Simulated data

100 discrete-time obs. from five subjects. Same patterns, but

- The (stationary) levels differ between subjects
- Speed of 'mean-reversion' differs between subjects

Slide 2/23

UNIVERSITY OF COPENHAGEN

Linear drift SDE's with random parameters

Hierarchical set-up:

• Data: *N* equidistant obs. from each of *M* processes: $Y_i = (Y_{i1}, ..., Y_{iN})$ for i = 1, ..., M where $Y_{ij} = X_{i,j\Delta}$.

Slide 3/23

Helle Sørensen

Joint with Susanne Ditlevsen

Department of Mathematical Sciences

AMS-EMS-SPM, Porto, June 2015

UNIVERSITY OF COPENHAGEN

Outline

Aim: Parameter estimation for SDE models with random parameters

Outline:

- SDE models with linear drift and random parameters
- Estimation approach and simulation results for CIR model
- Data example on growth of pigs

Linear drift SDE's with random parameters

Hierarchical set-up:

- Data: *N* equidistant obs. from each of *M* processes: $Y_i = (Y_{i1}, ..., Y_{iN})$ for i = 1, ..., M where $Y_{ij} = X_{i,j\Delta}$.
- For process *i*: $dX_{i,t} = -b_i(X_{i,t} a_i) dt + \sigma(X_{i,t}) dW_{i,t}$.
 - a_i is the stationary mean, b_i is a mean-reversion parameter.

Linear drift SDE's with random parameters

Hierarchical set-up:

- Data: *N* equidistant obs. from each of *M* processes: $Y_i = (Y_{i1}, ..., Y_{iN})$ for i = 1, ..., M where $Y_{ij} = X_{i,j\Delta}$.
- For process *i*: $dX_{i,t} = -b_i(X_{i,t} a_i) dt + \sigma(X_{i,t}) dW_{i,t}$.
 - a_i is the stationary mean, b_i is a mean-reversion parameter.
- Drift parameters vary between processes: $a_i \sim N(\alpha, \tau_a^2)$, $b_i \sim N(\beta, \tau_b^2)$, a_i and b_i independent (for simplicity).

 $\alpha, \beta, \tau_a, \tau_b$ are population parameters

Slide 4/23

NIVERSITY OF COPENHAGEN

Linear drift SDE's with random parameters

Hierarchical set-up:

- Data: *N* equidistant obs. from each of *M* processes: $Y_i = (Y_{i1}, ..., Y_{iN})$ for i = 1, ..., M where $Y_{ij} = X_{i,j\Delta}$.
- For process *i*: $dX_{i,t} = -b_i(X_{i,t} a_i) dt + \sigma(X_{i,t}) dW_{i,t}$. *a_i* is the stationary mean, *b_i* is a mean-reversion parameter.
- Drift parameters vary between processes: $a_i \sim N(\alpha, \tau_a^2)$, $b_i \sim N(\beta, \tau_b^2)$, a_i and b_i independent (for simplicity).
 - $\alpha, \beta, \tau_a, \tau_b$ are population parameters
- Today (most of the time): σ is unspecified

Slide 4/23

UNIVERSITY OF COPENHAGEN

Linear drift SDE's with random parameters

Hierarchical set-up:

- Data: *N* equidistant obs. from each of *M* processes: $Y_i = (Y_{i1}, ..., Y_{iN})$ for i = 1, ..., M where $Y_{ij} = X_{i,j\Delta}$.
- For process *i*: $dX_{i,t} = -b_i(X_{i,t} a_i) dt + \sigma(X_{i,t}) dW_{i,t}$.
 - a_i is the stationary mean, b_i is a mean-reversion parameter.
- Drift parameters vary between processes: $a_i \sim N(\alpha, \tau_a^2)$, $b_i \sim N(\beta, \tau_b^2)$, a_i and b_i independent (for simplicity).
 - $\alpha, \beta, \tau_a, \tau_b$ are population parameters
- Today (most of the time): σ is unspecified

Parameter of interest: $\theta = (\alpha, \beta, \tau_a, \tau_b)$

Aim: Estimation of θ !

Slide 4/23

Approximation to likelihood

The contribution from process i to the **correct likelihood** is

$$L_i = \int \prod_{j=1}^{N} p(Y_{ij}|Y_{i,j-1}, a_i, b_i, \sigma) p(a_i, b_i|\alpha, \beta, \tau_a, \tau_b) d(a_i, b_i)$$

Our approach: Approximate $p(Y_{ij}|Y_{i,j-1}, a_i, b_i, \sigma)$ by a Gaussian density, but leave the rest unchanged.

Approximation to likelihood

The contribution from process i to the **correct likelihood** is

$$L_i = \int \prod_{j=1}^{N} p(Y_{ij}|Y_{i,j-1}, a_i, b_i, \sigma) p(a_i, b_i|\alpha, \beta, \tau_a, \tau_b) d(a_i, b_i)$$

Our approach: Approximate $p(Y_{ij}|Y_{i,j-1}, a_i, b_i, \sigma)$ by a Gaussian density, but leave the rest unchanged.

• Use the true conditional expectation as mean, i.e.

$$E(Y_{i,j}|Y_{i,j-1} = y, a_i = a, b_i = b)$$

Slide 5/23

UNIVERSITY OF COPENHAGEN

Approximation to likelihood

The contribution from process *i* to the **correct likelihood** is

$$L_i = \int \prod_{j=1}^{N} p(Y_{ij}|Y_{i,j-1}, a_i, b_i, \sigma) p(a_i, b_i|\alpha, \beta, \tau_a, \tau_b) d(a_i, b_i)$$

Our approach: Approximate $p(Y_{ij}|Y_{i,j-1},a_i,b_i,\sigma)$ by a Gaussian density, but leave the rest unchanged.

• Use the true conditional expectation as mean, i.e.

$$E(Y_{i,j}|Y_{i,j-1} = y, a_i = a, b_i = b) = a + e^{-b\Delta}(y - a)$$

Slide 5/23

UNIVERSITY OF COPENHAGEN

Approximation to likelihood

The contribution from process i to the **correct likelihood** is

$$L_i = \int \prod_{j=1}^{N} p(Y_{ij}|Y_{i,j-1},a_i,b_i,\sigma) p(a_i,b_i|\alpha,\beta,\tau_a,\tau_b) d(a_i,b_i)$$

Our approach: Approximate $p(Y_{ij}|Y_{i,j-1}, a_i, b_i, \sigma)$ by a Gaussian density, but leave the rest unchanged.

• Use the true conditional expectation as mean, i.e.

$$E(Y_{i,j}|Y_{i,j-1}=y,a_i=a,b_i=b)=a+e^{-b\Delta}(y-a)$$

• For convenience, use an approx. to the conditional variance:

$$Var(Y_{i,j}|Y_{i,j-1} = y, a_i = a, b_i = b) \approx c_1(c_2 + y^{c_3})^2$$

Why?

- Use the correct conditional mean in the Gaussian approx. Same interpretation of parameters of interest.
- Analogy to martingale estimating functions for a single SDE, where Gaussian approx. leads to consistent estimators.
- Can think of the approximating model as a nonlinear mixed effects (NLME) model, and rely on well-tested software!

UNIVERSITY OF COPENHAGEN

Slide 6/23

Simulation study for the square-root process

Square-root (Cox-Ingersoll-Ross) process with random effects:

- SDE for subject *i*: $dX_{i,t} = -b_i(X_{i,t} a_i) dt + \sigma \sqrt{X_{i,t}} dW_{i,t}$
- $a_i \sim N(\alpha, \tau_a^2)$, $b_i \sim N(\beta, \tau_b^2)$, a_i and b_i independent.

R: Data and nlme command

> head(myData)					
	myTime	У	yLag	subject	Delta
1	1	0.6893262	0.000000	1	1
2	2	1.2101795	0.6893262	1	1
3	3	1.3890037	1.2101795	1	1
4	4	1.8931005	1.3890037	1	1

m1 <- function(x,t,alpha,beta) exp(-beta*t)*(x-alpha)+alpha</pre>

```
fit <- nlme(y ~ m1(yLag, Delta, alpha, beta),
    fixed = list(alpha+beta~1),
    random = list(subject=alpha+beta~1),
    weights=varConstPower(form=~yLag))
    data=myData, start=myStart)</pre>
```

Slide 7/23

UNIVERSITY OF COPENHAGEN

Simulation study for the square-root process

Square-root (Cox-Ingersoll-Ross) process with random effects:

- SDE for subject *i*: $dX_{i,t} = -b_i(X_{i,t} a_i) dt + \sigma \sqrt{X_{i,t}} dW_{i,t}$
- $a_i \sim N(\alpha, \tau_a^2)$, $b_i \sim N(\beta, \tau_b^2)$, a_i and b_i independent.

Set-up:

- M = 25 (no. of subjects)
- N = 50 (no. of observations per subject)
- $\Delta = 1$ (distance between observations)
- $a_i \sim N(10,1), \ b_i \sim N(0.1,0.015^2), \ \sigma = 0.1$
- 2000 simulated data sets

UNIVERSITY OF COPENHAGEN

Slide 9/23

Simulation results

- Only small bias
- Approximately Gaussian distributions
- Coverage of 95% confidence intervals for α and β from NLME model is about 93% (N = 50, $\Delta = 1$, M = 25,50)
- We are also able to estimate σ in the CIR model with very little bias
- Similar results for the Ornstein-Uhlenbech process and the Jacobi processes

UNIVERSITY OF COPENHAGEN

Slide 12/23

Growth data from pigs

- Body weight from weaning to (near) maturity from 13 pigs
- Weekly obs. until 200 days of age, then every second week
- Interested in **population average** of mature body weight

Bertalanffy-Richards ODE for growth — for some power γ :

$$\frac{dx^{\gamma}}{dt} = -\beta(x^{\gamma} - \alpha)$$

SDE version:

$$dX_t^{\gamma} = -\beta(X_t^{\gamma} - \alpha) dt + \sigma(X_t^{\gamma}) dW_t$$

Let us try $\gamma = 1/3$, ie. model $BW^{1/3}$ as linear drift diffusions.

Slide 13/23

UNIVERSITY OF COPENHAGEN

Model and estimates

AIC values suggest a fixed (non-random) β , leading to:

•
$$dX_{i,t}^{1/3} = -\beta(X_{i,t}^{1/3} - a_i) dt + \sigma dW_{i,t}$$

• $a_i \sim N(0, \tau_a^2).$

Gaussian transitions and constant conditional variance. Then NLME with constant variance ($v \equiv c$) gives the **true likelihood**.

Transformed data and estimated cond'l variance

- Estimated conditional variance increases only about 15% over the 95% central part of the data. Not far from constant.
- This suggests an Ornstein-Uhlenbeck process

Slide 14/23

UNIVERSITY OF COPENHAGEN

Model and estimates

AIC values suggest a fixed (non-random) β , leading to:

•
$$dX_{i,t}^{1/3} = -\beta(X_{i,t}^{1/3} - a_i) dt + \sigma dW_{i,t}$$

• $a_i \sim N(0, \tau_a^2).$

Gaussian transitions and constant conditional variance. Then NLME with constant variance ($v \equiv c$) gives the **true likelihood**.

Results:

- ML estimates: $\hat{\alpha} = 7.30$, $\hat{\tau}_a = 0.28$, $\hat{\beta} = 0.0061$.
- Estimate and 95% confidence interval for median mature body weight, i.e. for α^3 : 362 kg (388–417)

Concluding remarks

Conclusions so far:

- Simple strategy, relies on well-tested software
- Nice simulation results also for other linear drift processes
- Preliminary investigations indicate nice asymptotic behaviour as $M, N \to \infty$ (fixed Δ)
- Procedure may help to identify appropriate model

Concluding remarks

Conclusions so far:

- Simple strategy, relies on well-tested software
- Nice simulation results also for other linear drift processes
- Preliminary investigations indicate nice asymptotic behaviour as $M, N \rightarrow \infty$ (fixed Δ)
- Procedure may help to identify appropriate model

What is next?

- Use correct conditional variance whenever known.
- Crucial that the correct conditional mean is used in the NLME model. What about models with non-linear drift?
- What if the processses are measured with noise?

Slide 16/23

UNIVERSITY OF COPENHAGEN

Slide 16/23

Thank you for your attention

Asymptotic considerations

Can we say anything about **asymptotic properties** of $\hat{\theta}$?

Asymptotic set-up:

- Obviously we need $M \rightarrow \infty$ (no. of subjects)
- But how about Δ and N?
- In particular: What happens for $M \to \infty$ but fixed Δ , fixed N?

Let us look at some numerical experiments.

UNIVERSITY OF COPENHAGEN

What happens for $M \to \infty$ but fixed Δ , fixed N?

$$\frac{1}{M}\log\tilde{L}_{M} = \frac{1}{M}\sum_{i=1}^{M}\log\int\prod_{j=1}^{N}\tilde{p}(Y_{ij}|Y_{i,j-1}, a_i, b_i, c)p(a_i, b_i|\alpha, \beta, \tau)d(a_i, b_i)$$
$$\rightarrow \mathsf{E}\left[\log\int\prod_{j=1}^{N}\tilde{p}(Y_{ij}|Y_{i,j-1}, a_i, b_i, c)p(a_i, b_i|\alpha, \beta, \tau)d(a_i, b_i)\right]$$
$$= \tilde{L}_{\infty}(\theta)$$

Assume that \tilde{L}_{∞} has well-seperated maximum at $\tilde{\theta}$. Under suitable tightness conditions: $\hat{\theta}_M \xrightarrow{P} \tilde{\theta}$.

Numerial experiment:

Slide 21/23

- Square-root process with correct conditional variance
- Compute maximum $\widetilde{ heta}$ for various values of Δ and N
- Cumbersome: Integration, expectation, 5D-optimization

Slide 19/23

NIVERSITY OF COPENHAGEN

What happens for $M \rightarrow \infty$ but fixed Δ , fixed N?

$$\begin{split} \frac{1}{M} \log \tilde{\mathcal{L}}_{M} &= \frac{1}{M} \sum_{i=1}^{M} \log \int \prod_{j=1}^{N} \tilde{p}(Y_{ij} | Y_{i,j-1}, a_{i}, b_{i}, c) p(a_{i}, b_{i} | \alpha, \beta, \tau) d(a_{i}, b_{i}) \\ &\to \mathsf{E} \left[\log \int \prod_{j=1}^{N} \tilde{p}(Y_{ij} | Y_{i,j-1}, a_{i}, b_{i}, c) p(a_{i}, b_{i} | \alpha, \beta, \tau) d(a_{i}, b_{i}) \right] \\ &= \tilde{\mathcal{L}}_{\infty}(\theta) \end{split}$$

Assume that \tilde{L}_{∞} has well-seperated maximum at $\tilde{\theta}$. Under suitable tightness conditions: $\hat{\theta}_M \xrightarrow{p} \tilde{\theta}$.

Relative error of $ilde{ heta}$ compared to $heta_0$. " $M=+\infty$ "

Conclusions on asymptotic properties

- Small asymptotic bias, even for large N
- Good results for Δ 'large'. This is because we use the true conditional moments rather than small- δ approximations.
- Concistency seems to require $M \to \infty$ as well as $N \to \infty$, but presumably not $\Delta \to 0$

Slide 23/23