Relativistic celestial mechanics of elastic bodies

(joint with B.G.Schmidt, S.Broda)

2015 International Meeting AMS EMS SPM Porto: June 12, 2015 Construct time independent configurations in relativistic elasticity corresponding to body on circular orbit in SS

Nonrelativistic case for fluids: Lichtenstein 1933

Plan:

- structure of relativistic (time-ind.) elasticity on background $(M, g_{\mu\nu})$
- Schwarzschild case (more generally: asymptotically flat, stationary-axisymmetric vacuum spacetime)
- general scheme underlying proof: Liapunoff-Schmidt
- outlook

Relativistic elasticity

on $(M, g_{\mu\nu})$ deals with orientation-preserving maps $f: M \longrightarrow \mathcal{B}$ with \mathcal{B} a domain $\subset (\mathbb{R}^3, G_{AB})$. $X^A = f^A(x^\mu)$ such that $f^A_{,\mu}$ has 1-dimensional, timelike kernel spanned by $u^\mu \quad u^\mu$4-velocity of particles making up the body. Usually $G_{AB} = \delta_{AB}$ Basic definitions: $H^{AB} = f^A_{,\mu} f^B_{,\nu} g^{\mu\nu}$ 'strain', energy density $\rho = \rho(H^{AB})$, number density $n: (f^*\epsilon)_{\mu\nu\rho} = n\epsilon_{\mu\nu\rho\sigma}u^{\sigma}$, stress $-\sigma_{AB} = 2n \frac{\partial(\rho/n)}{\partial H^{AB}} = n \frac{\partial(e)}{\partial H^{AB}}$

action $S[f] = \int_{f^{-1}(\mathcal{B})} \rho \, dvol_g$ covariant under Diff(M)

 $\delta S = 0$ quasilinear system of 2nd order equations for f^A

B.C. $\sigma_{AB}f^B_{,\mu}n^{\mu}|_{f^{-1}(\partial B)} = 0$ 'vanishing normal stress'

Next assume $(M, g_{\mu\nu})$ has timelike K.V. ξ and we restrict to configurations f^A which are time independent, i.e. $f^A_{,\mu}\xi^{\mu} = 0$. Then $S[f; g_{\mu\nu}]$ reduces to a functional $S[f; \lambda, h_{ij}]$ where $-\lambda = g(\xi, \xi)$ is a function on the quotient space N and h_{ij} the (Riemannian) metric on N.

stress tensor in space becomes $\sigma_{ij}=-2nf^{A}{}_{,i}f^{B}{}_{,j}rac{\partial e}{\partial H^{AB}}$

field equations

$$D_j(\lambda^{\frac{1}{2}} \sigma_i{}^j) = ne D_i \lambda^{\frac{1}{2}} \quad , \quad \sigma_{ij} n^j |_{f^{-1}(\partial \mathcal{B})} = 0 \qquad (\star)$$

2nd-order, quasilinear, elliptic system with Neumann-type B.C.

constitutive conditions for $e = \frac{\rho}{n}$ $e|_{H=\delta} > 0$, $\frac{\partial e}{\partial H^{AB}}|_{H=\delta} = 0$ $\mathring{L}_{ABCD} = \frac{\partial^2 e}{\partial H^{AB} \partial H^{CD}}|_{H=\delta}$ is pos.def. on $\mathbb{S}^2(\mathbb{R}^3)$ A configuration \mathring{f} is strain- and stressfree provided that $\mathring{H}^{AB} = \mathring{f}^A_{,i} \mathring{f}^B_{,j} h^{ij} = \delta^{AB}$. This clearly exists only when h_{ij} is flat. It solves field equations (\star) when in addition $\lambda \equiv 1$ ('no force'). We will consider sequences $(\lambda_{\epsilon}, h_{\epsilon})$ with $(\lambda_0 = 1, h_0 = \delta)$.

possible cases:

(1) (M, g) is Minkowski spacetime, $\xi = \partial_t + \Omega \partial_\phi$, body placed near the critical point of the (centrifugal) potential λ . This leads to the study of equilibria of an elastic body in rigid rotation. Body near-stressfree, Ω small.

(2) (M, g) is Schwarzschild spacetime with mass $m, \xi = \partial_t + \Omega \partial_\phi$, body placed near the critical point of the (gravitational + centrifugal) potential λ . Leads to the study of equilibria of elastic body near circular geodesic orbit in SS. Body near-stressfree, m, Ω small. (3) (M, g) is asymptotically flat, stationary-axisymmetric solution of EVE's.

We will study (2)

SS case

$$\begin{split} g_{\mu\nu}dx^{\mu}dx^{\nu} &= -(1-\frac{2m}{r})dt^2 + (1-\frac{2m}{r})^{-1}dr^2 + r^2d\Sigma^2\\ \text{Take K.V. } \xi &= \partial_t + \Omega\,\partial_\phi \text{ on } N = \{2m < r < r_+\} \text{ with }\\ \Omega r_+^2 &= 1-\frac{2m}{r_+}\\ \text{Clearly }\mathring{f} \text{ is a solution when } m = \Omega = 0. \text{ This is unique up to }\\ \text{composition with Euclidean motions in } (N, \delta_{ij}). \text{ We can assume that }\\ \mathring{f} \text{ is the identity map.} \end{split}$$

Go over to material ('Lagrangian') representation by replacing f by $\Phi=f^{-1}$:

$$\begin{aligned} \nabla_A[(\lambda^{\frac{1}{2}} \circ \Phi)\sigma_i{}^A] &= (eD_i\lambda^{\frac{1}{2}}) \circ \Phi \,, \quad \sigma_i{}^A n_A|_{\partial\mathcal{B}} = 0 \quad (\star\star) \end{aligned} \\ \text{where } \sigma_i{}^A &= \frac{\partial \hat{e}}{\partial \Phi^i{}_{,A}} = (H^{AB}f^C{}_{,i}\sigma_{BC}) \circ \Phi. \end{aligned}$$

By B.C., for any K.V. ξ of N, $\int_{\mathcal{B}} (\xi^i \circ \Phi) \nabla_A [(\lambda^{\frac{1}{2}} \circ \Phi) \sigma_i^A] dX = 0$ We will scale (m, Ω) as $(m\epsilon, \Omega\epsilon^{\frac{1}{2}})$. Thus \exists 6 such K.V.'s for $\epsilon = 0$. I.h.s. of $(\star\star)$ $\partial_A \delta \sigma_i^A + O(\epsilon) + O((\delta \Phi)^2), \quad \text{B.C.} \quad \delta \sigma_i^A n_A |_{\partial \mathcal{B}} + O(\epsilon) + O(\epsilon)$ $O((\delta \Phi)^2)$, where $\delta \sigma_i{}^A = 2 \delta^{AE} \delta^{BF} \delta^C{}_i \delta^D{}_i \mathring{L}_{CEDF} \partial_B \delta \Phi$ r.h. side of $(\star\star)$ $\epsilon[(\partial_i V) \circ \mathrm{id} + O(\epsilon) + O(\partial \Phi)]$, where $V = \frac{m}{r} + \frac{\Omega^2 r^2 \sin^2 \Theta}{2}$

Map on functions $\delta \Phi^i$ on \mathcal{B} given by $\delta \Phi \mapsto (L_i = \partial_A \delta \sigma_i{}^A, l_i = \delta \sigma_i{}^A n_A|_{\partial \mathcal{B}})$ has both nontrivial kernel and range.

kernel: all Euclidean Killing vectors $\xi^i \circ id$. This comes from Euclidean invariance of the l.h. side at $\epsilon = 0$ range: all pairs (L_i, l_i) for which

$$\int_{\mathcal{B}} (\xi^i \circ \mathrm{id}) L_i \, dX - \int_{\partial \mathcal{B}} (\xi^i \circ \mathrm{id}) l_i \, dS = 0$$

(linearized-version-of) condition: total force and total torque acting on \mathcal{B} be = 0. Thus there is a problem in directly applying the IFT. Idea: set $\Omega^2 = \frac{m}{L^3}$ and place 'small body' at $(r = L, \Theta = \frac{\pi}{2})$ - which corresponds to a geodesic Killing orbit (since the 'force' $D_i\lambda$ is zero there). One then tries, by rotating, translating and scaling down \mathcal{B} , to arrange that $\partial_i V$ is 'equilibrated' w.r. to \mathcal{B} , i.e. satisfy the range condition with $l_i = 0$. Use IFT on \mathbb{E}^3 with parameter the 'size' of \mathcal{B} . Crucial linearized operator is the expression

 $H_{\rm id}[\xi,\xi'] = \int_{\rm id\circ\mathcal{B}} \mathcal{L}_{\xi} \mathcal{L}_{\xi'} V dx \,,$

where \mathcal{B} is suitably 'small' and centered at $(r = L, \Theta = \frac{\pi}{2})$. Since $\int_{ido\mathcal{B}} \mathcal{L}_{\xi} V dx$ is zero, this is a quadratic form on the Lie algebra of \mathbb{E}^3 . It is degenerate w.r. to $\xi = \partial_{\phi}$, but otherwise non-degenerate, if all moments of inertia of \mathcal{B} are unequal. This is enough for the IF argument to work.

Suppose now \mathcal{B} is one just constructed.

Theorem: Let the components of Φ lie in a small neighborhood of the identity in $W^{2,p}(\mathcal{B}, \mathbb{R}^3)$ with p > 3 (thus Φ is in $C^1(\overline{\mathcal{B}})$ with C^1 - inverse and $\sigma_i{}^A n_A|_{\partial \mathcal{B}}$ is in $W^{1-1/p,p}(\partial \mathcal{B}, \mathbb{R}^3)$). The system (**) has a solution Φ_{ϵ} for small positive ϵ with $\Phi_0 = \text{id}$. This solution is unique up to ϕ -rotations.

Idea of proof (Liapunoff-Schmidt)

step 1: solve, using the infinite-dimensional IFT, a version of $(\star\star)$, which is suitably projected onto the range of the linearized operator with fixed element of the kernel of lin.op. So this solution will depend on ϵ and 6 more parameters c_{α} .

step 2: solve, using the finite-dimensional IFT, for this kernel element, so that the remaining 6 conditions on the r.h.side of (******) are satisfied ('bifurcation equation'). So this gives $c_{\alpha}(\epsilon)$. (Actually one *c* remains undetermined due to the axial symmetry.) This essentially boils down to the argument in the preparation.

Future problems

- understand degenerate cases (not all moments of inertia different)
- constructing a full 2-body solution with helical symmetry (see Beig, Schmidt 2009 for SR scalar gravity)
- solutions with prestressed bodies: hard (see Andersson, Beig, Schmidt 2014 for one static prestressed body in Newtonian gravity)

Final note: Elastic bodies in arbitrary motion were treated in Andersson, Oliynyk, Schmidt 2014

Thank you for listening!

Concerning the 'suitable projection': actually equation is written as:

$$\partial_A \mathring{\sigma}^A{}_i = \epsilon b_i[\epsilon; \Phi]$$
 with $\mathring{\sigma}^A{}_i n_A |_{\partial \mathcal{B}} = \epsilon \tau_i[\epsilon; \Phi]$

One then solves this, with a projection on the range of the linearized operator which leaves l_i unchanged (step 1) $\rightarrow \Phi_{\epsilon,c}$ step 2: solve for $c_{\beta}(\epsilon)$ the equation $\int_{\mathcal{B}} (\xi^i_{\alpha} \circ \Phi_{\epsilon,c}) b_i[\epsilon; \Phi_{\epsilon,c}] dX = 0$ with $\alpha = 1, ..6$. This can be seen to boil down to the preparatory argument.

step 3: verify that, indeed, the full equations are satisfied.