z \mapsto \frac{z_0}{M_2(z_0)} M_2(z)$.
- Choose $M \in \langle M_1, M_2 \rangle$ close to $\times \frac{z_0}{M_2(z_0)}$.
- Then $M \circ M_2$ has an isolated fixed point near z₀.
- It corresponds to a limit cycle.

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

Infinitely many limit cycles

- Repeat the construction near points *z*₁, *z*₂, ... to obtain infinitely many limit cycles.
- The homological independence is not trivial.

Genericity assumptions

- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .
- $M_1 \circ M_2 \neq M_2 \circ M_1$.

Infinitely many limit cycles

- Repeat the construction near points *z*₁, *z*₂, ... to obtain infinitely many limit cycles.
- The homological independence is not trivial.

Outline

- Motivation and problem statement
- 2 The main tool: monodromy at infinity
- 3 Using monodromy at infinity
- A leaf with many handles
 - Leaves with infinitely many handles
 - 6 Bounded limit cycles

A leaf with many handles

Refinement of Volk's Theorem

on the density of separatrix connections

Lemma (D. Volk; NG, Yu. Kudryashov) Given a rigid foliation *F*,

• a neighborhood $\mathcal{F} \in U \subset \mathcal{A}_n$;

• two holomorphic functions $A, B: U \to S$; there exists $\gamma: S^1 \to L_{\infty}$ such that $M_{\gamma}(A(\mathcal{F})) = B(\mathcal{F})$ defines a codimension-one analytic submanifold in U.

Here \mathcal{M} is such that

- $M'_1(0)$ and $M'_2(0)$ are constants on \mathcal{M} ;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C} , so we can approximate $z \mapsto \tau z$.

PM '15 17 / 27

A leaf with many handles

Refinement of Volk's Theorem

on the density of separatrix connections

Lemma (D. Volk; NG, Yu. Kudryashov) Given a rigid foliation \mathcal{F} , • a neighborhood $\mathcal{F} \in U \subset \mathcal{M}$, dim $\mathcal{M} > 6$; • two holomorphic functions $A, B: U \to S$; there exists $\gamma: S^1 \to L_\infty$ such that $M_\gamma(A(\mathcal{F})) = B(\mathcal{F})$ defines a codimension-one analytic submanifold in U.

17 / 27

Here \mathcal{M} is such that

- $M'_1(0)$ and $M'_2(0)$ are constants on \mathcal{M} ;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C} , so we can approximate $z \mapsto \tau z$.

One handle

- Take one limit cycle corresponding to $M_1^{-N} \circ (M_1^k M_2^l) \circ M_1^N \circ M_2(z).$
- Use the refined Volk's Theorem to obtain another one in a submanifold of codimension one.

One handle

- Take one limit cycle corresponding to $M_1^{-N} \circ (M_1^k M_2') \circ M_1^N \circ M_2(z).$
- Use the refined Volk's Theorem to obtain another one in a submanifold of codimension one.

One handle

- Take one limit cycle corresponding to $M_1^{-N} \circ (M_1^k M_2') \circ M_1^N \circ M_2(z).$
- Use the refined Volk's Theorem to obtain another one in a submanifold of codimension one.

• Prove that two cycles intersect transversally at one point.

Result

In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, any $\mathcal{F} \in \mathcal{M}_1$ has one handle.

• In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, we have one handle.

- Repeat construction inside \mathcal{M}_1 .
- We get M₂, codim M₂ = 2: each foliation F ∈ M₂ has 2 handles on different leaves, etc.;

• Use the refined Volk's Theorem to take all handles into one leaf.

- In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, we have one handle.
- Repeat construction inside \mathcal{M}_1 .
- We get M₂, codim M₂ = 2: each foliation F ∈ M₂ has 2 handles on different leaves, etc.;

• Use the refined Volk's Theorem to take all handles into one leaf.

- In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, we have one handle.
- Repeat construction inside \mathcal{M}_1 .
- We get \mathcal{M}_2 , codim $\mathcal{M}_2 = 2$: each foliation $\mathcal{F} \in \mathcal{M}_2$ has 2 handles on different leaves, etc.;

• Use the refined Volk's Theorem to take all handles into one leaf.

- In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, we have one handle.
- Repeat construction inside \mathcal{M}_1 .
- We get \mathcal{M}_2 , codim $\mathcal{M}_2 = 2$: each foliation $\mathcal{F} \in \mathcal{M}_2$ has 2 handles on different leaves, etc.;

• Use the refined Volk's Theorem to take all handles into one leaf.

- In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, we have one handle.
- Repeat construction inside \mathcal{M}_1 .
- We get \mathcal{M}_2 , codim $\mathcal{M}_2 = 2$: each foliation $\mathcal{F} \in \mathcal{M}_2$ has 2 handles on different leaves, etc.;

• Use the refined Volk's Theorem to take all handles into one leaf.

Outline

- Motivation and problem statement
- 2 The main tool: monodromy at infinity
- 3 Using monodromy at infinity
- 4 A leaf with many handles
- 5 Leaves with infinitely many handles
 - 6 Bounded limit cycles

Infinite genus for p(x, y) = -p(x, -y), q(x, y) = q(x, -y)

Outline

- Motivation and problem statement
- 2 The main tool: monodromy at infinity
- 3 Using monodromy at infinity
- A leaf with many handles
 - Leaves with infinitely many handles
- 6 Bounded limit cycles

Infinitely many limit cycles

Theorem (Yu.Ilyashenko, 1978)

For $n \ge 2$, each foliation \mathcal{F} from some full-measure subset of \mathcal{A}_n possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez, L. Ortiz-Bobadilla, 1998)

For $n \ge 3$, each foliation outside some real-analytic subset of A_n possesses infinitely many homologically independent limit cycles.

Theorem (NG, Yu. Kudryashov, 2015)

For $n \ge 2$, each foliation outside some real-analytic subset of A_n possesses infinitely many homologically independent limit cycles.

23 / 27

Infinitely many limit cycles

Theorem (Yu.Ilyashenko, 1978)

For $n \ge 2$, each foliation \mathcal{F} from some full-measure subset of \mathcal{A}_n possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez, L. Ortiz-Bobadilla, 1998)

For $n \ge 3$, each foliation outside some real-analytic subset of A_n possesses infinitely many homologically independent limit cycles.

Theorem (NG, Yu. Kudryashov, 2015)

For $n \ge 2$, each foliation outside some real-analytic subset of A_n possesses infinitely many homologically independent limit cycles.

23 / 27

Infinitely many limit cycles

Theorem (Yu.Ilyashenko, 1978)

For $n \ge 2$, each foliation \mathcal{F} from some full-measure subset of \mathcal{A}_n possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez, L. Ortiz-Bobadilla, 1998)

For $n \ge 3$, each foliation outside some real-analytic subset of A_n possesses infinitely many homologically independent limit cycles.

Theorem (NG, Yu. Kudryashov, 2015)

For $n \ge 2$, each foliation outside some real-analytic subset of A_n possesses infinitely many homologically independent limit cycles.

15 23 / 27

Advantages of our approach

• The cycles are uniformly bounded.

- Subsequently, the construction survives under perturbations in \mathcal{B}_{n+1} .
- We estimate multipliers of the cycles instead of $\oint x \, dy y \, dx$, and this is much simpler.

Definition

 \mathcal{B}_{n+1} is the space of foliations in $\mathbb{C}P^2$ which are polynomial of degree at most n+1 in each affine chart.

Advantages of our approach

- The cycles are uniformly bounded.
- Subsequently, the construction survives under perturbations in $\mathcal{B}_{n+1}.$
- We estimate multipliers of the cycles instead of $\oint x \, dy y \, dx$, and this is much simpler.

Definition

 \mathcal{B}_{n+1} is the space of foliations in $\mathbb{C}P^2$ which are polynomial of degree at most n+1 in each affine chart.

Advantages of our approach

- The cycles are uniformly bounded.
- Subsequently, the construction survives under perturbations in $\mathcal{B}_{n+1}.$
- We estimate multipliers of the cycles instead of ∮ x dy y dx, and this is much simpler.

Definition

 \mathcal{B}_{n+1} is the space of foliations in $\mathbb{C}P^2$ which are polynomial of degree at most n+1 in each affine chart.

- Find a domain $0 \notin D$ and monodromy maps f_j such that
 - f_j contract in D;
 - the images of D under f_j cover D.
- Any long composition of *f_j* has a fixed point which produces a limit cycle.
- Multipliers tend to 0.
- Fixed points are dense in D.

- Find a domain $0 \notin D$ and monodromy maps f_j such that
 - f_j contract in D;
 - the images of D under f_j cover D.

- Any long composition of f_j has a fixed point which produces a limit cycle.
 - Multipliers tend to 0.
- Fixed points are dense in D.

- Find a domain $0 \notin D$ and monodromy maps f_j such that
 - f_j contract in D;
 - the images of D under f_j cover D.

- Any long composition of f_j has a fixed point which produces a limit cycle.
- Multipliers tend to 0.
- Fixed points are dense in D.

- Find a domain $0 \notin D$ and monodromy maps f_j such that
 - f_j contract in D;
 - the images of D under f_j cover D.

- Any long composition of f_j has a fixed point which produces a limit cycle.
- Multipliers tend to 0.
- Fixed points are dense in D.

Homological independence

Observation

If homologically dependent cycles are simple and disjoint, the dependence is of the form $c_{i_1} \pm \cdots \pm c_{i_k} = 0$ in $H_1(L)$.

Thus

•
$$\left(\oint_{c_{i_1}} \pm \cdots \pm \oint_{c_{i_k}}\right) (x \, dy - y \, dx) = 0;$$

• the multipliers satisfy $\mu_{i_1}^{\pm 1} \cdots \mu_{i_k}^{\pm 1} = 1$.

It is enough to construct c_j such that

- c_j are simple and disjoint;
- their multipliers rapidly tend to 0.

Homological independence

Observation

If homologically dependent cycles are simple and disjoint, the dependence is of the form $c_{i_1} \pm \cdots \pm c_{i_k} = 0$ in $H_1(L)$.

Thus

•
$$\left(\oint_{c_{i_1}} \pm \cdots \pm \oint_{c_{i_k}}\right) (x \, dy - y \, dx) = 0;$$

• the multipliers satisfy $\mu_{i_1}^{\pm 1} \cdot \cdots \cdot \mu_{i_k}^{\pm 1} = 1$.

It is enough to construct c_j such that

- c_j are simple and disjoint;
- their multipliers rapidly tend to 0.

Homological independence

Observation

If homologically dependent cycles are simple and disjoint, the dependence is of the form $c_{i_1} \pm \cdots \pm c_{i_k} = 0$ in $H_1(L)$.

Thus

•
$$\left(\oint_{c_{i_1}} \pm \cdots \pm \oint_{c_{i_k}}\right) (x \, dy - y \, dx) = 0;$$

• the multipliers satisfy $\mu_{i_1}^{\pm 1} \cdots \mu_{i_k}^{\pm 1} = 1$.

It is enough to construct c_j such that

- c_j are simple and disjoint;
- their multipliers rapidly tend to 0.

Thank you for your attention!

Nataliya Goncharuk (HSE, IUM) Genera of non-algebraic leaves of polynor AMS-EMS-SPM '15 27 / 27

э