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Construct time independent configurations in relativistic elasticity
corresponding to body on circular orbit in SS

Nonrelativistic case for fluids: Lichtenstein 1933

Plan:

e structure of relativistic (time-ind.) elasticity on background
(M, )

e Schwarzschild case (more generally: asymptotically flat,

stationary-axisymmetric vacuum spacetime)
e general scheme underlying proof: Liapunoff-Schmidt

e outlook



Relativistic elasticity

on (M, g,.,) deals with orientation-preserving maps f : M — B
with B a domain C (R3, Gap). X* = f*(x#) such that f* , has
1-dimensional, timelike kernel spanned by u* wu*....4-velocity of
particles making up the body. Usually G4g = 045

Basic definitions: H4P = fA,MfB,V gl ‘strain’, energy density

p = p(H"P), number density n: (€)1, = 16,0 U,

8
stress —o4p = 2n agﬁ) — nmé—i)B

action S| f] = J}—l(B) pduvol,  covariant under Dif f (M)
65 = 0 quasilinear system of 2nd order equations for

B.C. oapf” n"|s-198) =0 'vanishing normal stress’



Next assume (M, g,,,,) has timelike K.V. £ and we restrict to
configurations f“* which are time independent, i.e. f* ,&* = 0.
Then S| f; g,.] reduces to a functional S| f; A, h;;| where

—\ = g(&, &) is a function on the quotient space /N and h;; the

(Riemannian) metric on V.

stress tensor in space becomes 0 = —2nf A,if B,j 9HAB giB

field equations

D;(A\z 077) = neDA2 | oynd|p-10m =0 (%)

2nd-order, quasilinear, elliptic system with Neumann-type B.C.



constitutive conditions for e = %

elp=s >0, 3HAB’H s =0
o 2
Lapcp = grabron | H=s is pos.def. on S?(R?)

A configuration f IS strain- and stressfree provided that
HAB = fA,ij?B’jhij = §“B. This clearly exists only when h;; is
flat. It solves field equations (x) when in addition A = 1 ('no force’).

We will consider sequences (A, he) with (A\g = 1, hg = 9).



possible cases:

(1) (M, g) is Minkowski spacetime, £ = 0; + 20,,, body placed near
the critical point of the (centrifugal) potential A. This leads to the study
of equilibria of an elastic body in rigid rotation. Body near-stressfree,
() small.

(2) (M, g) is Schwarzschild spacetime with mass m, & = 0; + (20,
body placed near the critical point of the (gravitational + centrifugal)
potential A. Leads to the study of equilibria of elastic body near
circular geodesic orbit in SS. Body near-stressfree, m, {2 small.

(3) (M : g) is asymptotically flat, stationary-axisymmetric solution of
EVE’s.

We will study (2)



SS case

gwd:v“dx” = —( — QTm)dt2 + (1 — QTm)_ldT2 4 r2dy2
Take K.V. £ =0, +Qdgon N ={2m <r < r,} with

2 _1_2m
QT+_ r4+

Clearly f is a solution when m = 2 = 0. This is unique up to
composition with Euclidean motions in (/V, d;;). We can assume that
f IS the identity map.

Go over to material ('Lagrangian’) representation by replacing f by

o= fL

V(A2 0 ®)oA] = (eDiX3) o @, oinalos =0 (x%)

where 0,4 = ang = (HABfC,Z- ogc) o P.



By B.C., for any K.V. £ of [V,
[4(€ 0 @)V 4[(A2 0 ®)o;A)dX =0
We will scale (m, ) as (me, Qez). Thus 3 6 such K.V.s for € = 0.

.h.s. of (x)
04002+ O(e) + O((6@)%), B.C. do;n4lsn + O€) +
O((6®)?), where 604 = 2064F§BF5C 6P Lepprdpd®

r.h. side of (x)
€[(8;V) 0id + O(e) + O(dP)], where V = m 4 Lr2sin?6
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Map on functions 6®* on BB given by

0D+ (L; = Oa00:*,1; = d0;n 4|s5) has both nontrivial kernel
and range.

kernel: all Euclidean Killing vectors £ o id. This comes from
Euclidean invariance of the I.h. side at € = 0

range: all pairs (L;, [;) for which
[4(€0id) LidX — [,5(€" 0id)1;dS = 0

(linearized-version-of) condition: total force and total torque acting on

B be = 0. Thus there is a problem in directly applying the IFT.

dea: set ()* = % and place 'small body’ at (r = L, © = %) - which

corresponds to a geodesic Killing orbit (since the 'force’ D; \ is zero

there).



One then tries, by rotating, translating and scaling down 5, to arrange
that 0;V is ’equilibrated’ w.r. to B, i.e. satisfy the range condition with
l; = 0. Use IFT on E? with parameter the ’size’ of B. Crucial

linearized operator is the expression

1df f fd Bﬁgﬁg/‘/dilf

where B is suitably 'small’ and centered at (r =L,0 = g) Since
fidoB LV dx is zero, this is a quadratic form on the Lie algebra of
E3. Itis degenerate w.r. to £ = 5’¢, but otherwise non-degenerate, if
all moments of inertia of 15 are unequal. This is enough for the IF

argument to work.
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Suppose now B is one just constructed.

Theorem: Let the components of P lie in a small neighborhood of the
identity in /2P (B, R3) with p > 3 (thus ® is in C'(B) with C'! -
inverse and 0;'n 4| g is in W1L/PP(9B,R3)). The system (xx)
has a solution @, for small positive € with &5 = id. This solution is

unigue up to ¢-rotations.
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ldea of proof (Liapunoff-Schmidt)

step 1: solve, using the infinite-dimensional IFT, a version of (*x),
which is suitably projected onto the range of the linearized operator
with fixed element of the kernel of lin.op. So this solution will depend

on € and 6 more parameters c,.

step 2: solve, using the finite-dimensional IFT, for this kernel element,
so that the remaining 6 conditions on the r.h.side of (xx) are satisfied
(‘bifurcation equation’). So this gives ca(e). (Actually one ¢ remains

undetermined due to the axial symmetry.) This essentially boils down

to the argument in the preparation.
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Future problems
e understand degenerate cases (not all moments of inertia different)

e constructing a full 2-body solution with helical symmetry (see
Beig, Schmidt 2009 for SR scalar gravity)

e solutions with prestressed bodies: hard (see Andersson, Beig,
Schmidt 2014 for one static prestressed body in Newtonian

gravity)

Final note: Elastic bodies in arbitrary motion were treated in
Andersson, Oliynyk, Schmidt 2014

Thank you for listening!
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Concerning the 'suitable projection’: actually equation is written as:
aA T bz [67 (I)]
with 024,m 4|05 = eTile; @]

One then solves this, with a projection on the range of the linearized
operator which leaves /; unchanged (step 1) — ®. .

step 2: solve for c(€) the equation [ (&, o D) b;[e; P JdX =0
with = 1, ..6. This can be seen to boil down to the preparatory
argument.

step 3: verify that, indeed, the full equations are satisfied.
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