Revisiting Hartle's model using perturbed matching theory to second order: amending the change in mass

Based on Borja Reina and Raül Vera (UPV/EHU) accepted at Class.Quant.Grav. and Marc Mars (U. Salamanca) Class.Quant.Grav. (2005)

University of the Basque Country UPV/EHU

Porto, June 2015

Literature

- Fluid balls in "slow rotation" approximation in equilibrium (stationary perturbations)
- *Hartle (1967)*: first and second order stationary and axisymmetric perturbations of static perfect-fluid balls in vacuum.
- More recent (analytic) works on models for compact objects in equilibrium: *Bradley et al. (2007)*, and more, and *Cabezas et al. (2007)*, *Blázquez-Salcedo et al. (2012)*, *Cuchi et al. (2013)*, ...

Consistent/rigorous (*) matching perturbation theory : first order Battye, Carter (1995) and Mukohyama (2000) (almost) and second order Mars (2005) in full generality.

More literature on linearised perturbed matching: *Cunningham, Price, Moncrief* (1978,79), Gerlach, Sengupta (1979); Martín-García, Gundlach (2001); and Brizuela et al. (2010) for higher orders

(*) Mars, Mena, Vera (2007)

Static and spherically symmetric star

Global model of a (spher. symm.) non-rotating star

Fluid ball (interior)

- Eqs. for a perfect fluid: $E(r_+)$, $P(r_+)$ + Barotropic EOS
- \Rightarrow given $E(0) = E_c$, E and P are integrated.

$$(\mathcal{V}^+_0,g^+_0)$$
 Σ^+_0

Asymptotically flat vacuum (exterior): Schwarzschild

 $g_0^{\pm} = -e^{\nu^{\pm}(r_{\pm})}dt_{\pm}^2 + e^{\lambda^{\pm}(r_{\pm})}dr_{\pm}^2 + r_{\pm}^2(d\theta_{\pm}^2 + \sin^2\theta_{\pm}d\varphi_{\pm}^2)$ $\Sigma_0^{\pm} = \{r_{\pm} = a_{\pm}\}, \quad \vec{n}^{\pm} = -e^{-\frac{\lambda^{\pm}(a_{\pm})}{2}}\partial_{r_{\pm}}|_{\Sigma_0^{\pm}}$

Static and spherically symmetric star

Match the + and - regions to obtain a global model of the star:

Static and spherically symmetric star

Match the + and - regions to obtain a global model of the star:

Static and spherically symmetric star

Match the + and - regions to obtain a global model of the star:

The setting: Hartle's model for rotating stars in GR Static and spherically symmetric star

Match the + and - regions to obtain a global model of the star:

Because of $[\nu] = [\lambda] = 0$ (apart from $[\nu'] = 0$) the use of

$$g_0 = -e^{\nu(r)}dt^2 + e^{\lambda(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\varphi^2)$$

for some $r\in(0,\infty)$ is standard in many works. The functions in the metric are said to be "continuous".

However, extending such "continuity" to other settings, in general, can lead to wrong conclusions. For instance, extending to a perturbative scheme.

In particular, it does in Hartle's perturbative setting.

The setting: Hartle's model for rotating stars in GR Static and spherically symmetric star

Match the + and - regions to obtain a global model of the star:

Because of $[\nu] = [\lambda] = 0$ (apart from $[\nu'] = 0$) the use of

$$g_0 = -e^{\nu(r)}dt^2 + e^{\lambda(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\varphi^2)$$

for some $r\in(0,\infty)$ is standard in many works. The functions in the metric are said to be "continuous".

However, extending such "continuity" to other settings, in general, can lead to wrong conclusions. For instance, extending to a perturbative scheme.

In particular, it does in Hartle's perturbative setting.

The setting: Hartle's model for rotating stars in GR "Slow" rotation

Starting from the spherically symm. and static configuration (**background**), stationary and axially symmetric perturbations are introduced to describe "slow" rotation in equilibrium. Quantities that arise as a consequence of rotation:

- J: Angular momentum
- A (in Hartle's notation): Proportional to the quadrupolar moment and related to the ellipticity of the star
- δM : Change in mass of the rotating configuration, with respect to the static one, needed to keep the central density of the star E_c unchanged.

In Hartle's model, these constants are calculated joining the fluid and the vacuum regions **assuming the "continuity of the metric"** in some system of coordinates used.

The setting: Hartle's model for rotating stars in GR "Slow" rotation

Starting from the spherically symm. and static configuration (**background**), stationary and axially symmetric perturbations are introduced to describe "slow" rotation in equilibrium. Quantities that arise as a consequence of rotation:

- J: Angular momentum
- A (in Hartle's notation): Proportional to the quadrupolar moment and related to the ellipticity of the star

δM : Change in mass

- Change in mass of the rotating configuration needed to keep the central density of the star E_c unchanged.
- The assumed "continuity of the metric" in Hartle's model (in those coordinates) is not valid to calculate this constant.

•
$$\delta M = a e^{-\lambda(a)} m_0^+(a) + \frac{J^2}{a^3} + 4\pi \frac{a^3}{M} E(a) \tilde{\mathcal{P}}_0(a)$$

Excess of mass δM

Static star

- Integrate the equations (TOV) with a fixed central energy density E_c
- $\bullet~$ The mass M is determined

Rotating star

- Integrate the field equations for the perturbations with the same E_c that in the static case.
- The star has a mass M plus a contribution of the second order rotational perturbations

Perturbative setting: Remarks

Explicit assumptions

- Barotropic equation of state.
- Stationary model.
- Axial and equatorial symmetry.
- Rigid rotation.

Implicit assumptions

- Absence of convective motions.
- Explicit global coordinates in which the metric is at least C^0 .

Hartle's model

Stationary and axially symmetric spacetime: $\vec{\xi}$ and $\vec{\eta}$. Matter content of the interior: perfect fluid: \hat{E} , \hat{P} , fluid flow \vec{u} . Exterior: vacuum

• Perturbation parameter Ω defined as $\vec{u} \propto \vec{\xi} + \Omega \vec{\eta}$ (rigid. rot.)

In Hartle's model the second order metric is:

$$ds^{2} = -e^{\nu(r)}(1+2h(r,\theta))dt^{2} + e^{\lambda(r)}\left(1+\frac{2m(r,\theta)}{r-2M}\right)dr^{2}$$
$$+r^{2}\left(1+2k(r,\theta)\right)\left(d\theta^{2}+\sin^{2}\theta(d\varphi-\omega(r,\theta)dt)^{2}\right), \quad \mathbf{r} \in (0,\infty)$$

- Background functions: $\nu(r)$, $\lambda(r)$.
- 1st order: $\omega(r, \theta)$. Regular origin + asymp. flatness $\Rightarrow \omega(r)$.
- 2nd order: $h(r,\theta), m(r,\theta), k(r,\theta)$ (at least C^0)
 - Surface of the star determined by: $r = a + \xi(a, \theta)$, where $\hat{P}(r + \xi(r, \theta), \theta) = P(r)$, so that $\hat{P}(a + \xi(a, \theta), \theta) = 0$.

Hartle's model: 2nd order (I)

Metric at second order: $h(r, \theta)$, $m(r, \theta)$ and $k(r, \theta)$.

Using the decompositions $h(r,\theta) = \sum_{l=0}^{\infty} h_l(r) P_l(\cos \theta)$, etc...

in Hartle's work it is argued that since

- For l > 2: homogeneous equations (no sources from ω)
- Equatorial symmetry (only even *l*'s)

then

$$h(r,\theta) = h_0(r) + h_2(r)P_2(\cos\theta)$$
$$m(r,\theta) = m_0(r) + m_2(r)P_2(\cos\theta)$$
$$k(r,\theta) = \frac{k_0(r)}{k_0(r)} + k_2(r)P_2(\cos\theta)$$
$$\Leftrightarrow \quad \xi(r,\theta) = \xi_0(r) + \xi_2(r)P_2(\cos\theta)$$

Hartle's model: 2nd order (II)

Field equations for the interior and BCs provide: l = 0 problem: change in mass:

Interior l = 0 problem:

- Hydrostatic equilibrium first integral $\gamma h_0 = (...)\xi_0 + (rotation)^2$
- 1st order inhomogeneous system of ODE's for m_0 and ξ_0
- BC: imposed at the origin on ξ_0 and m_0 to keep E_c unchanged
- \Rightarrow obtain the values $\xi_0(a)$ and $m_0(a)$

Exterior AF vacuum l = 0 problem:

$$\rightarrow \qquad m_0^-(r) = \delta M - \frac{J^2}{r^3}, \qquad h_0^-(r) = -\frac{1}{r-2M} \left(\delta M - \frac{J^2}{r^3}\right) \\ \text{for some constant } \delta M$$

Matching:

Continuity of
$$m_0$$
 at $r = a \Rightarrow \delta M = m_0(a) + \frac{J^2}{a^3}$

Hartle's model: 2nd order (II)

Field equations for the interior and BCs provide: l = 0 problem: change in mass:

Interior l = 0 problem:

- Hydrostatic equilibrium first integral $\gamma h_0 = (...)\xi_0 + (rotation)^2$
- 1st order inhomogeneous system of ODE's for m_0 and ξ_0
- BC: imposed at the origin on ξ_0 and m_0 to keep E_c unchanged
- \Rightarrow obtain the values $\xi_0(a)$ and $m_0(a)$

Exterior AF vacuum l = 0 problem:

$$\rightarrow \qquad m_0^-(r) = \delta M - \frac{J^2}{r^3}, \qquad h_0^-(r) = -\frac{1}{r-2M} \left(\delta M - \frac{J^2}{r^3} \right) \\ \text{for some constant } \delta M.$$

Matching:

Continuity of
$$m_0$$
 at $r = a \Rightarrow \qquad \delta M = m_0(a) + \frac{J^2}{a^3}$

Hartle's model: 2nd order (II)

Field equations for the interior and BCs provide

l = 2 problem: Shape

- Hydrostatic equilibrium first integral $0 = h_2 + (...)\xi_2 + (rotation)^2$
- Algebraic equation for m_2
- 1st order inhomogeneous system of ODE's for h_2 and k_2
- BC: regularity at the origin for both h₂, k₂ and h₂, k₂ → 0 at infinity (AF)
- Matching: Continuity for h_2 and k_2 at r = a.
- $\xi_2 = \xi_2(a, M, h_2, \Omega, \omega) \Rightarrow \epsilon = -3\xi_2(a)/2a$

Revisiting Hartle's model

Explicit assumptions

Barotropic equation of state Stationary model Axial and equatorial symmetry Rigid rotation

Implicit assumptions

- Absence of convective motions.
- Explicit global coordinates in which the metric is, at least, C^0 .

Our work: global aim and (one) result

- Put the model on firm grounds (given a consistent theory of perturbed matchings to second order)
- Result: that assumption is not consistent: $[m_0] \neq 0$ in general. In fact, the resulting expression for the change in mass δM computed is not correct.

Revisiting Hartle's model

Explicit assumptions

Barotropic equation of state Stationary model Axial and equatorial symmetry Rigid rotation

Implicit assumptions

- Absence of convective motions.
- Explicit global coordinates in which the metric is, at least, C^0 .

Our work: global aim and (one) result

- Put the model on firm grounds (given a consistent theory of perturbed matchings to second order)
- Result: that assumption is not consistent: $[m_0] \neq 0$ in general. In fact, the resulting expression for the change in mass δM computed is not correct.

$$(V^{-}, g_{\alpha\beta}^{-}) \xrightarrow{\left(\sum, q_{ab}\right)} (V^{-} \cup V^{+}, g_{\alpha\beta})$$

$$\vec{e} \qquad (V^{-} \cup V^{+}, g_{\alpha\beta})$$

$$\vec{e} \qquad (V^{+}, g_{\alpha\beta}^{+})$$

Properly matched spacetimes $(V^-, g^-_{\alpha\beta})$ and $(V^+, g^+_{\alpha\beta})$ across $\Sigma^- = \Sigma^+ (\equiv \Sigma)$.

$$\stackrel{(V^-,g^-_{\alpha\beta})}{\underset{g^{(1)-}_{\alpha\beta}}{\overset{(\Sigma,q_{ab})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(U^+,g^+_{\alpha\beta})}}}}}$$

Properly matched spacetimes $(V^-, g^-_{\alpha\beta})$ and $(V^+, g^+_{\alpha\beta})$ across $\Sigma^- = \Sigma^+ (\equiv \Sigma)$.

Now perturb to first order the metrics by $g^{(1)-}_{\alpha\beta}$ and $g^{(1)+}_{\alpha\beta}.$

$$\stackrel{(V^-,g^-_{\alpha\beta})}{\underset{g^{(1)-}_{\alpha\beta}}{\overset{(\Sigma,q_{ab})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(U^+,g^+_{\alpha\beta})}}}}}$$

Properly matched spacetimes $(V^-, g^-_{\alpha\beta})$ and $(V^+, g^+_{\alpha\beta})$ across $\Sigma^- = \Sigma^+ (\equiv \Sigma)$.

Now perturb to first order the metrics by $g_{\alpha\beta}^{(1)-}$ and $g_{\alpha\beta}^{(1)+}$. Which boundary conditions need to be imposed at points on Σ^- and Σ^+ so that the matching conditions are satisfied in a linearised sense?

$$\stackrel{(V^-,g^-_{\alpha\beta})}{\underset{g^{(1)-}_{\alpha\beta}}{\overset{(\Sigma,q_{ab})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(U^+,g^+_{\alpha\beta})}}}}}$$

Properly matched spacetimes $(V^-, g^-_{\alpha\beta})$ and $(V^+, g^+_{\alpha\beta})$ across $\Sigma^- = \Sigma^+ (\equiv \Sigma)$.

Now perturb to first order the metrics by $g_{\alpha\beta}^{(1)-}$ and $g_{\alpha\beta}^{(1)+}$. Which boundary conditions need to be imposed at points on Σ^{-} and Σ^{+} so that the matching conditions are satisfied in a linearised sense?

And how does Σ get deformed? Do we get \vec{Z} ? (\vec{Z}^{\pm} ?)

$$\stackrel{(V^-,g^-_{\alpha\beta})}{\underset{g^{(1)-}_{\alpha\beta}}{\overset{(\Sigma,q_{ab})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(V^-\cup V^+,g_{\alpha\beta})}{\overset{(U^+,g^+_{\alpha\beta})}}}}}$$

Properly matched spacetimes $(V^-, g^-_{\alpha\beta})$ and $(V^+, g^+_{\alpha\beta})$ across $\Sigma^- = \Sigma^+ (\equiv \Sigma)$.

Now perturb to first order the metrics by $g_{\alpha\beta}^{(1)-}$ and $g_{\alpha\beta}^{(1)+}$. Which boundary conditions need to be imposed at points on Σ^{-} and Σ^{+} so that the matching conditions are satisfied in a linearised sense?

And how does Σ get deformed? Do we get \vec{Z} ? (\vec{Z}^{\pm} ?) We are going to go to second order: $g_{\alpha\beta}^{(2)-}$, $g_{\alpha\beta}^{(2)+}$, \vec{Z}_2^{\pm} .

- One parameter family of spacetimes $(\mathcal{V}_{\varepsilon}, \hat{g}_{\varepsilon})$, with diffeomorphically identified points, through $\psi_{\varepsilon} : \mathcal{V}_0 \to \mathcal{V}_{\varepsilon}$.
- Background chosen at $\boldsymbol{\varepsilon}=0:(\mathcal{V}_0,g)$, with $g\equiv\hat{g}_0$
- Define the family of tensors g_{ε} on \mathcal{V}_0 by $g_{\varepsilon} \equiv \psi_{\varepsilon}^*(\hat{g}_{\varepsilon})$

- One parameter family of spacetimes $(\mathcal{V}_{\varepsilon}, \hat{g}_{\varepsilon})$, with diffeomorphically identified points, through $\psi_{\varepsilon} : \mathcal{V}_0 \to \mathcal{V}_{\varepsilon}$.
- $\bullet~$ Background chosen at $\pmb{\varepsilon}=0:(\mathcal{V}_0,g),$ with $g\equiv \hat{g}_0$
- Define the family of tensors g_{ε} on \mathcal{V}_0 by $g_{\varepsilon} \equiv \psi_{\varepsilon}^*(\hat{g}_{\varepsilon})$

Family of tensors g_{ε} on (\mathcal{V}_0, g) such that $g = g_0$ Metric perturbations: symmetric tensors defined on (\mathcal{V}_0, g)

$$K_1 = \frac{\partial g_{\varepsilon}}{\partial \varepsilon} \bigg|_{\varepsilon=0} (=g^{(1)}), \qquad K_2 = \frac{\partial^2 g_{\varepsilon}}{\partial \varepsilon^2} \bigg|_{\varepsilon=0} (=g^{(2)})$$

Perturbation theory: is the study of tensor fields K_1 and K_2 satisfying certain field equations on a fixed background (\mathcal{V}_0, g) .

The **field equations for** K_1 and K_2 come from imposing that g_{ε} satisfy the same field equations as the background.

Linearised vacuum field equations:

Background: $R_{\alpha\beta}(g) = 0$. We need to impose $\frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon}\Big|_{\varepsilon=0} = 0$ and $\frac{\partial^2 R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon^2}\Big|_{\varepsilon=0} = 0$,

Perturbation theory: is the study of tensor fields K_1 and K_2 satisfying certain field equations on a fixed background (\mathcal{V}_0, g) .

The **field equations for** K_1 and K_2 come from imposing that g_{ε} satisfy the same field equations as the background.

Linearised vacuum field equations:

Background:
$$R_{\alpha\beta}(g) = 0$$
.
We need to impose $\frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon}\Big|_{\varepsilon=0} = 0$ and $\frac{\partial^2 R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon^2}\Big|_{\varepsilon=0} = 0$,

Relation between Riemann tensors of two arbitrary metrics g_0 and g_{ε} :

$$\begin{split} R^{\alpha}_{\beta\gamma\delta}(g_{\varepsilon}) &= R^{\alpha}_{\beta\gamma\delta}(g_{0}) + 2\nabla^{0}_{[\gamma}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\rho[\gamma}C^{\rho}_{\delta]\beta},\\ \text{where } C^{\alpha}_{\gamma\beta} &= \frac{1}{2}g^{\alpha\mu}_{\varepsilon}(\nabla^{0}_{\beta}g_{\varepsilon\mu\gamma} + \nabla^{0}_{\gamma}g_{\varepsilon\mu\beta} - \nabla^{0}_{\mu}g_{\varepsilon\gamma\beta}) \end{split}$$

Perturbation theory: is the study of tensor fields K_1 and K_2 satisfying certain field equations on a fixed background (\mathcal{V}_0, g) .

The **field equations for** K_1 and K_2 come from imposing that g_{ε} satisfy the same field equations as the background.

Linearised vacuum field equations:

Background:
$$R_{\alpha\beta}(g) = 0$$
.
We need to impose $\frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon}\Big|_{\varepsilon=0} = 0$ and $\frac{\partial^2 R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon^2}\Big|_{\varepsilon=0} = 0$,

Relation between Riemann tensors of two arbitrary metrics g_0 and g_{ε} :

$$\begin{split} R^{\alpha}_{\beta\gamma\delta}(g_{\varepsilon}) &= R^{\alpha}_{\beta\gamma\delta}(g_{0}) + 2\nabla^{0}_{[\gamma}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\rho[\gamma}C^{\rho}_{\delta]\beta},\\ \text{where } C^{\alpha}_{\gamma\beta} &= \frac{1}{2}g^{\alpha\mu}_{\varepsilon}(\nabla^{0}_{\beta}g_{\varepsilon\mu\gamma} + \nabla^{0}_{\gamma}g_{\varepsilon\mu\beta} - \nabla^{0}_{\mu}g_{\varepsilon\gamma\beta})\\ \frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial\varepsilon}\bigg|_{\varepsilon=0} &= \frac{1}{2}(2\nabla_{\mu}\nabla_{(\alpha}K^{\mu}_{1\beta)} - \nabla_{\mu}\nabla^{\mu}K_{1\alpha\beta} - \nabla_{\alpha}\nabla_{\beta}K^{\mu}_{1\mu}) \end{split}$$

Perturbation theory: is the study of tensor fields K_1 and K_2 satisfying certain field equations on a fixed background (\mathcal{V}_0, g) .

The **field equations for** K_1 and K_2 come from imposing that g_{ε} satisfy the same field equations as the background.

Linearised vacuum field equations:

 $\begin{array}{l} \text{Background: } R_{\alpha\beta}(g)=0.\\ \text{We need to impose } \left.\frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial\varepsilon}\right|_{\varepsilon=0}=0 \quad \text{ and } \quad \left.\frac{\partial^2 R_{\alpha\beta}(g_{\varepsilon})}{\partial\varepsilon^2}\right|_{\varepsilon=0}=0, \end{array}$

1st order vacuum field equation:

$$L(K_1) \equiv \frac{1}{2} (2\nabla_\mu \nabla_{(\alpha} K^{\mu}_{1\beta)} - \nabla_\mu \nabla^\mu K_{1\alpha\beta} - \nabla_\alpha \nabla_\beta K^{\mu}_{1\mu}) = 0$$

Perturbation theory: is the study of tensor fields K_1 and K_2 satisfying certain field equations on a fixed background (\mathcal{V}_0, g) .

The **field equations for** K_1 and K_2 come from imposing that g_{ε} satisfy the same field equations as the background.

Linearised vacuum field equations:

Background: $R_{\alpha\beta}(g) = 0$. We need to impose $\left. \frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon} \right|_{\varepsilon=0} = 0$ and $\left. \frac{\partial^2 R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon^2} \right|_{\varepsilon=0} = 0$,

1st order vacuum field equation:

$$L(K_1) \equiv \frac{1}{2} (2\nabla_\mu \nabla_{(\alpha} K^{\mu}_{1\beta)} - \nabla_\mu \nabla^\mu K_{1\alpha\beta} - \nabla_\alpha \nabla_\beta K^{\mu}_{1\mu}) = 0$$

2nd order vacuum field equation:

 $L(K_2) +$ quadratic terms in $(K_1, \nabla K_1) = 0$

Perturbation theory: is the study of tensor fields K_1 and K_2 satisfying certain field equations on a fixed background (\mathcal{V}_0, g) .

The **field equations for** K_1 and K_2 come from imposing that g_{ε} satisfy the same field equations as the background.

Linearised vacuum field equations:

Background:
$$R_{\alpha\beta}(g) = 0$$
.
We need to impose $\frac{\partial R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon}\Big|_{\varepsilon=0} = 0$ and $\frac{\partial^2 R_{\alpha\beta}(g_{\varepsilon})}{\partial \varepsilon^2}\Big|_{\varepsilon=0} = 0$,

1st order vacuum field equation:

$$L(K_1) \equiv \frac{1}{2} (2\nabla_\mu \nabla_{(\alpha} K^{\mu}_{1\beta)} - \nabla_\mu \nabla^\mu K_{1\alpha\beta} - \nabla_\alpha \nabla_\beta K^{\mu}_{1\mu}) = 0$$

2nd order vacuum field equation: $L(K_2) +$ quadratic terms in $(K_1, \nabla K_1) = 0$

Non-vacuum $T_{\alpha\beta} \neq 0$, then 0 is substituted by the appropriate perturbations of the matter fields, using $T_{\alpha\beta}(\varepsilon)$.

Perturbation theory: inherent gauge freedom

Perturbation theory: inherent gauge freedom

Perturbation theory: inherent gauge freedom

Taking a different ψ means a different gauge: say $\psi^{(h)}$

Perturbation theory: inherent gauge freedom

Taking a different ψ means a different gauge: say $\psi^{(h)}$

This defines a ε -parameter diffeomorphism: $\Omega_{\varepsilon}^{(h)}: \mathcal{V}_0 \to \mathcal{V}_0$

Perturbation theory: inherent gauge freedom

Taking a different ψ means a different gauge: say $\psi^{(h)}$

This defines a ε -parameter diffeomorphism: $\Omega_{\varepsilon}^{(h)}: \mathcal{V}_0 \to \mathcal{V}_0$

Recall $g_{\epsilon} \equiv \psi_{\epsilon}^*(\hat{g}_{\epsilon})$.

Perturbation theory: inherent gauge freedom

Taking a different ψ means a different gauge: say $\psi^{(h)}$

This defines a ε -parameter diffeomorphism: $\Omega_{\varepsilon}^{(h)}: \mathcal{V}_0 \to \mathcal{V}_0$

Recall $g_{\varepsilon} \equiv \psi_{\varepsilon}^*(\hat{g}_{\varepsilon})$.

Since $\psi_\varepsilon^{(h)}=\psi_\varepsilon\circ\Omega_\varepsilon^{(h)},$ the new family of tensors is given by

$$g_{\varepsilon}^{(h)} = \psi_{\varepsilon}^{(h)}(\hat{g}_{\varepsilon}) = \Omega_{\varepsilon}^{(h)}(g_{\varepsilon})$$

Perturbation theory: inherent gauge freedom

We are given two spacetimes with (no null) boundary:

We are given two spacetimes with (no null) boundary:

1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_\pm : \Sigma \to \Sigma^\pm (\xi^a \to x_\pm^\alpha = \Phi_\pm^\alpha(\xi^a))$

We are given two spacetimes with (no null) boundary:

- 1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_\pm : \Sigma \to \Sigma^\pm (\xi^a \to x_\pm^\alpha = \Phi_\pm^\alpha(\xi^a))$
- 2. First fundamental forms: $q^{\pm}_{ab} \equiv \Phi^*_{\pm} g^{\pm}_{\alpha\beta}$

 $\begin{array}{l} \text{Push-forwards: } \mathrm{d}\Phi(\partial_{\xi^a}) = \frac{\partial \Phi^\alpha}{\partial \xi^a} \partial_{x^\alpha} \equiv \vec{e_a} = e_a{}^\alpha \partial_{x^\alpha}, \\ \text{Unit normals: } \boldsymbol{n}(\vec{e_a}) = 0 \\ \text{First fundamental forms: } \boldsymbol{q_{ab}} = e_a{}^\alpha e_b{}^\beta g_{\alpha\beta}(x^\alpha(\xi^a)) \end{array}$

We are given two spacetimes with (no null) boundary:

- 1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_\pm : \Sigma \to \Sigma^\pm (\xi^a \to x_\pm^\alpha = \Phi_\pm^\alpha(\xi^a))$
- 2. First fundamental forms: $q^{\pm}_{ab} \equiv \Phi^*_{\pm} g^{\pm}_{\alpha\beta}$

Push-forwards: $d\Phi(\partial_{\xi^a}) = \frac{\partial \Phi^{\alpha}}{\partial \xi^a} \partial_{x^{\alpha}} \equiv \vec{e}_a = e_a{}^{\alpha} \partial_{x^{\alpha}}$, Unit normals: $n(\vec{e}_a) = 0$ First fundamental forms: $q_{ab} = e_a{}^{\alpha}e_b{}^{\beta}g_{\alpha\beta}(x^{\alpha}(\xi^a))$ There $\exists a \ C^0$ metric g on $V^- \cup V^+$ with $g|_{V^{\pm}} = g^{\pm}$ iff $q_{ab}^+ = q_{ab}^-$

We are given two spacetimes with (no null) boundary:

- 1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_+ : \Sigma \to \Sigma^{\pm}(\xi^a \to x^{\alpha}_+ = \Phi^{\alpha}_+(\xi^a))$ $q_{ab}^+ = q_{ab}^- \equiv q_{ab}$
- 2. Preliminary junction conditions:

We are given two spacetimes with (no null) boundary:

1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_+: \Sigma \to \Sigma^{\pm}(\xi^a \to x^{\alpha}_+ = \Phi^{\alpha}_+(\xi^a))$

 $q_{ab}^+ = q_{ab}^- \equiv q_{ab}$

- 2. Preliminary junction conditions:
- 3. Second fundamental forms: $\kappa_{ab}^{\pm} \equiv \Phi_{+}^{*} \nabla_{\alpha}^{\pm} n_{\beta}$

We are given two spacetimes with (no null) boundary:

1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_+: \Sigma \to \Sigma^{\pm}(\xi^a \to x^{\alpha}_+ = \Phi^{\alpha}_+(\xi^a))$

 $q_{ab}^+ = q_{ab}^- \equiv q_{ab}$

2. Preliminary junction conditions:

3. Second fundamental forms: $\kappa_{ab}^{\pm} \equiv \Phi_{+}^{*} \nabla_{\alpha}^{\pm} n_{\beta}$ The distributional Riemann tensor of q contains no Dirac δ part with support on Σ iff $\kappa_{ab}^+ = \kappa_{ab}^-$

We are given two spacetimes with (no null) boundary:

- 1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_+: \Sigma \to \Sigma^{\pm}(\xi^a \to x^{\alpha}_+ = \Phi^{\alpha}_+(\xi^a))$
- 2. Preliminary junction conditions:
- 3. Second matching conditions:

 $q_{ab}^+ = q_{ab}^- \equiv q_{ab}$ $\kappa_{ab}^+ = \kappa_{ab}^- \equiv \kappa_{ab}$

We are given two spacetimes with (no null) boundary:

1. Gluing: identify boundaries through $\Phi_+ \circ \Phi_-^{-1}$: $\Sigma^+ = \Sigma^- (\equiv \Sigma)$ embeddings: $\Phi_+: \Sigma \to \Sigma^{\pm}(\xi^a \to x^{\alpha}_+ = \Phi^{\alpha}_+(\xi^a))$

> $q_{ab}^+ = q_{ab}^- \equiv q_{ab}$ $\kappa_{ab}^+ = \kappa_{ab}^- \equiv \kappa_{ab}$

- 2. Preliminary junction conditions:
- 3. Second matching conditions:

For two families $(\mathcal{V}_{\varepsilon}^{-}, \hat{g}_{\varepsilon}^{-}, \Sigma_{\varepsilon}^{-})$ and $(\mathcal{V}_{\varepsilon}^{+}, \hat{g}_{\varepsilon}^{+}, \Sigma_{\varepsilon}^{+})$ we get a family of diff. related Σ_{ε} (\Rightarrow diff. related to Σ_0), and the corresponding q_{ε}^+ , q_{ε}^- , κ_{ε}^+ and κ_{e}^{-} , and matching equations $q_{e}^{+} = q_{e}^{-}$, $\kappa_{e}^{+} = \kappa_{e}^{-}$

Take a matched background configuration: (\mathcal{V}_0^+, g_0^+) matched to (\mathcal{V}_0^-, g_0^-) accross $\Sigma_0^+ = \Sigma_0^- \equiv \Sigma_0$:

The linearised matching conditions are just

Take a matched background configuration:

 (\mathcal{V}^+_0,g^+_0) matched to (\mathcal{V}^-_0,g^-_0) accross $\Sigma^+_0=\Sigma^-_0\equiv\Sigma_0$:

The linearised matching conditions are just

$$\begin{array}{l} \partial_{\varepsilon}q_{\varepsilon}^{+}|_{\varepsilon=0}=\partial_{\varepsilon}q_{\varepsilon}^{-}|_{\varepsilon=0}\\ \partial_{\varepsilon}\kappa_{\varepsilon}^{+}|_{\varepsilon=0}=\partial_{\varepsilon}\kappa_{\varepsilon}^{-}|_{\varepsilon=0} \end{array}$$

Take a matched background configuration:

 (\mathcal{V}^+_0,g^+_0) matched to (\mathcal{V}^-_0,g^-_0) accross $\Sigma^+_0=\Sigma^-_0\equiv\Sigma_0$:

The linearised matching conditions are just

$$\begin{array}{l} \partial_{\varepsilon}q_{\varepsilon}^{+}|_{\varepsilon=0}=\partial_{\varepsilon}q_{\varepsilon}^{-}|_{\varepsilon=0}\\ \partial_{\varepsilon}\kappa_{\varepsilon}^{+}|_{\varepsilon=0}=\partial_{\varepsilon}\kappa_{\varepsilon}^{-}|_{\varepsilon=0} \end{array}$$

Take a matched background configuration:

 (\mathcal{V}^+_0,g^+_0) matched to (\mathcal{V}^-_0,g^-_0) accross $\Sigma^+_0 = \Sigma^-_0 \equiv \Sigma_0$:

And, to second order

$$\begin{array}{l} \partial_{\varepsilon}^{2} q_{\varepsilon}^{+}|_{\varepsilon=0} = \partial_{\varepsilon}^{2} q_{\varepsilon}^{-}|_{\varepsilon=0} \\ \partial_{\varepsilon}^{2} \kappa_{\varepsilon}^{+}|_{\varepsilon=0} = \partial_{\varepsilon}^{2} \kappa_{\varepsilon}^{-}|_{\varepsilon=0} \end{array} \right)$$

Take a matched background configuration: (\mathcal{V}_0^+, g_0^+) matched to (\mathcal{V}_0^-, g_0^-) accross $\Sigma_0^+ = \Sigma_0^- \equiv \Sigma_0$:

We want to write these equations in terms of $K_1^{\pm}|_{\Sigma^{\pm}}$ (and $K_2^{\pm}|_{\Sigma^{\pm}}$) and **background objects only**. Recall these will be **equations in** Σ_0 .

How to construct the tensors q_{ε} and κ_{ε} :

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to \mathcal{W}_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on \mathcal{W}_0 :

$$\hat{\Sigma}_{\boldsymbol{\varepsilon}} = \psi_{\boldsymbol{\varepsilon}}^{-1}(\Sigma_{\boldsymbol{\varepsilon}})$$

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to W_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on W_0 :

$$\hat{\Sigma}_{\varepsilon} = \psi_{\varepsilon}^{-1}(\Sigma_{\varepsilon})$$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to W_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on W_0 :

 $\hat{\Sigma}_{\boldsymbol{\varepsilon}} = \psi_{\boldsymbol{\varepsilon}}^{-1}(\Sigma_{\boldsymbol{\varepsilon}})$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : **hypersurface gauge freedom**.

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to W_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on W_0 :

 $\hat{\Sigma}_{\boldsymbol{\varepsilon}} = \psi_{\boldsymbol{\varepsilon}}^{-1}(\Sigma_{\boldsymbol{\varepsilon}})$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : **hypersurface gauge freedom**.

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to W_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on W_0 :

 $\hat{\Sigma}_{\varepsilon} = \psi_{\varepsilon}^{-1}(\Sigma_{\varepsilon})$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : hypersurface gauge freedom.

The composition of $\psi_{\varepsilon}^{-1} \circ \phi_{\varepsilon}$ provides, for any $p \in \Sigma_0$ a path $\gamma_p(\varepsilon) \subset \mathcal{W}_0$.

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to \mathcal{W}_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on \mathcal{W}_0 :

$$\hat{\Sigma}_{\varepsilon} = \psi_{\varepsilon}^{-1}(\Sigma_{\varepsilon})$$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : **hypersurface gauge freedom**.

The composition of $\psi_{\varepsilon}^{-1} \circ \phi_{\varepsilon}$ provides, for any $p \in \Sigma_0$ a path $\gamma_p(\varepsilon) \subset \mathcal{W}_0$.

The tangent of $\gamma_p(\varepsilon)$ defines a vector \vec{Z}_1 at points on Σ_0 . In terms of the coordinated embedding $\Phi_{\varepsilon} \equiv \psi_{\varepsilon}^{-1} \circ \phi_{\varepsilon}$ it reads $Z_1^{\alpha}(\xi^a) = \partial_{\varepsilon} \Phi^{\alpha}(\xi^a, \varepsilon)|_{\varepsilon=0}$ And the acceleration \vec{Z}_2 : $Z_2^{\alpha}(\xi^a) = \partial_{\varepsilon}^2 \Phi^{\alpha}(\xi^a, \varepsilon)|_{\varepsilon=0} + \Gamma_{\beta\gamma}^{\alpha}(x_0(\xi^a))Z_1^{\beta}(\xi^a)Z_1^{\gamma}(\xi^a)$

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to \mathcal{W}_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on \mathcal{W}_0 :

$$\hat{\Sigma}_{\boldsymbol{\varepsilon}} = \psi_{\boldsymbol{\varepsilon}}^{-1}(\Sigma_{\boldsymbol{\varepsilon}})$$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : **hypersurface gauge freedom**.

The composition of $\psi_{\varepsilon}^{-1} \circ \phi_{\varepsilon}$ provides, for any $p \in \Sigma_0$ a path $\gamma_p(\varepsilon) \subset \mathcal{W}_0$. $\Rightarrow \vec{Z}_1, \vec{Z}_2$

By construction, under spacetime gauges \vec{s}_1 and \vec{s}_2 , \vec{Z} 's transform as

$$\vec{Z}_1^{(h)} = \vec{Z}_1 - \vec{s}_1$$
$$\vec{Z}_2^{(h)} = \vec{Z}_2 - \vec{s}_2 - 2\nabla_{\vec{Z}_1}\vec{s}_1 + 2\nabla_{\vec{s}_1}\vec{s}_1$$

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to \mathcal{W}_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on \mathcal{W}_0 :

$$\hat{\Sigma}_{\boldsymbol{\varepsilon}} = \psi_{\boldsymbol{\varepsilon}}^{-1}(\Sigma_{\boldsymbol{\varepsilon}})$$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : hypersurface gauge freedom.

The composition of $\psi_{\varepsilon}^{-1} \circ \phi_{\varepsilon}$ provides, for any $p \in \Sigma_0$ a path $\gamma_p(\varepsilon) \subset \mathcal{W}_0$. $\Rightarrow \vec{Z}_1, \vec{Z}_2$

We can decompose $Z^{\alpha} = Qn^{\alpha} + T^{\alpha}|_{\Sigma_0}$, and take instead quantities defined in Σ_0 : Q and $T^a \qquad Q \leftrightarrow \Phi^*Q$, $T^{\alpha} = d\Phi(T^a)$

For \pm : take $\mathcal{V}_{\varepsilon}$ as a submanifold with boundary Σ_{ε} in a larger $\mathcal{W}_{\varepsilon}$.

Each Σ_{ε} projects down via ψ to \mathcal{W}_0 . This defines a ε -family of hypersurfaces $\hat{\Sigma}_{\varepsilon}$ on \mathcal{W}_0 :

$$\hat{\Sigma}_{\boldsymbol{\varepsilon}} = \psi_{\boldsymbol{\varepsilon}}^{-1}(\Sigma_{\boldsymbol{\varepsilon}})$$

Not enough for ε derivatives: how does p maps onto $\hat{\Sigma}_{\varepsilon}$?

Need a **prescription** on how p is mapped through Σ_{ε} : **hypersurface gauge freedom**.

The composition of $\psi_{\varepsilon}^{-1} \circ \phi_{\varepsilon}$ provides, for any $p \in \Sigma_0$ a path $\gamma_p(\varepsilon) \subset \mathcal{W}_0$.

Deformation vectors \vec{Z}_1^{\pm} and \vec{Z}_2^{\pm} (at either side \pm) $\vec{Z}_1^{\pm} \rightarrow Q_1^{\pm}, T_1^{a\pm}, \qquad \vec{Z}_2^{\pm} \rightarrow Q_2^{\pm}, T_2^{a\pm}$ By construction, Q's and T^a 's depend on the spacetime gauges ψ^{\pm} , and T^a 's also depend on the hypersurface gauge ϕ (but not Q's)

Take **the background configuration**: the spacetime \mathcal{V}_0^{\pm} with metrics g^{\pm} , the embeddings Φ^{\pm} from a timelike (codim 1) Σ (= Σ_0), $e_a^{\alpha} = d\Phi(\partial_a)$, and corresponding (unit) normals $n_{\alpha}^{\pm}|_{\Sigma^{\pm}}$.

Ingredients: to compute the 1st order perturbations of the first and second fund. forms: $q^{(1)} \equiv \partial_{\varepsilon} q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(1)} \equiv \partial_{\varepsilon} \kappa_{\varepsilon}|_{\varepsilon=0}$:

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown):

$$\vec{Z_1} \rightarrow Q_1, \vec{T_1}$$

 K_{-}

Take the background configuration: the spacetime \mathcal{V}_0^{\pm} with metrics g^{\pm} , the embeddings Φ^{\pm} from a timelike (codim 1) Σ (= Σ_0), $e_a^{\alpha} = d\Phi(\partial_a)$, and corresponding (unit) normals $n_{\alpha}^{\pm}|_{\Sigma^{\pm}}$.

Ingredients: to compute the 1st order perturbations of the first and second fund. forms: $q^{(1)} \equiv \partial_{\varepsilon} q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(1)} \equiv \partial_{\varepsilon} \kappa_{\varepsilon}|_{\varepsilon=0}$:

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown):

$$\vec{Z_1} \to Q_1, \vec{T_1}$$

 K_{-}

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.

$$q_{ab}^{(1)} = \mathcal{L}_{\vec{T}_1} q_{ab} + 2Q_1 \kappa_{ab} + e_a^{\alpha} e_b^{\beta} K_{1\alpha\beta}|_{\Sigma},$$

$$\kappa_{ab}^{(1)} = \mathcal{L}_{\vec{T}_1} \kappa_{ab} - D_a D_b Q_1 + Q_1 (n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + \kappa_{ac} \kappa^c{}_b)$$

$$+ \frac{1}{2} K_{1\alpha\beta} n^{\alpha} n^{\beta} \kappa_{ab} - n_{\mu} S_{\alpha\beta}^{(1)\mu} e_a^{\alpha} e_b^{\beta}|_{\Sigma},$$

Take the background configuration: the spacetime \mathcal{V}_0^{\pm} with metrics g^{\pm} , the embeddings Φ^{\pm} from a timelike (codim 1) Σ (= Σ_0), $e_a^{\alpha} = d\Phi(\partial_a)$, and corresponding (unit) normals $n_{\alpha}^{\pm}|_{\Sigma^{\pm}}$.

Ingredients: to compute the 1st order perturbations of the first and second fund. forms: $q^{(1)} \equiv \partial_{\varepsilon} q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(1)} \equiv \partial_{\varepsilon} \kappa_{\varepsilon}|_{\varepsilon=0}$:

 K_1

 $\vec{Z}_1 \rightarrow O_1 \vec{T}_1$

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown):

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.

$$\begin{aligned} q_{ab}^{(1)} &= \mathcal{L}_{\vec{T}_1} q_{ab} + 2Q_1 \kappa_{ab} + e_a^{\alpha} e_b^{\beta} K_{1\alpha\beta} |_{\Sigma}, \\ \kappa_{ab}^{(1)} &= \mathcal{L}_{\vec{T}_1} \kappa_{ab} - D_a D_b Q_1 + Q_1 (n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + \kappa_{ac} \kappa^c{}_b) \\ &+ \frac{1}{2} K_{1\alpha\beta} n^{\alpha} n^{\beta} \kappa_{ab} - n_{\mu} S_{\alpha\beta}^{(1)\mu} e_a^{\alpha} e_b^{\beta} |_{\Sigma}, \end{aligned}$$

where D_a is the three dimensional covariant derivative of (Σ, q_{ab}) and

$$2S^{(1)\alpha}_{\beta\gamma} \equiv \nabla_{\beta} K_{1\gamma}^{\alpha} + \nabla_{\gamma} K_{1\beta}^{\alpha} - \nabla^{\alpha} K_{1\beta\gamma}$$

Take **the background configuration**: the spacetime \mathcal{V}_0^{\pm} with metrics g^{\pm} , the embeddings Φ^{\pm} from a timelike (codim 1) Σ (= Σ_0), $e_a^{\alpha} = d\Phi(\partial_a)$, and corresponding (unit) normals $n_{\alpha}^{\pm}|_{\Sigma^{\pm}}$.

Ingredients: to compute the 1st order perturbations of the first and second fund. forms: $q^{(1)} \equiv \partial_{\varepsilon} q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(1)} \equiv \partial_{\varepsilon} \kappa_{\varepsilon}|_{\varepsilon=0}$:

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown):

 $ec{Z}_1 o Q_1, ec{T}_1$

 K_1

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.

$$q_{ab}^{(1)} = \mathcal{L}_{\vec{T}_1} q_{ab} + 2Q_1 \kappa_{ab} + e_a^{\alpha} e_b^{\beta} K_{1\alpha\beta}|_{\Sigma},$$

$$\kappa_{ab}^{(1)} = \mathcal{L}_{\vec{T}_1} \kappa_{ab} - D_a D_b Q_1 + Q_1 (n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + \kappa_{ac} \kappa^c{}_b)$$

$$+ \frac{1}{2} K_{1\alpha\beta} n^{\alpha} n^{\beta} \kappa_{ab} - n_{\mu} S_{\alpha\beta}^{(1)\mu} e_a^{\alpha} e_b^{\beta}|_{\Sigma},$$

Theorem (Mars (2005)): 1st order matching conditions are fulfilled:

$$\text{iff } \exists \; Q_1^{\pm} \; \text{and} \; \vec{T}_1^{\pm} \; \text{such that} \; q_{ab}^{(1)+} = q_{ab}^{(1)-}, \;\; \kappa_{ab}^{(1)+} = \kappa_{ab}^{(1)-}$$

Second order perturbed matching conditions

Take the first order matched configuration.

Ingredients: to compute the 2nd order perturbations of the first and second fund. forms: $q^{(2)} \equiv \partial_{\varepsilon}^2 q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(2)} \equiv \partial_{\varepsilon}^2 \kappa_{\varepsilon}|_{\varepsilon=0}$:

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown): $\vec{Z}_2 \rightarrow Q_2, \vec{T}_2$

 K_2

Second order perturbed matching conditions

Take the first order matched configuration.

Ingredients: to compute the 2nd order perturbations of the first and second fund. forms: $q^{(2)} \equiv \partial_{\varepsilon}^2 q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(2)} \equiv \partial_{\varepsilon}^2 \kappa_{\varepsilon}|_{\varepsilon=0}$:

 K_2

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown): $\vec{Z}_2 \rightarrow Q_2, \vec{T}_2$

Theorem (Mars (2005)): perturbations of hypersurfs.

$$\begin{aligned} q_{ab}^{(2)} &= \mathcal{L}_{\vec{T_2}} q_{ab} + 2Q_2 \kappa_{ab} + K_{2\alpha\beta} e_a^{\alpha} e_b^{\beta} + 2\mathcal{L}_{\vec{T_1}} q_{ab}^{(1)} - \mathcal{L}_{\vec{T_1}} \mathcal{L}_{\vec{T_1}} q_{ab} + \\ &+ \mathcal{L}_{2Q_1 \vec{\tau'} - 2Q_1 \kappa(\vec{T_1}) - D_{\vec{T_1}} \vec{T_1} q_{ab} + 2D_a Q_1 D_b Q_1 \\ &+ 2 \left(T_1^c T_1^{\ d} \kappa_{cd} - 2\vec{T_1} (Q_1) + 2Q_1 Y' \right) \kappa_{ab} + \\ &+ 2Q_1^2 \left(-n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + \kappa_{ac} \kappa_b^c \right) - 4Q_1 n_{\mu} \mathcal{S}'^{\mu}_{\alpha\beta} e_a^{\alpha} e_b^{\beta} \\ \kappa_{ab}^{(2)} &= \mathcal{L}_{\vec{T_2}} \kappa_{ab} - D_a D_b Q_2 - Q_2 n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + Q_2 \kappa_{ac} \kappa_b^c - \ldots. \end{aligned}$$

where $K_{1\alpha\beta} = Y'n_{\alpha}n_{\beta} + n_{\alpha}\tau'_{\beta} + n_{\beta}\tau'_{\alpha} + K_{1}{}^{t}{}_{\alpha\beta}$

Second order perturbed matching conditions

Take the first order matched configuration.

Ingredients: to compute the 2nd order perturbations of the first and second fund. forms: $q^{(2)} \equiv \partial_{\varepsilon}^2 q_{\varepsilon}|_{\varepsilon=0}$ and $\kappa^{(2)} \equiv \partial_{\varepsilon}^2 \kappa_{\varepsilon}|_{\varepsilon=0}$:

- Perturbed metric tensor
- 1st order deformation vector of Σ (unknown): $\vec{Z}_2 \rightarrow Q_2, \vec{T}_2$

 K_2

Theorem (Mars (2005)): perturbations of hypersurfs.

$$\begin{aligned} q_{ab}^{(2)} &= \mathcal{L}_{\vec{T_2}} q_{ab} + 2Q_2 \kappa_{ab} + K_{2\alpha\beta} e_a^{\alpha} e_b^{\beta} + 2\mathcal{L}_{\vec{T_1}} q_{ab}^{(1)} - \mathcal{L}_{\vec{T_1}} \mathcal{L}_{\vec{T_1}} q_{ab} + \\ &+ \mathcal{L}_{2Q_1 \vec{\tau'} - 2Q_1 \kappa(\vec{T_1}) - D_{\vec{T_1}} \vec{T_1}} q_{ab} + 2D_a Q_1 D_b Q_1 \\ &+ 2 \left(T_1^{\ c} T_1^{\ d} \kappa_{cd} - 2\vec{T_1} (Q_1) + 2Q_1 Y' \right) \kappa_{ab} + \\ &+ 2Q_1^2 \left(-n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + \kappa_{ac} \kappa_b^c \right) - 4Q_1 n_{\mu} \mathcal{S}'^{\mu}_{\ \alpha\beta} e_a^{\alpha} e_b^{\beta} \\ \kappa_{ab}^{(2)} &= \mathcal{L}_{\vec{T_2}} \kappa_{ab} - D_a D_b Q_2 - Q_2 n^{\mu} n^{\nu} R_{\alpha\mu\beta\nu} e_a^{\alpha} e_b^{\beta} + Q_2 \kappa_{ac} \kappa_b^c - \dots. \end{aligned}$$

Theorem (Mars (2005)): 2nd order matching conditions are fulfilled: iff $\exists Q_2^{\pm}$ and \vec{T}_2^{\pm} such that $q_{ab}^{(2)+} = q_{ab}^{(2)-}$, $\kappa_{ab}^{(2)+} = \kappa_{ab}^{(2)-}$
Perturbed matching

Perturbed matching conditions to second order:

 $q^{(1)}{}^+_{ab} = q^{(1)}{}^-_{ab}, \ \ \kappa^{(1)}{}^+_{ab} = \kappa^{(1)}{}^-_{ab}, \ \ q^{(2)}{}^+_{ab} = q^{(2)}{}^-_{ab}, \ \ \kappa^{(2)}{}^+_{ab} = \kappa^{(2)}{}^-_{ab}$

- q⁽¹⁾_{ab}, κ⁽¹⁾_{ab}, q⁽²⁾_{ab}, κ⁽²⁾_{ab} are gauge invariant under spacetime perturbation gauge transformations by construction. But they are not hypersurface-gauge invariant.
- However, *the equations* are **gauge invariant** under both **spacetime** and **hypersurface** perturbation gauge transformations
- Fulfilling the matching conditions at each order requires showing the existence of two vectors \vec{Z}^{\pm} (at each order) such that these equations are satisfied
- Z[±] are gauge dependent (both spacetime and hypersurface).
 Both (±) can be set to zero simultaneously using spacetime gauges.
 But one has to be careful, then.
- A hypersurface gauge can be used to set either T^+ or T^- to zero, but not both.

- 1) Build a static and spher. symm. background configuration
- 2) Add stationary and axisymm. metric and hypersurface perturbations
- 3) Perturbed matching
 - 3.1) 1st order
 - 3.2) 2nd order

- 4) Matter content
- 5) Particularize the previous matching conditions

- 1) Build a static and spher. symm. background configuration
- Add stationary and axisymm. metric and hypersurface perturbations
- 3) Perturbed matching
 - 3.1) 1st order
 - 3.2) 2nd order

- 4) Matter content
- 5) Particularize the previous matching conditions

- 1) Build a static and spher. symm. background configuration \checkmark
- Add stationary and axisymm. metric and hypersurface perturbations
- Perturbed matching
 - **3.1)** First order
 - 3.2) Second order

- Matter content
- Particularize the previous matching conditions

Family of metrics

$$g_{\varepsilon} = -e^{\nu(r)} \left(1 + 2\varepsilon^2 h(r,\theta) \right) dt^2 + e^{\lambda(r)} \left(1 + 2\varepsilon^2 m(r,\theta) \right) dr^2 + r^2 (1 + 2\varepsilon^2 k(r,\theta)) \left[d\theta^2 + \sin^2 \theta (d\varphi - \varepsilon \omega(r,\theta) dt)^2 \right] + O(\varepsilon^3).$$

Perturbation tensors: Take ε -derivatives in $\varepsilon = 0$

$$K_1 = \partial_{\varepsilon} g_{\varepsilon}|_{\varepsilon=0},$$

$$K_2 = \partial_{\varepsilon}^2 g_{\varepsilon}|_{\varepsilon=0}$$

Introduce axisymmetric deformation vectors (unknowns)

$$\vec{Z}_{1}^{\pm} = Q_{1}^{\pm}(\tau,\vartheta)\vec{n} + T_{1}^{t^{\pm}}(\tau,\vartheta)\vec{e}_{1} + T_{1}^{\varphi^{\pm}}(\tau,\vartheta)\vec{e}_{2} + T_{1}^{\theta^{\pm}}(\tau,\vartheta)\vec{e}_{3} \vec{Z}_{2}^{\pm} = Q_{2}^{\pm}(\tau,\vartheta)\vec{n} + T_{2}^{t^{\pm}}(\tau,\vartheta)\vec{e}_{1} + T_{2}^{\varphi^{\pm}}(\tau,\vartheta)\vec{e}_{2} + T_{2}^{\theta^{\pm}}(\tau,\vartheta)\vec{e}_{3}$$

Family of metrics

$$g_{\varepsilon} = -e^{\nu(r)} \left(1 + 2\varepsilon^2 h(r,\theta) \right) dt^2 + e^{\lambda(r)} \left(1 + 2\varepsilon^2 m(r,\theta) \right) dr^2 + r^2 (1 + 2\varepsilon^2 k(r,\theta)) \left[d\theta^2 + \sin^2 \theta (d\varphi - \varepsilon \omega(r,\theta) dt)^2 \right] + O(\varepsilon^3).$$

Perturbation tensors: Take ε -derivatives in $\varepsilon = 0$

$$K_1 = -2r^2 \sin^2 \theta \omega dt d\varphi$$

$$K_2 = \left(-4e^{\nu}h(r,\theta) + 2r^2 \sin^2 \theta \omega^2(r,\theta)\right) dt^2 + 4e^{\lambda}m(r,\theta)dr^2$$

$$+4r^2k(r,\theta)d\Omega^2$$

Introduce axisymmetric deformation vectors (unknowns)

$$\vec{Z}_{1}^{\pm} = Q_{1}^{\pm}(\tau,\vartheta)\vec{n} + T_{1}^{t^{\pm}}(\tau,\vartheta)\vec{e}_{1} + T_{1}^{\varphi^{\pm}}(\tau,\vartheta)\vec{e}_{2} + T_{1}^{\theta^{\pm}}(\tau,\vartheta)\vec{e}_{3} \vec{Z}_{2}^{\pm} = Q_{2}^{\pm}(\tau,\vartheta)\vec{n} + T_{2}^{t^{\pm}}(\tau,\vartheta)\vec{e}_{1} + T_{2}^{\varphi^{\pm}}(\tau,\vartheta)\vec{e}_{2} + T_{2}^{\theta^{\pm}}(\tau,\vartheta)\vec{e}_{3}$$

- 1) Build a static and spher. symm. background configuration \checkmark
- Add stationary and axisymm. metric and hypersurface perturbations √
- 3) Perturbed matching
 - 3.1) First order
 - Second order

- Matter content
- Particularize the previous matching conditions

First order perturbations

Building the 1st order perturbation of the 1st and 2nd fundamental forms

- Background (already matched)
 - Metric: g_0^{\pm}
 - Unit normal \vec{n}^{\pm}
- First order
 - Hypersurface-deformation vector \vec{Z}_1 (unknown) $\rightarrow Q_1, \vec{T}_1$
 - Metric-perturbation tensor K₁

Perturbed first fundamental form

$$\begin{aligned} q_{ab}^{(1)} &= 2e^{\nu} \left(\frac{\nu,r}{2}e^{-\lambda/2}Q_1 - T_1^t, \tau\right) d\tau^2 + 2r_0^2 \sin^2 \vartheta(T_1^{\varphi}, \tau - \omega) d\tau d\phi \\ &+ 2\left(r_0^2 T_1^{\theta}, \tau - e^{\nu} T_1^t, \vartheta\right) d\tau d\vartheta + r_0^2 \sin 2\vartheta T_1^{\theta} d\phi^2 + 2r_0^2 \sin^2 \vartheta T_1^{\varphi}, \vartheta d\phi d\vartheta \\ &+ 2r_0 (-e^{-\lambda/2}Q_1 + r_0 T_1^{\theta}, \vartheta) d\vartheta^2 \end{aligned}$$

First order perturbations

Building the 1st order perturbation of the 1st and 2nd fundamental forms

- Background (already matched)
 - Metric: g_0^{\pm}
 - Unit normal \vec{n}^{\pm}
- First order
 - Hypersurface-deformation vector \vec{Z}_1 (unknown) $\rightarrow Q_1, \vec{T}_1$
 - Metric-perturbation tensor K_1

Perturbed second fundamental form

$$\begin{split} \kappa_{ab}^{(1)} &= \left(\frac{1}{4}e^{\nu-\lambda}\left(Q_1\left(\lambda,_r\nu,_r-2\left(\nu,_{rr}+\nu,_r^2\right)\right)+4e^{\frac{\lambda}{2}}\nu,_rT_1^t,_\tau\right)-Q_1,_{\tau\tau}\right)d\tau^2 \\ &+2r_0e^{-\lambda/2}\sin^2\vartheta(\omega-T_1^{\varphi},_\tau+r_0\omega,_r)d\tau d\phi \\ &+\left(e^{-\frac{\lambda}{2}}\left(e^{\nu}\nu,_rT_1^t,_\vartheta-2r_0T_1^{\vartheta},_\tau\right)-2Q_1,_{\tau,\vartheta}\right)d\tau d\vartheta \\ &-\sin\vartheta e^{-\lambda}\left(\cos\vartheta e^{\lambda}Q_1,_\vartheta+\sin\vartheta\left(\frac{r_0\lambda,_r}{2}-1\right)Q_1+2r_0\cos\vartheta e^{\frac{\lambda}{2}}T_1^{\vartheta}\right)d\phi^2 \\ &-2r_0e^{-\lambda/2}\sin^2\vartheta T_1^{\varphi},_\vartheta d\phi d\vartheta + \left\{-Q_1,_{\vartheta\vartheta}-\frac{1}{2}e^{-\lambda}\left(r_0\lambda,_r-2\right)Q_1-2r_0e^{-\frac{\lambda}{2}}T_1^{\vartheta},_\vartheta\right\}d\vartheta^2 \right] d\vartheta^2 \end{split}$$

First order perturbations

 $\bullet\,$ Theorem 1 in [Mars2005]: Find \vec{Z}^{\pm} that solve the system

$$[q'_{ab}] = 0 , \quad [\kappa'_{ab}] = 0.$$

- Integrate it to determine $[\omega],\,[\omega,_r],\,[T_1]$ and Q_1^\pm
- Results in

$$\begin{split} [\omega] &= b_1, \quad [\omega, r] = 0, \\ [Q_1] &= 0, \quad Q_1^+[\lambda, r] = 0, \\ [T_1^t] &= C_1, \quad [T_1^{\varphi}] = b_1 \tau + C_2, \quad [T_1^{\theta}] = 0. \end{split}$$

 $C_1 \mbox{ and } C_2 \mbox{ cannot be determined due to the isometries of the background} $$(M.Mars, F.C.Mena, R.Vera (2007))$$

- 1) Build a static and spher. symm. background configuration \checkmark
- Add stationary and axisymm. metric and hypersurface perturbations √
- 3) Perturbed matching
 - **3.1)** First order √
 - 3.2) Second order

- Matter content
- Particularize the previous matching conditions

Building the perturbation of the first and second fundamental forms

- Background (matched)
 - Metric: g_0^{\pm}
 - Tangent basis and unit normal $\{\vec{e}_i^{\pm}\}, \vec{n}^{\pm}$
- First order (matched)
 - Hypersurface deformation vector \vec{Z}_1
 - Metric-perturbation tensor K_1
- Second order
 - Hypersurface deformation vector \vec{Z}_2 (unknown)
 - Metric-perturbation tensor K_2

Second order perturbations

Theorem 1 in [Mars2005]. Find \vec{Z}_2^{\pm} that solve the system $[h_{ab}''] = 0$, $[\kappa_{ab}''] = 0$.

Results (2nd order integration constants in blue)

$$\begin{split} \begin{bmatrix} T_2^t \end{bmatrix} &= & -H_0\tau + H_1, \\ \begin{bmatrix} T_2^{\varphi} \end{bmatrix} &= & 2b_1(T_1^t + \tau T_1^{\theta} \cot \vartheta) + D_2, \\ \begin{bmatrix} T_2^{\theta} \end{bmatrix} &= & (b_1\tau\cos\vartheta(b_1\tau - 2T_1^{\varphi}) - F_0)\sin\vartheta, \\ \begin{bmatrix} \tilde{Q}_2 \end{bmatrix} &= & q\cos\vartheta + \mathcal{Q}, \\ \begin{bmatrix} h \end{bmatrix} - \begin{bmatrix} \frac{\nu, r}{2}e^{-\lambda/2}\tilde{Q}_2 \\ 4 \end{bmatrix} &= & \frac{H_0}{2}, \\ \begin{bmatrix} h, r \end{bmatrix} - \begin{bmatrix} \left(\frac{\nu, r}{4}e^{-\lambda/2}\right), r\tilde{Q}_2 \end{bmatrix} &= & \frac{\nu, r}{2}[m], \\ \begin{bmatrix} k \end{bmatrix} - \frac{[e^{-\lambda/2}\tilde{Q}_2]}{2r_0} &= & \frac{F_0}{2}\cos\vartheta, \\ \begin{bmatrix} k, r \end{bmatrix} - \begin{bmatrix} \left(\frac{e^{-\lambda/2}}{2r}\right), r\tilde{Q}_2 \end{bmatrix} &= & \frac{e^{\lambda/2}q\cos\vartheta}{2r_0^2} + \frac{[m]}{r_0}, \end{split}$$

- 1) Build a static and spher. symm. background configuration \checkmark
- Add stationary and axisymm. metric and hypersurface perturbations √
- 3) Perturbed matching
 - **3.1)** First order √
 - 3.2) Second order √

- Matter content
 - Particularize the previous matching conditions

- KVFs: timelike $\vec{\xi^{\pm}}$ and (unique) axial $\vec{\eta}$
- We consider a perturbed perfect fluid: Energy momentum tensor of the ε -family $T^{\varepsilon}_{\alpha\beta} = (E^{\varepsilon} + P^{\varepsilon})u^{\varepsilon}_{\alpha}u^{\varepsilon}_{\beta} + P^{\varepsilon}g^{\varepsilon}_{\alpha\beta}$ with $P_{\varepsilon} = P_{\varepsilon}(E_{\varepsilon})$
- 4-velocity : $g_{\epsilon}(\vec{u}_{\epsilon}, \vec{u}_{\epsilon}) = -1$ and $\vec{u} \propto \vec{\xi} + \epsilon \Omega \vec{\eta}$
- Also expand $\vec{u}_{\epsilon} = \vec{u} + \epsilon \vec{u}^{(1)} + \frac{1}{2}\epsilon^2 \vec{u}^{(2)} + O(\epsilon^3)$ and

$$E^{\epsilon} = E + \epsilon E^{(1)} + \frac{\epsilon^2}{2} E^{(2)} + O(\epsilon^3)$$
$$P^{\epsilon} = P + \epsilon P^{(1)} + \frac{\epsilon^2}{2} P^{(2)} + O(\epsilon^3)$$

Second order field equations

In progress: show that the second order functions must finally be of the form $h(r,\theta) = h_0(r) + h_2(r)P_2(\cos\theta)$ and the same for m and k, given the two problems linked by the matching conditions found.

Perfect fluid

- Perturbed 4-velocity $\vec{u}^{(2)} \propto \partial_t$
- Define the pressure perturbation factor (following Hartle): $\tilde{\mathcal{P}}_0 := P_0^{(2)}/(2(E+P))$
- 1st order ODE system for $\{m_0^+, \tilde{\mathcal{P}}_0\}$ and algebraic equation for \tilde{h}_0^+ .
- BC on {m₀⁺, P₀} so that central density is fixed.

Asymptotically flat vacuum

• Solutions of the EFE's

$$\begin{split} \dot{n}_{0}(r_{-}) &= -\frac{1}{r_{-} - 2M} \left(\delta M - \frac{J^{2}}{r_{-}^{3}} \right), \\ r_{-}e^{-\lambda_{-}}m_{0}^{-}(r_{-}) &= \delta M - \frac{J^{2}}{r_{-}^{3}}. \end{split}$$

Second order field equations

In progress: show that the second order functions must finally be of the form $h(r,\theta) = h_0(r) + h_2(r)P_2(\cos\theta)$ and the same for m and k, given the two problems linked by the matching conditions found. l = 0 sector:

ł

Perfect fluid

- Perturbed 4-velocity $\vec{u}^{(2)} \propto \partial_t$
- Define the pressure perturbation factor (following Hartle): $\tilde{\mathcal{P}}_0 := P_0^{(2)}/(2(E+P)).$
- 1st order ODE system for $\{m_0^+, \tilde{\mathcal{P}}_0\}$ and algebraic equation for \tilde{h}_0^+ .
- BC on {m₀⁺, P₀} so that central density is fixed.

Asymptotically flat vacuum

Solutions of the EFE's

$$\begin{aligned} n_0^-(r_-) &= -\frac{1}{r_- - 2M} \left(\delta M - \frac{J^2}{r_-^3} \right), \\ r_- e^{-\lambda_-} m_0^-(r_-) &= \delta M - \frac{J^2}{r_-^3}. \end{aligned}$$

Second order matching in the l = 0 sector

 $\{[q^{(2)}_{ab}]=0,[\kappa^{(2)}_{ab}]=0\}$ and field equations for l=0 imply:

For the metric functions

$$[h_0] = \frac{H_0}{2}, \ [h'_0] = \frac{a - M}{a(a - 2M)} [m_0], \ [m_0] = -4\pi \frac{a^3}{M} [E] \tilde{\mathcal{P}}_0(a)$$

The matching condition on m_0 determines the excess of mass δM in terms of interior quantities. In terms of Hartle's functions and notation:

$$[m_0^H] = -4\pi \frac{a^3}{M}(a - 2M)E(a)p_0^{H*}(a)$$
$$\delta M = m_0^H(a) + \frac{J^2}{a^3} + 4\pi \frac{a^3}{M}(a - 2M)E(a)p_0^{H*}(a)$$