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Topological pressure for individual dynamics

Classical results
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• (in some cases) measures exponential growth rate of weighted
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Thermodynamical formalism for individual dynamics

Classical results

[Adler, Konheim, McAndrew 65’] Definition of topological entropy

[Ruelle 68’] The pressure function � 7! P

top

(f ,'+ � ) is analytic

[Bowen 71’] Specification ) Positive entropy

[Ruelle 73’ Walters 75’] Variational principle for continuous maps

[Parry 64’ Bowen 71’, 74’] Specification & expansiveness
) 9! equilibrium state µ' for every Hölder potential ', obtained
as weak⇤-limit of
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Specification for individual dynamics: precise definition

A continuous map f : X ! X satisfies the specification property if
for any � > 0 there exists an integer p(�) � 1 such that the
following holds: for every k � 1, any points x
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, . . . , x
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, and any
sequence of positive integers n
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More general dynamical systems

Motivated by the number of di↵erent applications the following
classes of dynamical systems have been intensively studied:

1. Non-autonomous / sequential dynamical systems

2. Iterated function systems (IFS)

3. Group and semigroup actions



Sequential dynamical systems

Non-autonomous (or sequential) dynamical systems F = (f
k

)
k�1

F

n

= f

n

� · · · � f
2

� f
1

for n � 1

Some di�culties include:

• non-stationarity (no common invariant measures!)

• omega-limit sets are not necessarily invariant sets

• ’periodic points’ defined by truncating dynamics

’Topological & probabilistic complexity’



Finitely generated (semi)groups

(G , �) finitely generated (semi)group
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Continuous semigroup actions

We say that T : G ⇥ X ! X is a continuous semigroup action on
a topological space X if:

1. For every g 2 G the map g ⌘ T

g

: X ! X is continuous

2. (gh)x = g(hx) for every g , h 2 G and x 2 X

The orbit of x 2 X is the set O
T

(x) = {gx : g 2 G}.

x 2 X is ’periodic point’ (period n) if g
n

(x) = x for some g

n

2 G

n
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) set of periodic orbits.

Questions:

i. Are there natural notions of complexity?

ii. Can it be computed using periodic points/loops?

iii. Does local complexity propagate?
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Motivational example: geodesics and moving billiards table

f : S1 ! S1 be smooth
expanding map
(Bowen-Series map)

R↵ : S1 ! S1 rotation angle ↵

G semigroup generated by
G

1

= {id , f ,R↵}



Coding: the semigroups G and T (G )  C (X ,X )

Bijection Z
+

⇥ Z
4
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Non-injective Z2
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2

(x) = 4x(mod1)i



Coding: the semigroups G and T (G )  C (X ,X )

Bijection F

2
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/2 Z (g
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Topological pressure for (semi)group actions

Some (di↵erent) notions and contributions:

[Ruelle 73’]
[Ghys, Langevin, Walczak 88’]
[Friedland 95’]
[Bufetov 99’]
[Lind, Schmidt 02’]
[Bis 08’, 13’ ]
[Ma, Wu 11’]
[Miles, Ward 11’]
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Some of these notions require
abelianity or amenability



Di↵erent flavours

[Ruelle 73’] Zd -expansive actions with (very strong) specification

.



Di↵erent flavours

[Ghys, Langevin, Walczak 88’] Entropy for pseudo-groups and
foliations

.



Di↵erent flavours

[Bufetov 99’] Entropy free semigroup actions

. . .

.



Three concepts: topological pressure & entropy points &

orbital specification

I.1 Topological pressure:
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where s(n, ") is maximal cardinality of (n, ")-separated sets in E .
Entropy taking the compact set E = X .



Three concepts: topological pressure & entropy points &

orbital specification

Simple illustration:
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Three concepts: topological pressure & entropy points &

orbital specification

II.1 Entropy point
x
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Rmk: II.2 was introduced by [Bis 13’] which proved that the set of

entropy points is non-emtpy provided X is compact.
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orbital specification

III.1 Orbital specification

Rmk 1: Similar notion is studied on the space of push-forwards
Rmk 2: Each element in G

⇤
1

must satisfy specification
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Three concepts: topological pressure & entropy points &

orbital specification

III.2 Weak orbital specification

Rmk 3: Other notions of specification for semigroups / groups can
be defined similarly (not needed for this talk!)
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Three concepts: topological pressure & entropy points &

orbital specification

T : G ⇥ X ! X satisfies the weak orbital specification property if:
for any " > 0 there exists p(") > 0 so that for any p � p("), there
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Main Results



Some results: 1. Topological pressure

Theorem: Let G be a finitely generated semigroup with generators
G

1

. If the semigroup action induced by G on the compact metric
space X is strongly �⇤-expansive and the potentials ', : X ! R
are continuous and satisfy the bounded distortion property then:
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Some results: 2. Positive entropy

Theorem: Let G ⇥ X ! X be a continuous finitely generated
continuous semigroup action.

•
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Some results: 3. Local complexity

Theorem: Let G ⇥ X ! X be a continuous finitely generated
semigroup action s.t. every element g 2 G

1

is a local
homeomorphism.

1.
weak orbital specification ) every x 2 X is an entropy
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), Ū)  h((G ,G
1
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Although involve similar ideas, 1. and 2. are independent
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), Ū) for every Ū ⇢ X
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Some results: 4. Computing entropy via periodic loops

Theorem: Let G be the semigroup generated by a set
G

1

= {g
1

, . . . , g
k

} of uniformly expanding maps. Then:

(a) G satisfies the periodic orbital specification property,

(b) ’periodic loops’ Per(G ) are dense in X , and

(c) the mean growth of periodic points is bounded from below as

0 < h
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n!1

1

n

log
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n
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]Fix(g)
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.

Rmk: Similarly, the exponential growth rate of ’periodic loops’ is
larger than the entropy h((G ,G
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Two applications

1. Every g 2 G is an expanding map on Tn

- satisfy strong topological exactness
- satisfy the orbital specification property
- positive entropy
- every point is an entropy point (for h and h

top

)
- topological pressure is a.e. di↵erentiable

2. G generated by expanding maps (� 2) and isometries
- the proportion of elements h

p

2 G

⇤
p

’not suitable’ for orbital
specification is fastly convergent to zero as p ! 1

- satisfy the weak orbital specification property
- every point is an entropy point (for h)
- positive entropy
- topological pressure is a.e. di↵erentiable



Thank you!


