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Concurrency

Concurrency
In computer science, concurrency is a property of systems
in which several computations are executing
simultaneously and potentially interacting with each other.
The computations may be executing on multiple cores in
the same chip, in time-shared threads on the same
processor, or executed on physically separated
processors.
A number of mathematical models have been developed
for general concurrent computation including Petri nets and
process calculi.
Main interest here: Specific applications tuned to static
program analysis – design of automated tools to test
correctness etc. of a concurrent program regardless of
specific timed execution.
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A simple-minded approach to concurrency
Avoid access collisions

Access collisions
may occur when n processes Pi compete for m resources Rj .

Only κ (capacity) processes can be served at any given time.

Tool: Semaphores

Semantics: A processor has to lock a resource and to relinquish the
lock later on!
Description/abstraction: Pi : . . . PRj . . . VRj . . . (E.W. Dijkstra)
P: probeer; V : verhoog
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Schedules in "progress graphs"

One semaphore on a time line

0 // Pa // Pb // Va // Vb // 1

Two semaphores: The Swiss flag example

Pa Pb Vb Va

Pb
Pa
Va
Vb

P1

P2

0

1

Unsafe

Unreachable

PV-diagram from
P1 : PaPbVbVa
P2 : PbPaVaVb

Executions are directed paths –
since time flow is irreversible –
avoiding a forbidden region
(shaded).
Dipaths that are dihomotopic
(through a 1-parameter
deformation consisting of
dipaths) correspond to
equivalent executions.
Deadlocks, unsafe and
unreachable regions may occur.
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Objects of study: Spaces with directed paths
First Example for impact of directedness

Directed paths in state
spaces

A state space with
“hole(s)”
Paths from a start point
to an end point with
preferred direction:
dipaths
1-parameter
deformations of dipaths:
dihomotopies

First observation
Homeomorphic state spaces
may admit different types of
dipaths (up to deformation):

1 4 classes:

2 3 classes:
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Objects of study: Spaces with directed paths
First Example for impact of directedness

Directed paths in state
spaces

A state space with
“hole(s)”
Paths from a start point
to an end point with
preferred direction:
dipaths
1-parameter
deformations of dipaths:
dihomotopies

First observation
Homeomorphic state spaces
may admit different types of
dipaths (up to deformation):

1 4 classes:

2 “forbidden” class:
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Directed topology: The twist has a price
2nd observation: Neither homogeneity nor cancellation nor group structure

Question
Can methods from algebraic topology shed light on the space
~P(X )(x0,x1) of directed paths – execution space – in the state space
X from x0 to x1?

Problem: Symmetry breaking

The reverse of a dipath need not be a dipath.
 less structure on algebraic invariants.

“Birth and death” of
dihomotopy classes

Directed topology

Loops do not tell much;
concatenation ok, cancellation
not!
Replace group structure by
category structures!
Example: Fundamental
category ~π1(X ) – admitting a
van Kampen theorem.
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Dihomotopy 6= homotopy of dipaths
Third example for impact of directedness

A dipath that is homotopic but not dihomotopic to a dipath on
the boundary of the cube

Such a deformation exists but:
Every deformation will violate directedness.
How to prove this?
Remark: Need at least 3D-models for such an example!
Space of dipaths in example ' (S1 ∨ S1) t ∗.
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State space X  path category ~P(X )

State spaces – three main cases of interest

X ⊂ Rn a Euclidean cubical complex – cut out a forbidden
region F consisting of hyperrectangular holes
X ⊂ ∏i Γi , a product of directed graphs with cubical holes
(allowing branches and directed loops)
X a directed cubical complexa (with directed loops): a
Higher Dimensional Automaton (with labels)

aas in geometric group theory

From state space X to path space ~P(X )(x0,x1)

Challenge: Provide path spaces with a combinatorial
(simplicial) structure
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Simplicial models for spaces of dipaths

A cover of the path space associated to the “floating cube”

Cover: Dipaths through the lightgrey
areas

Cover giving rise
to ∂∆2 ∼= S1

Theorem (R; 2010)

Let X be a state space consisting of a cube �n from which l
hyperrectangles are removed.
The space ~P(X )(0,1) of dipaths in X from bottom 0 to top 1 is
homotopy equivalent to the nerve of a category C(X )(0,1).
This category has a geometric realization as a prodsimplicial
complex T(X )(0,1) ⊂ (∂∆n−1)l – its building blocks are
products of simplices.
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Tool: Subspaces of state space X and of ~P(X )(0,1)
X =~In \ F ,F =

⋃l
i=1 R i ;R i =]ai ,bi [;0,1 the two corners in In.

Definition (Restricted state spaces)

1 Xij = {x ∈ X | x ≤ bi ⇒ xj ≤ ai
j} –

direction j restricted at hole i
2 M a binary l × n-matrix: XM =

⋂
mij=1 Xij –

Which directions are restricted at which hole?

Examples: two holes in 2D – one hole in 3D (dark)

M =[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
M =
[100] [010] [001]

M = [111]: No d-path!
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Covers by contractible (or empty) subspaces
Bookkeeping with binary matrices

Binary matrix posets

Ml,n poset (≤) of binary l × n-matrices
M∗l,n no row vector is the zero vector –

every hole obstructed in at least one direction

Theorem (A cover by contractible subspaces)
1

~P(X )(0,1) =
⋃

M∈M∗l,n

~P(XM )(0,1).

2 Every path space ~P(XM )(0,1),M ∈ M∗l,n,
is empty or contractible. Which is which? Deadlocks!

Proof.
(2) Subspaces XM ,M ∈ M∗l,n are closed under ∨ = l.u.b.
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A combinatorial model and its geometric realization
First examples

Combinatorics:
Poset category
C(X ) ⊆ M∗l,n consists of
“alive” matrices M with
~P(XM) 6= ∅ – no deadlock!

Topology:
Prodsimplicial complex
T(X ) ⊆ (∆n−1)l colimit of
∆M = ∆m1 × · · · × ∆ml ⊆
T(X ) M alive – one simplex
∆mi for every hole.

Examples of path spaces

[
1 0
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 1
0 1

]
T(X1) = (∂∆1)2

= 4∗
T(X2) = 3∗ – deadlock!

⊃ C(X )
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Further examples

State spaces, “alive” matrices and path spaces

1 X =~In \~Jn

C(X ) =
M∗1,n \ {[1, . . . ,1]}.
T(X ) = ∂∆n−1 '
Sn−2.

2 X =~In \ (~Jn
0 ∪~Jn

1 )
C(X ) = M∗2,n\
matrices with a
[1, . . . ,1]-row.
T(X ) '
Sn−2 × Sn−2.

t0

t1

t2

t0

t1

t2 0

1

t0

t1

t2

t0

t1

t2

[
1 0 0
0 0 1

] [
0 0 0
1 1 1

]
alive dead(lock)
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Path space ~P(X ) and prodsimplicial complex T(X )
A homotopy equivalence

Theorem (A variant of the nerve lemma)

~P(X ) ' ∆C(X ) ' T(X ).

allows (in principal) to calculate homology,...

Proof.

Functors D, E , T : C(X )(op) → Top:
D(M) = ~P(XM ),
E(M) = ∆M ,
T (M) = ∗
colim D = ~P(X ), colim E = T(X ), hocolim T = ∆C(X ).
The trivial natural transformations D ⇒ T , E ⇒ T yield:
hocolim D ' hocolim T ∗ ' hocolim T ' hocolim E .
Segal’s projection lemma:
hocolim D ' colim D, hocolim E ' colim E .
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2. approach: Towards configuration spaces

One semaphore

Pa Pb Va Vb

t1 t2 t3 t4
0 1

Path space captured by “times” 0 < t1 < t2 < t3 < t4 < 1 ∈ ∆̊4

n semaphores

A directed path (n threads) is encoded by
(t1

1 , . . . , t2k1
1 ; . . . ; t1

n , . . . , t2kn
n ) ∈ ∏n

1 ∆̊2ki

Forbidden dipaths: Successive Pa,Va corresponding to t ia
k , t ja

k .

Capacity n− 1: maxn
k=1 t ia

k < minn
1 t ja

k
Capacity κ: max1≤k1<···<kκ+1≤n t ia

kj
< min1≤k1<···<kκ+1≤n t ja

kj

The space of all forbidden dipaths A corresponds to union of a
bunch of subspaces Aκ+1

i,j (a) of type “max < min” within ∏n
1 ∆̊2ki

Path space as configuration space: D = ∏n
1 ∆̊2ki \ A.
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Complements of arrangements
Configuration spaces

Subspace arrangments

A finite set A of subspaces in affine or projective space.
Aim: To infer (topological) properties of the complement M(A) from
the intersection semilattice L(A), partially ordered by containment.

Configuration spaces

1 Mn(X ) = {x1, . . . , xn) ∈ X n| i 6= j ⇒ xi 6= xj};
the complement of An(X ) =

⋃
i 6=j{xi = xj} in X n.

2 No-k -equal space M(k)
n (X ) the complement of

A(k)
n (X ) =

⋃
1≤i1<···<ik≤n{xi1 = · · · = xik }.

3 M(n)
n (R) = Rn \ ∆(R) ' Sn−2.

4 M(k)
n (R) ⊂ Rn: no-k -equal space.

Homology determined by Björner & Welker (1995); concentrated
in dimensions s(n− 2). Cell structure and cohomology ring
determined by Baryshnikov.
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Path conf. spaces vs. subspace arrangements
(Dis-)similarities

Comparison

Path configuration space D ⊂ ∆̊k – not Euclidean (or projective).
Complement of solutions of inequalities
Still: Intersection semilattice matters!

A particular case: Pa = Va

Instantaneous use of resources. In this case:
Forbidden dipaths correspond to regions given by
equations x i1

j1
= · · · = x ik

jk
.

Example: Time of access for 9 · obstructions, n = k = 2

· · ·
· · ·
· · ·  “Time space”: ∆̊3 × ∆̊3 \ A ⊂ R6 with

A = {(s, t) ∈ ∆̊3 × ∆̊3| si = tj ,1 ≤ i , j ≤ 3} ⊂ R6.
Difficult to draw! Easy: Complement has 20
contractible components.

And in higher dimensions?
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Example: Dipaths on torus – with directed loops!
Inductively, as homotopy colimits

Torus with hole (1. approach: R - Ziemiański)

Dipaths in covering of torus with hole
 state space Xn = Rn \ ( 1

2 + Zn) and of dipaths
with non-negative multidegree k in
Z (k) := ~P(Xn)(0,k), k ∈ Zn

≥0

Index category J (n)

Poset category of proper non-empty subsets of [1 : n] with inclusions
as morphisms.
Via characteristic functions isomorphic to the category of
non-identical binary vectors of length n: ε = [ε1, . . . εn] ∈ J (n).
Classifying space (= nerve): BJ (n) ∼= ∂∆n−1 ∼= Sn−2.

Theorem (R-Ziemiański)

Z (k) ' hocolimε∈J (n) Z (k− ε).

Homology and cohomology can be calculated (Bousfield-Kan
spectral sequence).
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Simplicial complexes
Sequence complex, Order complex

Definition (Partial order on integer vectors)

l = (l1, . . . , ln)� (m1, . . . ,mn) = m ∈ Zn
+ ⇔ lj < mj ,1 ≤ j ≤ n.

Sequence complex S(k)

Vertices: 0� j ≤ k
(r − 1)-simplex: σ = 0� j1 � · · · � jr ≤ k

∂i σ: omit ji .

Order complex ∆(k) for arrangement

Consider arrangement A(k) =
⋃

1≤ij≤kj
{x1

i1
= · · · = xn

in} within

compactification ̂̊∆k
∼= S|k|.

Order complex ∆(k): poset of (non-empty) intersections.
OBS: "Unordered" intersections give rise to point ? at infinity.
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2. approach: Translation to configuration spaces
A proof with different tools

Experiment: Configuration spaces and wedge lemma

Configuration space for Z (k):
D(k) := ∆̊k \ A(k) = ∆̊k1 × · · · × ∆̊kn \ A(k) ⊂ ̂̊∆k ∼= S|k| with
A(k) =

⋃
1≤ij≤kj

{x1
i1
= · · · = xn

in} within compactification.

(Co-)homology of Â(k) ⊂ ̂̊∆k = S|k| using the intersection poset
Q of the cover defined by A(k) Alexander duality H∗(D(k))

Application of Wedge lemma (Ziegler-Živaliević 1995)

1 Â(k) ' ∨q∈Q ∆(Q<q) ∗Uq – ∆(Q<q) the order complex “below
q”, Uq the intersection corresponding to q.

2 q = (j1 � · · · � jr ) ∈ Q ⇒ ∆(Q<q) ' Sr−2 and
Uq = S|k|−r (n−1).

3 q “unordered”⇒ Uq = ∗ – does not contribute !
4 Â(k) ' ∨q=(j1�···�jr )∈Q S|k|−r (n−2)−1.
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Dipaths in torus skeleton
A generalisation via configuration spaces (Meshulam-R)

Schedules with capacity κ

Replace semaphores of capacity n− 1 by semaphores with
capacity κ. Schedules can be viewed as

dipaths on κ-skeleton of Rn (cubified)
elements in the complement Dκ+1(k) of Aκ+1(k) =
= {x i1

j1
= · · · = x iκ+1

jκ+1
| 1 ≤ j1 < · · · < jκ+1 ≤ n,1 ≤ is ≤ kjs}

in ̂̊∆k

Strategy
Again use wedge lemma and Alexander duality.
Relevant order complexes: Joins of order complexes of
partition complexes – non-singleton parts of size at least κ + 1.
These are homotopy equvalent to wedges of spheres (Björner,
Welker; 1995).
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Homology and cohomology of path spaces in torus
skeleta

Theorem (Meshulam-R)

1 H̃ |k|−l−1(Â(k);Z) =

{
Z∏n

i=1 (
ki
r ) l = (n− 2)r , r > 0

0 otherwise

2 H̃l(D(k);Z) =

{
Z∏n

i=1 (
ki
r ) l = (n− 2)r , r > 0

0 otherwise
alternative proof of the result of R-Ziemiański

3 H∗(Dκ+1(k);Z) is concentrated in dimensions
r (κ − 1), r ∈ Z≥0.
Poincaré series can be identified.
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Configuration spaces and spaces of d-paths
connected by a homotopy equivalence

A sketch in the special case

An element x = (x1, · · · xk ) ∈ ∆̊k gives rise to a directed
piecewise linear path px : I → [0, k + 1] with

px(t) =

{
0 t = 0
i t = xi
k + 1 t = 1

.

An element x = (x1, · · · xn) ∈ ∏n
1 ∆̊ki = ∆̊k gives rise to a

directed piecewise linear path
Px : I → Rn, Px(t) = (px1(t), . . . ,pxn (t)) from 0 to k.
Only the forbidden configurations in A ((in)-equalities)
correspond to dipaths through the forbidden region F (placing
the V ,P at integers).

The map ∆̊k \ A→ ~P(∏i [0, ki + 1] \ F )(0,k + 1) : x→ Px
is a homotopy equivalence.

Can easily be generalized!
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Prodsimplicial vs. configuration space model
A comparison

Dimensions
prodsimplicial model Dimension ≤ l(n− 1), l the number of

“holes” (multiplicative)
configuration space Dimension ≤ 2 ∑i ki (additive)

Questions. Comments
Can one use the wedge lemma strategy to determine the
homotopy type of the complement of the configuration
space – in general?
Determine the (stable) homotopy type of the configuration
space?
Its homology? Algorithmically?
Observe: Complicated order complexes in general!
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Path spaces as generalized moment-angle complexes
A third approach

Moment angle complexes

Introduced by Davis and Januszkiewicz (1991) in toric topology.
Many properties exhibited by Buchstaber and Panov (2000).
Here: Generalized moment-angle complexes (GMAC).

A GMAC associated to the sequence complex S(k)

Remember σ = (0� j1 � · · · � jr ≤ k) ∈ Sr−1(k)
D(σ) = ∏j∈σ Sn−2 ×∏j 6∈σ ? ⊂ ∏0�j≤k Sn−2

MA(k) =
⋃

σ∈S(k) D(σ) = colim D(σ).
Easy to calculate (co-)homology via a Mayer-Vietoris
argument.

Question/Conjecture:Path space as GMAC

Z (k) ' MA(k)?

Proof.
MA(k) = hocolimε∈I(n) MA(k− ε) – same recurrence rule as
for Z (k)! Produce homotopy equivalence inductively.
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Simplicial complexes as path spaces
A surprise: No restriction in general!

Which topological spaces can arise as path spaces?

Surely there must be restrictions?

Theorem (No: K. Ziemiański; 2013)
For every finite simplicial complex X (on n vertices) there is

1 a Euclidean cubical complex XE ⊂ Rn such that
~P(XE )(0,1) ' X.

2 a linear PV-program (n concurrent PV threads) with
cubical realization YE such that ~P(YE )(0,2) ' X t Sn−2.
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Thanks!

Thanks
to you, the audience
to the organizers
the sponsor
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