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Construct time independent configurations in relativistic elasticity

corresponding to body on circular orbit in SS

Nonrelativistic case for fluids: Lichtenstein 1933

Plan:

• structure of relativistic (time-ind.) elasticity on background

(M, gµν)

• Schwarzschild case (more generally: asymptotically flat,

stationary-axisymmetric vacuum spacetime)

• general scheme underlying proof: Liapunoff-Schmidt

• outlook
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Relativistic elasticity

on (M, gµν) deals with orientation-preserving maps f : M −→ B
with B a domain ⊂ (R3, GAB). XA = fA(xµ) such that fA

,µ has

1-dimensional, timelike kernel spanned by uµ uµ....4-velocity of

particles making up the body. Usually GAB = δAB

Basic definitions: HAB = fA
,µf

B
,ν g

µν ’strain’, energy density

ρ = ρ(HAB), number density n: (f ⋆ϵ)µνρ = nϵµνρσu
σ,

stress −σAB = 2n∂(ρ/n)
∂HAB = n ∂(e)

∂HAB

action S[f ] =
∫
f−1(B) ρ dvolg covariant under Diff(M)

δS = 0 quasilinear system of 2nd order equations for fA

B.C. σABf
B
,µn

µ|f−1(∂B) = 0 ’vanishing normal stress’
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Next assume (M, gµν) has timelike K.V. ξ and we restrict to

configurations fA which are time independent, i.e. fA
,µξ

µ = 0.

Then S[f ; gµν ] reduces to a functional S[f ;λ, hij] where

−λ = g(ξ, ξ) is a function on the quotient space N and hij the

(Riemannian) metric on N .

stress tensor in space becomes σij = −2nfA
,if

B
,j

∂e
∂HAB

field equations

Dj(λ
1
2 σi

j) = neDiλ
1
2 , σijn

j|f−1(∂B) = 0 (⋆)

2nd-order, quasilinear, elliptic system with Neumann-type B.C.
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constitutive conditions for e = ρ
n

e|H=δ > 0 , ∂e
∂HAB |H=δ = 0

L̊ABCD = ∂2e
∂HAB∂HCD |H=δ is pos.def. on S2(R3)

A configuration f̊ is strain- and stressfree provided that

H̊AB = f̊A
,if̊

B
,jh

ij = δAB . This clearly exists only when hij is

flat. It solves field equations (⋆) when in addition λ ≡ 1 (’no force’).

We will consider sequences (λϵ, hϵ) with (λ0 = 1, h0 = δ).
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possible cases:

(1) (M, g) is Minkowski spacetime, ξ = ∂t +Ω∂ϕ, body placed near

the critical point of the (centrifugal) potential λ. This leads to the study

of equilibria of an elastic body in rigid rotation. Body near-stressfree,

Ω small.

(2) (M, g) is Schwarzschild spacetime with mass m, ξ = ∂t + Ω∂ϕ,

body placed near the critical point of the (gravitational + centrifugal)

potential λ. Leads to the study of equilibria of elastic body near

circular geodesic orbit in SS. Body near-stressfree, m,Ω small.

(3) (M, g) is asymptotically flat, stationary-axisymmetric solution of

EVE’s.

We will study (2)
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SS case

gµνdx
µdxν = −(1− 2m

r
)dt2 + (1− 2m

r
)−1dr2 + r2dΣ2

Take K.V. ξ = ∂t + Ω ∂ϕ on N = {2m < r < r+} with

Ωr2+ = 1− 2m
r+

Clearly f̊ is a solution when m = Ω = 0. This is unique up to

composition with Euclidean motions in (N, δij). We can assume that

f̊ is the identity map.

Go over to material (’Lagrangian’) representation by replacing f by

Φ = f−1:

∇A[(λ
1
2 ◦ Φ)σi

A] = (eDiλ
1
2 ) ◦ Φ , σi

AnA|∂B = 0 (⋆⋆)

where σi
A = ∂ê

∂Φi
,A

= (HABfC
,i σBC) ◦ Φ.
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By B.C., for any K.V. ξ of N ,∫
B(ξ

i ◦ Φ)∇A[(λ
1
2 ◦ Φ)σi

A]dX = 0

We will scale (m,Ω) as (mϵ,Ωϵ
1
2 ). Thus ∃ 6 such K.V.’s for ϵ = 0.

l.h.s. of (⋆⋆)

∂Aδσi
A +O(ϵ) +O((δΦ)2), B.C. δσi

AnA|∂B +O(ϵ) +

O((δΦ)2), where δσi
A = 2δAEδBF δCiδ

D
jL̊CEDF∂BδΦ

r.h. side of (⋆⋆)

ϵ[(∂iV ) ◦ id +O(ϵ) +O(∂Φ)], where V = m
r
+ Ω2r2 sin2 Θ

2
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Map on functions δΦi on B given by

δΦ 7→ (Li = ∂Aδσi
A, li = δσi

AnA|∂B) has both nontrivial kernel

and range.

kernel: all Euclidean Killing vectors ξi ◦ id. This comes from

Euclidean invariance of the l.h. side at ϵ = 0

range: all pairs (Li, li) for which∫
B(ξ

i ◦ id)Li dX −
∫
∂B(ξ

i ◦ id) li dS = 0

(linearized-version-of) condition: total force and total torque acting on

B be = 0. Thus there is a problem in directly applying the IFT.

Idea: set Ω2 = m
L3 and place ’small body’ at (r = L,Θ = π

2
) - which

corresponds to a geodesic Killing orbit (since the ’force’ Diλ is zero

there).
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One then tries, by rotating, translating and scaling down B, to arrange

that ∂iV is ’equilibrated’ w.r. to B, i.e. satisfy the range condition with

li = 0. Use IFT on E3 with parameter the ’size’ of B. Crucial

linearized operator is the expression

Hid[ξ, ξ
′] =

∫
id◦B LξLξ′V dx ,

where B is suitably ’small’ and centered at (r = L,Θ = π
2
). Since∫

id◦B LξV dx is zero, this is a quadratic form on the Lie algebra of

E3. It is degenerate w.r. to ξ = ∂ϕ, but otherwise non-degenerate, if

all moments of inertia of B are unequal. This is enough for the IF

argument to work.
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Suppose now B is one just constructed.

Theorem: Let the components of Φ lie in a small neighborhood of the

identity in W 2,p(B,R3) with p > 3 (thus Φ is in C1(B̄) with C1 -

inverse and σi
AnA|∂B is in W 1−1/p,p(∂B,R3)). The system (⋆⋆)

has a solution Φϵ for small positive ϵ with Φ0 = id. This solution is

unique up to ϕ-rotations.
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Idea of proof (Liapunoff-Schmidt)

step 1: solve, using the infinite-dimensional IFT, a version of (⋆⋆),

which is suitably projected onto the range of the linearized operator

with fixed element of the kernel of lin.op. So this solution will depend

on ϵ and 6 more parameters cα.

step 2: solve, using the finite-dimensional IFT, for this kernel element,

so that the remaining 6 conditions on the r.h.side of (⋆⋆) are satisfied

(’bifurcation equation’). So this gives cα(ϵ). (Actually one c remains

undetermined due to the axial symmetry.) This essentially boils down

to the argument in the preparation.
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Future problems

• understand degenerate cases (not all moments of inertia different)

• constructing a full 2-body solution with helical symmetry (see

Beig, Schmidt 2009 for SR scalar gravity)

• solutions with prestressed bodies: hard (see Andersson, Beig,

Schmidt 2014 for one static prestressed body in Newtonian

gravity)

Final note: Elastic bodies in arbitrary motion were treated in

Andersson, Oliynyk, Schmidt 2014

Thank you for listening!
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Concerning the ’suitable projection’: actually equation is written as:

∂Aσ̊
A
i = ϵbi[ϵ; Φ]

with σ̊A
inA|∂B = ϵτi[ϵ; Φ]

One then solves this, with a projection on the range of the linearized

operator which leaves li unchanged (step 1) → Φϵ,c

step 2: solve for cβ(ϵ) the equation
∫
B(ξ

i
α ◦ Φϵ,c) bi[ϵ; Φϵ,c]dX = 0

with α = 1, ..6. This can be seen to boil down to the preparatory

argument.

step 3: verify that, indeed, the full equations are satisfied.
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