Combinatorial and topological models for spaces of schedules

Martin Raussen

Department of Mathematical Sciences, Aalborg University, Denmark

12 June, 2015 Applied Algebraic Topology

de matemática

Martin Raussen Combinatorial and topological models for spaces of schedule

TOC

- A concurrency setting
- 1. translation: Directed Algebraic Topology
- Examples. New features and properties.
- Path spaces as simplicial spaces
- 2. translation: Path spaces as configuration spaces ******

- Comparison of the two methods
- A particular case in view of the two translations:

Enter moment angle complexes 🗯

Acknowledgements

Contributions by Jérémy Dubut (ENS Cachan, FR), Lisbeth Faistrup (AAU, DK), Éric Goubault (École Polytechnique Paris, FR), Roy Meshulam (Technion, Haifa, IL), Krysztof Ziemiański (Warsaw, PL), ...

Concurrency

Concurrency

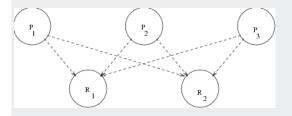
- In computer science, concurrency is a property of systems in which several computations are executing simultaneously and potentially interacting with each other.
- The computations may be executing on multiple cores in the same chip, in time-shared threads on the same processor, or executed on physically separated processors.
- A number of mathematical models have been developed for general concurrent computation including **Petri nets** and **process calculi**.
- Main interest here: Specific applications tuned to static program analysis – design of automated tools to test correctness etc. of a concurrent program regardless of specific timed execution.

A simple-minded approach to concurrency

Avoid access collisions

Access collisions

may occur when *n* processes P_i compete for *m* resources R_i .



Only κ (capacity) processes can be served at any given time.

Tool: Semaphores

Semantics: A processor has to lock a resource and to relinquish the lock later on! **Description/abstraction:** $P_i : \dots PR_j \dots VR_j \dots$ (E.W. Dijkstra) *P*: probeer; *V*: verhoog

Martin Raussen

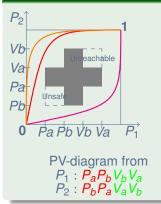
Combinatorial and topological models for spaces of schedul

Schedules in "progress graphs"

One semaphore on a time line

 $0 \longrightarrow P_a \longrightarrow P_b \longrightarrow V_a \longrightarrow V_b \longrightarrow 1$

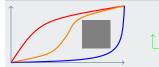
Two semaphores: The Swiss flag example



Executions are directed paths – since time flow is irreversible – avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions. Deadlocks, unsafe and unreachable regions may occur.

Objects of study: Spaces with directed paths <u>First Example for impact of directedness</u>

Directed paths in state spaces



- A state space with "hole(s)"
- Paths from a start point to an end point with preferred direction: dipaths
- 1-parameter deformations of dipaths: dihomotopies

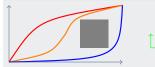
First observation

Homeomorphic state spaces may admit different types of dipaths (up to deformation):

Combinatorial and topological models for spaces of schedule

Objects of study: Spaces with directed paths <u>First Example for impact of directedness</u>

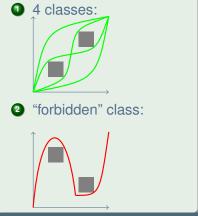
Directed paths in state spaces



- A state space with "hole(s)"
- Paths from a start point to an end point with preferred direction: dipaths
- 1-parameter deformations of dipaths: dihomotopies

First observation

Homeomorphic state spaces may admit different types of dipaths (up to deformation):



Combinatorial and topological models for spaces of schedul

Directed topology: The twist has a price

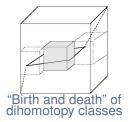
2nd observation: Neither homogeneity nor cancellation nor group structure

Question

Can methods from algebraic topology shed light on the space $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$ of directed paths – execution space – in the state space X from \mathbf{x}_0 to \mathbf{x}_1 ?

Problem: Symmetry breaking

The reverse of a dipath need not be a dipath. \rightarrow less structure on algebraic invariants.

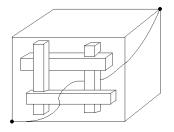


Directed topology

Loops do not tell much; concatenation ok, cancellation not! Replace group structure by category structures! Example: Fundamental category $\vec{\pi}_1(X)$ – admitting a van Kampen theorem.

Dihomotopy \neq homotopy of dipaths

Third example for impact of directedness



A dipath that is homotopic but **not dihomotopic** to a dipath on the boundary of the cube

- Such a deformation exists but:
- Every deformation will violate directedness.
- How to prove this?
- Remark: Need at least 3D-models for such an example!
- Space of dipaths in example $\simeq (S^1 \lor S^1) \sqcup *$.

State space $X \rightsquigarrow p$ ath category $\vec{P}(X)$

State spaces – three main cases of interest

- X ⊂ Rⁿ a Euclidean cubical complex cut out a forbidden region F consisting of hyperrectangular holes
- X ⊂ ∏_i Γ_i, a product of directed graphs with cubical holes (allowing branches and directed loops)
- X a directed cubical complex^a (with directed loops): a Higher Dimensional Automaton (with labels)

^aas in geometric group theory

From state space X to path space $\vec{P}(X)(\mathbf{x}_0, \mathbf{x}_1)$

Challenge: Provide path spaces with a combinatorial (simplicial) structure

Simplicial models for spaces of dipaths

A cover of the path space associated to the "floating cube"

Cover: Dipaths through the lightgrey

Cover giving rise to $\partial \Delta^2 \cong S^1$

Theorem (R; 2010)

areas

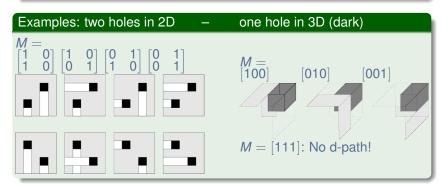
Let X be a state space consisting of a cube \Box^n from which I hyperrectangles are removed. The space $\vec{P}(X)(\mathbf{0}, \mathbf{1})$ of dipaths in X from bottom **0** to top **1** is homotopy equivalent to the nerve of a category $C(X)(\mathbf{0}, \mathbf{1})$. This category has a geometric realization as a prodsimplicial complex $\mathbf{T}(X)(\mathbf{0}, \mathbf{1}) \subset (\partial \Delta^{n-1})^I$ – its building blocks are products of simplices. Tool: Subspaces of state space X and of $\vec{P}(X)(\mathbf{0}, \mathbf{1})$

 $X = \vec{l}^n \setminus F$, $F = \bigcup_{i=1}^l R^i$; $R^i =]\mathbf{a}^i$, \mathbf{b}^i [; **0**, **1** the two corners in I^n .

Definition (Restricted state spaces)

1
$$X_{ij} = \{x \in X | x \le \mathbf{b}^i \Rightarrow x_j \le a_j^i\} - direction j restricted at hole i$$

2 *M* a binary $I \times n$ -matrix: $X_M = \bigcap_{m_{ij}=1} X_{ij} - Which directions are restricted at which hole?$



Martin Raussen

Combinatorial and topological models for spaces of schedul

Covers by contractible (or empty) subspaces

Bookkeeping with binary matrices

Binary matrix posets

 $M_{l,n}$ poset (\leq) of binary $l \times n$ -matrices $M_{l,n}^*$ no row vector is the zero vector – every hole obstructed in at least one direction

Theorem (A cover by contractible subspaces)

$$\vec{P}(X)(\mathbf{0},\mathbf{1}) = \bigcup_{M \in M_{l,n}^*} \vec{P}(X_M)(\mathbf{0},\mathbf{1}).$$

0

② Every path space $\vec{P}(X_M)(0, 1)$, *M* ∈ $M_{l,n}^*$, is empty or contractible. Which is which? Deadlocks!

Proof.

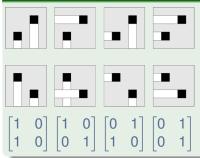
(2) Subspaces X_M , $M \in M^*_{l,n}$ are closed under $\vee = l.u.b.$

A combinatorial model and its geometric realization

Combinatorics: Poset category $C(X) \subseteq M_{l,n}^*$ consists of "alive" matrices M with $\vec{P}(X_M) \neq \emptyset$ – no deadlock! Topology:

Prodsimplicial complex $\mathbf{T}(X) \subseteq (\Delta^{n-1})^{I}$ colimit of $\Delta_{M} = \Delta_{m_{1}} \times \cdots \times \Delta_{m_{l}} \subseteq$ $\mathbf{T}(X) M$ alive – one simplex $\Delta_{m_{l}}$ for every hole.

Examples of path spaces



Martin Raussen

•
$$\mathbf{T}(X_1) = (\partial \Delta^1)^2$$

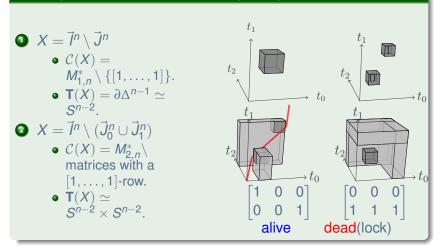
= 4*

• **T**(*X*₂) = 3* - deadlock!

 $\supset \mathcal{C}(X)$

Further examples

State spaces, "alive" matrices and path spaces



Path space $\vec{P}(X)$ and prodsimplicial complex T(X)A homotopy equivalence

Theorem (A variant of the nerve lemma)

 $\vec{P}(X) \simeq \Delta C(X) \simeq \mathbf{T}(X).$

allows (in principal) to calculate homology,...

Proof.

- Functors $\mathcal{D}, \mathcal{E}, \mathcal{T} : \mathcal{C}(X)^{(\mathsf{OP})} \to \mathsf{Top}:$ $\mathcal{D}(M) = \vec{P}(X_M),$ $\mathcal{E}(M) = \Delta_M,$ $\mathcal{T}(M) = *$
- colim $\mathcal{D} = \vec{P}(X)$, colim $\mathcal{E} = \mathbf{T}(X)$, hocolim $\mathcal{T} = \Delta \mathcal{C}(X)$.
- The trivial natural transformations D ⇒ T, E ⇒ T yield: hocolim D ≃ hocolim T* ≃ hocolim T ≃ hocolim E.
- Segal's projection lemma: hocolim $\mathcal{D} \simeq \operatorname{colim} \mathcal{D}$, hocolim $\mathcal{E} \simeq \operatorname{colim} \mathcal{E}$.

2. approach: Towards configuration spaces 🗯

One semaphore

n semaphores

- A directed path (*n* threads) is encoded by $(t_1^1, \ldots, t_1^{2k_1}; \ldots; t_n^1, \ldots, t_n^{2k_n}) \in \prod_1^n \mathring{\Delta}_{2k_i}$
- The space of all forbidden dipaths *A* corresponds to union of a bunch of subspaces *A*^{κ+1}_{i,i}(*a*) of type "max < min" within ∏ⁿ₁ Δ_{2ki}
- Path space as configuration space: $D = \prod_{1}^{n} \Delta_{2k_i} \setminus A$.

Complements of arrangements Configuration spaces

Subspace arrangments

A finite set A of subspaces in affine or projective space. Aim: To infer (topological) properties of the complement M(A) from the intersection semilattice L(A), partially ordered by containment.

Configuration spaces

- the complement of $A_n(X) = \bigcup_{i \neq i} \{x_i = x_i\}$ in X^n .
- 2 No-k-equal space $M_n^{(k)}(X)$ the complement of $A_n^{(k)}(X) = \bigcup_{1 \le i_1 \le \dots \le i_k \le n} \{ x_{i_1} = \dots = x_{i_k} \}.$
- 3 $M_n^{(n)}(\mathbf{R}) = \mathbf{R}^n \setminus \Delta(\mathbf{R}) \simeq S^{n-2}$.
- $M_{n}^{(k)}(\mathbf{R}) \subset \mathbf{R}^{n}$: no-k-equal space. Homology determined by Björner & Welker (1995); concentrated in dimensions s(n-2). Cell structure and cohomology ring determined by Baryshnikov.

Path conf. spaces vs. subspace arrangements (Dis-)similarities

Comparison

- Path configuration space $D \subset \mathring{\Delta}_{\mathbf{k}}$ not Euclidean (or projective).
- Complement of solutions of inequalities
- Still: Intersection semilattice matters!

A particular case: Pa = Va

Instantaneous use of resources. In this case: Forbidden dipaths correspond to regions given by equations $x_{j_1}^{i_1} = \cdots = x_{j_k}^{i_k}$.

Example: Time of access for 9 \cdot obstructions, n = k = 2

1	r - 1			
-	+ -	•	•	•
			• • •	
-	+ '	•	•	•
1	† '	•	•	•
				\mapsto

· → "Time space": $\mathring{\Delta}_3 \times \mathring{\Delta}_3 \setminus A \subset \mathbf{R}^6$ with $A = \{(\mathbf{s}, \mathbf{t}) \in \mathring{\Delta}_3 \times \mathring{\Delta}_3 | s_i = t_j, 1 \le i, j \le 3\} \subset \mathbf{R}^6$. Difficult to draw! Easy: Complement has 20 contractible components.

And in higher dimensions?

Martin Raussen Combinatorial and topological models for spaces of schedule

Example: Dipaths on torus – with directed loops!

Inductively, as homotopy colimits

Torus with hole (1. approach: R - Ziemiański)

Dipaths in covering of torus with hole \rightsquigarrow state space $X_n = \mathbf{R}^n \setminus (\frac{1}{2} + \mathbf{Z}^n)$ and of dipaths with non-negative multidegree **k** in $Z(\mathbf{k}) := \vec{P}(X_n)(\mathbf{0}, \mathbf{k}), \ \mathbf{k} \in \mathbf{Z}_{\geq 0}^n$

Index category $\mathcal{J}(n)$

Poset category of proper non-empty subsets of [1:n] with inclusions as morphisms. Via characteristic functions isomorphic to the category of non-identical binary vectors of length $n: \varepsilon = [\varepsilon_1, \ldots \varepsilon_n] \in \mathcal{J}(n)$. Classifying space (= nerve): $B\mathcal{J}(n) \cong \partial \Delta^{n-1} \cong S^{n-2}$.

Theorem (R-Ziemiański)

- $Z(\mathbf{k}) \simeq \operatorname{hocolim}_{\varepsilon \in \mathcal{J}(n)} Z(\mathbf{k} \varepsilon).$
- Homology and cohomology can be calculated (Bousfield-Kan

Definition (Partial order on integer vectors)

 $\mathbf{I} = (I_1, \ldots, I_n) \ll (m_1, \ldots, m_n) = \mathbf{m} \in \mathbf{Z}_+^n \Leftrightarrow I_j < m_j, 1 \le j \le n.$

Sequence complex $S(\mathbf{k})$

Vertices: $\mathbf{0} \ll \mathbf{j} \le \mathbf{k}$ (*r* - 1)-simplex: $\sigma = \mathbf{0} \ll \mathbf{j}_1 \ll \cdots \ll \mathbf{j}_r \le \mathbf{k}$

 $\partial_i \sigma$: omit **j**_i.

Order complex $\Delta(\mathbf{k})$ for arrangement

Consider arrangement $A(\mathbf{k}) = \bigcup_{1 \le i_j \le k_j} \{x_{i_1}^1 = \cdots = x_{i_n}^n\}$ within compactification $\widehat{\Delta}_{\mathbf{k}} \cong S^{|\mathbf{k}|}$. Order complex $\Delta(\mathbf{k})$: poset of (non-empty) intersections. OBS: "Unordered" intersections give rise to point \star at infinity.

2. approach: Translation to configuration spaces ***** A proof with different tools

Experiment: Configuration spaces and wedge lemma

• Configuration space for *Z*(**k**):

 $\begin{array}{l} \boldsymbol{D}(\mathbf{k}) := \mathring{\Delta}_{\mathbf{k}} \setminus \boldsymbol{A}(\mathbf{k}) = \mathring{\Delta}_{k_1} \times \cdots \times \mathring{\Delta}_{k_n} \setminus \boldsymbol{A}(\mathbf{k}) \subset \mathring{\hat{\Delta}}_{\mathbf{k}} \cong \boldsymbol{S}^{|\mathbf{k}|} \text{ with } \\ \boldsymbol{A}(\mathbf{k}) = \bigcup_{1 \leq i_j \leq k_j} \{ \boldsymbol{x}_{i_1}^1 = \cdots = \boldsymbol{x}_{i_n}^n \} \text{ within compactification.} \end{array}$

• (Co-)homology of $\widehat{A}(\mathbf{k}) \subset \widehat{\Delta}_{\mathbf{k}} = S^{|\mathbf{k}|}$ using the intersection poset Q of the cover defined by $A(\mathbf{k}) \rightsquigarrow$ Alexander duality $H_*(D(\mathbf{k}))$

Application of Wedge lemma (Ziegler-Živaliević 1995)

 $\widehat{A}(\mathbf{k}) \simeq \bigvee_{q \in Q} \Delta(Q_{< q}) * U_q - \Delta(Q_{< q})$ the order complex "below q", U_q the intersection corresponding to q.

2
$$q = (\mathbf{j}_1 \ll \cdots \ll \mathbf{j}_r) \in Q \Rightarrow \Delta(Q_{\leq q}) \simeq S^{r-2}$$
 and $U_q = S^{|\mathbf{k}| - r(n-1)}$.

3 q "unordered" \Rightarrow $U_q = * - \text{does not contribute }!$

$$\widehat{A}(\mathbf{k}) \simeq \bigvee_{q=(\mathbf{j}_1 \ll \cdots \ll \mathbf{j}_r) \in Q} S^{|\mathbf{k}| - r(n-2) - 1}.$$

Schedules with capacity κ

Replace semaphores of capacity n - 1 by semaphores with capacity κ . Schedules can be viewed as

- dipaths on κ -skeleton of \mathbf{R}^n (cubified)
- elements in the complement $D^{\kappa+1}(\mathbf{k})$ of $A^{\kappa+1}(\mathbf{k}) =$ = $\{x_{j_1}^{i_1} = \cdots = x_{j_{\kappa+1}}^{i_{\kappa+1}} | 1 \le j_1 < \cdots < j_{\kappa+1} \le n, 1 \le i_s \le k_{j_s}\}$ in $\widehat{\Delta}_{\mathbf{k}}$

Strategy

Again use wedge lemma and Alexander duality. Relevant order complexes: Joins of order complexes of partition complexes – non-singleton parts of size at least κ + 1. These are **homotopy equvalent to wedges of spheres** (Björner, Welker; 1995).

Homology and cohomology of path spaces in torus skeleta

Theorem (Meshulam-R) $\widetilde{\mathbf{H}}^{|\mathbf{k}|-l-1}(\widehat{A}(\mathbf{k});\mathbf{Z}) = \begin{cases} \mathbf{Z}\prod_{i=1}^{n} \binom{k_i}{r} & l = (n-2)r, \ r > 0\\ 0 & otherwise \end{cases}$ $\widetilde{H}_{l}(D(\mathbf{k});\mathbf{Z}) = \begin{cases} \mathbf{Z} \prod_{i=1}^{n} \binom{k_{i}}{r} & l = (n-2)r, r > 0\\ 0 & otherwise \end{cases}$ alternative proof of the result of R-Ziemiański **3** $H_*(D^{\kappa+1}(\mathbf{k}); \mathbf{Z})$ is concentrated in dimensions $r(\kappa - 1), r \in \mathbb{Z}_{>0}.$ Poincaré series can be identified.

Configuration spaces and spaces of d-paths

connected by a homotopy equivalence

A sketch in the special case

- An element $\mathbf{x} = (x_1, \dots x_k) \in \mathring{\Delta}_k$ gives rise to a directed piecewise linear path $p_{\mathbf{x}} : I \to [0, k+1]$ with $p_{\mathbf{x}}(t) = \begin{cases} 0 & t = 0 \\ i & t = x_i \\ k+1 & t = 1 \end{cases}$
- An element $\underline{\mathbf{x}} = (\mathbf{x}_1, \cdots, \mathbf{x}_n) \in \prod_1^n \mathring{\Delta}_{k_i} = \mathring{\Delta}_{\mathbf{k}}$ gives rise to a directed piecewise linear path $P_{\underline{\mathbf{x}}} : I \to \mathbf{R}^n$, $P_{\underline{\mathbf{x}}}(t) = (p_{\underline{\mathbf{x}}_1}(t), \dots, p_{\underline{\mathbf{x}}_n}(t))$ from **0** to **k**.
- Only the forbidden configurations in *A* ((in)-equalities) correspond to dipaths through the forbidden region *F* (placing the *V*, *P* at integers).
- The map $\mathring{\Delta}_{\mathbf{k}} \setminus A \to \vec{P}(\prod_i [0, k_i + 1] \setminus F)(\mathbf{0}, \mathbf{k} + \mathbf{1}) : \underline{\mathbf{x}} \to P_{\underline{\mathbf{x}}}$ is a homotopy equivalence.

Can easily be generalized!

Prodsimplicial vs. configuration space model

Dimensions

prodsimplicial model Dimension $\leq l(n-1)$, *l* the number of "holes" (multiplicative)

configuration space Dimension $\leq 2 \sum_i k_i$ (additive)

Questions. Comments

- Can one use the wedge lemma strategy to determine the homotopy type of the complement of the configuration space – in general?
- Determine the (stable) homotopy type of the configuration space?
- Its homology? Algorithmically?
- Observe: Complicated order complexes in general!

Path spaces as generalized moment-angle complexes

Moment angle complexes

Introduced by Davis and Januszkiewicz (1991) in toric topology. Many properties exhibited by Buchstaber and Panov (2000). Here: Generalized moment-angle complexes (GMAC).

A GMAC associated to the sequence complex $S(\mathbf{k})$

- Remember $\sigma = (\mathbf{0} \ll \mathbf{j}_1 \ll \cdots \ll \mathbf{j}_r \le \mathbf{k}) \in S_{r-1}(\mathbf{k})$
- $D(\sigma) = \prod_{\mathbf{j} \in \sigma} S^{n-2} \times \prod_{\mathbf{j} \notin \sigma} \star \subset \prod_{\mathbf{0} \ll \mathbf{j} \le \mathbf{k}} S^{n-2}$
- $MA(\mathbf{k}) = \bigcup_{\sigma \in S(\mathbf{k})} D(\sigma) = \operatorname{colim} D(\sigma).$
- Easy to calculate (co-)homology via a Mayer-Vietoris argument.

Question/Conjecture:Path space as GMAC

 $Z(\mathbf{k}) \simeq MA(\mathbf{k})$?

Which topological spaces can arise as path spaces?

Surely there must be restrictions?

Theorem (No: K. Ziemiański; 2013)

For every finite simplicial complex X (on n vertices) there is

- a Euclidean cubical complex $X_E \subset \mathbf{R}^n$ such that $\vec{P}(X_E)(\mathbf{0}, \mathbf{1}) \simeq X$.
- ② a linear PV-program (n concurrent PV threads) with cubical realization Y_E such that P(Y_E)(0, 2) ≃ X ⊔ Sⁿ⁻².

Thanks!

Thanks

- to you, the audience
- to the organizers
- the sponsor

