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Outline

Aim: Parameter estimation for SDE models with random
parameters

Outline:
e SDE models with linear drift and random parameters
e Estimation approach and simulation results for CIR model

e Data example on growth of pigs
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Simulated data

0 20 40 60 80 100
Time

100 discrete-time obs. from five subjects. Same patterns, but
¢ The (stationary) levels differ between subjects

e Speed of 'mean-reversion’ differs between subjects @
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Linear drift SDE’s with random parameters

Hierarchical set-up:

e Data: N equidistant obs. from each of M processes:
Yi=(Yi1,...,Yin) for i=1,...,M where Y;; = X ja.
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Linear drift SDE's with random parameters Linear drift SDE's with random parameters
Hierarchical set-up: Hierarchical set-up:
e Data: NV equidistant obs. from each of M processes: e Data: N equidistant obs. from each of M processes:
Y,': (Y,'l,...,Y,'N) for i = 1,...,M where Y,'J':X,'JA. Y,': (Y,'l,...,Y,'N) for i = 1,...,M where Y,'j :X,'J'A.
e For process i: dXj; = —bj(Xi:— aj)dt+o(Xi ) dWi . e For process it dXj; = —bj(Xi+—aj)dt+c(Xj¢) dW, ;.
aj is the stationary mean, b; is a mean-reversion parameter. aj is the stationary mean, b; is a mean-reversion parameter.

e Drift parameters vary between processes: a; ~ N(a, 72),
bi ~ N(B,72), a; and b; independent (for simplicity).

o, 3,75, Ty are population parameters
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Linear drift SDE’s with random parameters Linear drift SDE’s with random parameters
Hierarchical set-up: Hierarchical set-up:
e Data: N equidistant obs. from each of M processes: e Data: N equidistant obs. from each of M processes:
Yi=(Yi1,...,Yin) for i=1,...,M where Y;; = Xj ja. Yi=(Yi1,...,Yin) for i=1,...,M where Y;; = X ja.
e For process i: dX;; = —bj(Xi:— aj)dt+o(Xi ) dWi . e For process it dXi; = —bj(Xi+—aj)dt +0(Xj¢) dW, ;.
aj is the stationary mean, b; is a mean-reversion parameter. aj is the stationary mean, b; is a mean-reversion parameter.
e Drift parameters vary between processes: a; ~ N(,72), e Drift parameters vary between processes: a; ~ N(a, 72),
bi ~ N(B,t2), a; and b; independent (for simplicity). b;i ~ N(B,72), a; and b; independent (for simplicity).
o, 3,74, Tp are population parameters o, 3,74, Tp are population parameters
e Today (most of the time): ¢ is unspecified e Today (most of the time): ¢ is unspecified

Parameter of interest: 6 = (o, 3, Ta, Tp)

Aim: Estimation of 0! %
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Approximation to likelihood

The contribution from process / to the correct likelihood is
. N
Li - / Hp(\/lﬂ»/i,jflaaiabfao-)p(aiabi‘a7ﬁ>faarb) d(af?bi)
J i

Our approach: Approximate p(Yjj|Y;j-1,ai, bi,0) by a Gaussian
density, but leave the rest unchanged.

6
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Approximation to likelihood

The contribution from process i to the correct likelihood is
N
L= /Hp(Y,-j|Y,-J_l,a,-,b;,c)p(a;,b;\a,ﬁ,fa,fb) d(a;, bi)
)i

Our approach: Approximate p(Yj;|Yij-1,ai,b;,0) by a Gaussian
density, but leave the rest unchanged.

e Use the true conditional expectation as mean, i.e.

E(Yij|Yijo1=y,ai=a,bj=b)=a+e ?2(y—a)
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Approximation to likelihood

The contribution from process / to the correct likelihood is
N
Li — / HP( \/U| »/i,jfla aj, bia 0-),0(3,', bi‘a7ﬁ7 Ta, Tb) d(al.? bl)
Uk |

Our approach: Approximate p(Yjj|Y;j-1,ai, bi,0) by a Gaussian
density, but leave the rest unchanged.

e Use the true conditional expectation as mean, i.e.

E(YijlYij-1=y,ai=a,bi=Db)

6
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Approximation to likelihood

The contribution from process i to the correct likelihood is
N
b= /Hp(y"f"’/ﬁi—lvaiabiaﬁ)p(anbf\a,ﬁ,fa,fb) d(ar, b;)
J i1

Our approach: Approximate p(Yj;|Yij_1,ai,b;,0) by a Gaussian
density, but leave the rest unchanged.

e Use the true conditional expectation as mean, i.e.
E(Y,"J'|Y,'1j,1 =Yy,a = a,b,- = b) = a+e_bA(y—a)
e For convenience, use an approx. to the conditional variance:

Var(Y;j|Yij-1=y,ai=a,bj=b) ~ ci(ca +y?)?

6
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Why?

e Use the correct conditional mean in the Gaussian approx.
Same interpretation of parameters of interest.

e Analogy to martingale estimating functions for a single
SDE, where Gaussian approx. leads to consistent estimators.

e Can think of the approximating model as a nonlinear mixed
effects (NLME) model, and rely on well-tested software!

6
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Simulation study for the square-root process
Square-root (Cox-Ingersoll-Ross) process with random effects:

e SDE for subject i: dXj: = —bi(Xj¢—a;j)dt+ 0/ X; r dW,;
o a; ~ N(a,12), b; ~ N(,72), a; and b; independent.
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R: Data and nlme command

> head (myData)

myTime y yLag subject Delta
1 1 0.6893262 0.0000000 1 1
2 2 1.2101795 0.6893262 1 1
3 3 1.3890037 1.2101795 1 1
4 4 1.8931005 1.3890037 1 1

ml <- function(x,t,alpha,beta) exp(-betaxt)*(x-alpha)+alpha

fit <- nlme(y ~ ml(ylLag, Delta, alpha, beta),
fixed = list(alpha+beta™1),
random = list(subject=alpha+beta™1),
weights=varConstPower (form="yLag))
data=myData, start=myStart)

6
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Simulation study for the square-root process

Square-root (Cox-Ingersoll-Ross) process with random effects:

e SDE for subject i: dXj ¢ = —bi(Xj¢—ai)dt+ o/ X+ dWi
o a;~ N(a,72), bj ~ N(B,72), a; and b; independent.

Set-up:

e M =25 (no. of subjects)

e N =50 (no. of observations per subject)

e A =1 (distance between observations)
aj ~ N(10,1), b; ~ N(0.1,0.015%), 6 = 0.1
2000 simulated data sets
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2000 sim., M =25, N=50, A=1 Also possible to compute an estimate of &
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Simulation results Growth data from pigs
Original data
e Only small bias ]
o Approximately Gaussian distributions g8
o Coverage of 95% confidence intervals for & and 8 from '§87
NLME model is about 93% (N =50, A =1, M = 25,50) g
e We are also able to estimate o in the CIR model with very ER
little bias
e Similar results for the Ornstein-Uhlenbech process and the 0 200 400 600 800  100C

. Age (days)
Jacobi processes

e Body weight from weaning to (near) maturity from 13 pigs
o Weekly obs. until 200 days of age, then every second week
% o Interested in population average of mature body weight @
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Bertalanffy-Richards growth model

Bertalanffy-Richards ODE for growth — for some power 7:

dx?
i —B(x"—«a)

SDE version:
dX/ = —B(X} — a)dt+ o(X]) dW;

Let us try y=1/3, ie. model BW'/3 as linear drift diffusions.

6
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Model and estimates

AIC values suggest a fixed (non-random) B, leading to:
o dX'[P = —B(X° —ar)dt + o dWi,

,t
aj ,T5)-

Gaussian transitions and constant conditional variance. Then
NLME with constant variance (v = c¢) gives the true likelihood.
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Transformed data and estimated cond’l variance

Cube root transformed data Cube root transformation
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e Estimated conditional variance increases only about 15% over
the 95% central part of the data. Not far from constant.

e This suggests an Ornstein-Uhlenbeck process @
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Model and estimates

AIC values suggest a fixed (non-random) B, leading to:

o dX = —B(X —a)di - o dW,

e a;~ N(0,72).
Gaussian transitions and constant conditional variance. Then
NLME with constant variance (v = c¢) gives the true likelihood.
Results:

o ML estimates: & = 7.30, %, =0.28, 3 = 0.0061.

e Estimate and 95% confidence interval for median mature
body weight, i.e. for a3: 362 kg (388-417)
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Concluding remarks Concluding remarks
Conclusions so far: Conclusions so far:
e Simple strategy, relies on well-tested software e Simple strategy, relies on well-tested software
e Nice simulation results — also for other linear drift processes e Nice simulation results — also for other linear drift processes
e Preliminary investigations indicate nice asymptotic behaviour e Preliminary investigations indicate nice asymptotic behaviour
as M, N — oo (fixed A) as M, N — oo (fixed A)
e Procedure may help to identify appropriate model e Procedure may help to identify appropriate model

What is next?
e Use correct conditional variance whenever known.

e Crucial that the correct conditional mean is used in the
NLME model. What about models with non-linear drift?

e What if the processses are measured with noise?

\ \
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Asymptotic considerations

Can we say anything about asymptotic properties of 67

Asymptotic set-up:
e Obviously we need M — o (no. of subjects)
e But how about A and N?
e In particular: What happens for M — oo but fixed A, fixed N7?

Let us look at some numerical experiments.

6
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What happens for M — oo but fixed A, fixed N7?

1 - 1 M N B
MlOgLM = MZ|°€/HP(YU|YIJ—17‘9I,biaC)P(ai»bi|a»BaT) d(aj, b;)

[%/HM%W@L%h@(%MaBﬂﬂ%J
-(0)

Assume that L., has well-seperated maximum at 6. Under suitable
tightness conditions: 6y 5.

l\l
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M =10,25,50, N=50, A=1
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What happens for M — oo but fixed A, fixed N7?

1 N 1 M N B
MlOgLM = MZ|0g/Hp(Yij|YiJ—la"’hbiac)p(ahbi|aaﬁaf) d(aj, bj)

[%/HM%WML%h@(%Maﬁﬂﬂ%J
-(0)

Assume that L., has well-seperated maximum at 6. Under suitable
tightness conditions: 6y 5.

|~z

Numerial experiment:
e Square-root process with correct conditional variance
e Compute maximum 6 for various values of A and N

o Cumbersome: Integration, expectation, 5D-optimization %
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Relative error of @ compared to 6. " M = +oo”
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Conclusions on asymptotic properties

e Small asymptotic bias, even for large N

e Good results for A 'large’. This is because we use the true
conditional moments rather than small-6 approximations.

e Concistency seems to require M — oo as well as N — oo, but
presumably not A — 0
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