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Literature

- Fluid balls in “slow rotation” approximation in equilibrium (stationary
perturbations)

Hartle (1967): first and second order stationary and axisymmetric
perturbations of static perfect-fluid balls in vacuum.

More recent (analytic) works on models for compact objects in
equilibrium: Bradley et al. (2007), and more, and Cabezas et al. (2007),
Blázquez-Salcedo et al. (2012), Cuchi et al. (2013), ...

Consistent/rigorous (*) matching perturbation theory :
first order Battye, Carter (1995) and Mukohyama (2000) (almost) and
second order Mars (2005) in full generality.

More literature on linearised perturbed matching: Cunningham, Price, Moncrief
(1978,79), Gerlach, Sengupta (1979); Mart́ın-Garćıa, Gundlach (2001); and
Brizuela et al. (2010) for higher orders

(*) Mars, Mena, Vera (2007)



The setting: Hartle’s model for rotating stars in GR
Static and spherically symmetric star

Global model of a (spher. symm.) non-rotating star

Fluid ball (interior)

Eqs. for a perfect fluid:
E(r+), P (r+)
+ Barotropic EOS

⇒ given E(0) = Ec, E and
P are integrated.

(V+
0 , g

+
0 ) Σ+

0

Asymptotically flat vacuum
(exterior): Schwarzschild

(V−0 , g
−
0 )

Σ−0

g±0 = −eν
±(r±)dt2± + eλ

±(r±)dr2
± + r2

±(dθ2
± + sin2 θ±dϕ

2
±)

Σ±0 = {r± = a±} , ~n± = −e−
λ±(a±)

2 ∂r± |Σ±0
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Asymptotically flat vacuum

6

Perfect fluid with barotropic EOS
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The setting: Hartle’s model for rotating stars in GR
Static and spherically symmetric star

Match the + and − regions to obtain a global model of the star:

Because of [ν] = [λ] = 0 (apart from [ν′] = 0) the use of

g0 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2)

for some r ∈ (0,∞) is standard in many works. The functions in the
metric are said to be “continuous”.

However, extending such “continuity” to other settings, in general, can
lead to wrong conclusions. For instance, extending to a perturbative
scheme.

In particular, it does in Hartle’s perturbative setting.
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The setting: Hartle’s model for rotating stars in GR
“Slow” rotation

Starting from the spherically symm. and static configuration
(background), stationary and axially symmetric perturbations are
introduced to describe “slow” rotation in equilibrium.
Quantities that arise as a consequence of rotation:

J : Angular momentum

A (in Hartle’s notation): Proportional to the quadrupolar
moment and related to the ellipticity of the star

δM : Change in mass of the rotating configuration, with
respect to the static one, needed to keep the central density
of the star Ec unchanged.

In Hartle’s model, these constants are calculated joining the fluid
and the vacuum regions assuming the “continuity of the
metric” in some system of coordinates used.



The setting: Hartle’s model for rotating stars in GR
“Slow” rotation

Starting from the spherically symm. and static configuration
(background), stationary and axially symmetric perturbations are
introduced to describe “slow” rotation in equilibrium.
Quantities that arise as a consequence of rotation:

J : Angular momentum

A (in Hartle’s notation): Proportional to the quadrupolar
moment and related to the ellipticity of the star

δM : Change in mass

Change in mass of the rotating configuration needed to keep
the central density of the star Ec unchanged.

The assumed “continuity of the metric” in Hartle’s model (in
those coordinates) is not valid to calculate this constant.

δM = ae−λ(a)m+
0 (a) + J2

a3 +4π a
3

ME(a)P̃0(a)



The setting: Hartle’s model for rotating stars in GR
Excess of mass δM

Static star

Integrate the equations
(TOV) with a fixed central
energy density Ec

The mass M is determined

M

Rotating star

Integrate the field equations for
the perturbations with the same
Ec that in the static case.

The star has a mass M plus a
contribution of the second order
rotational perturbations

6
J

M + δM



The setting: Hartle’s model for rotating stars in GR
Perturbative setting: Remarks

Explicit assumptions

Barotropic equation of state.

Stationary model.

Axial and equatorial symmetry.

Rigid rotation.

Implicit assumptions

Absence of convective motions.

Explicit global coordinates in which the metric is at least
C0.



Hartle’s model

Stationary and axially symmetric spacetime: ~ξ and ~η.
Matter content of the interior: perfect fluid: Ê, P̂ , fluid flow ~u.
Exterior: vacuum

Perturbation parameter Ω defined as ~u ∝ ~ξ + Ω~η (rigid. rot.)

In Hartle’s model the second order metric is:

ds2 =− eν(r)(1 + 2h(r, θ))dt2 + eλ(r)

(
1 +

2m(r, θ)

r − 2M

)
dr2

+ r2 (1 + 2k(r, θ))
(
dθ2 + sin2 θ(dϕ− ω(r, θ)dt)2

)
, r ∈ (0,∞)

Background functions: ν(r), λ(r).

1st order: ω(r, θ). Regular origin + asymp. flatness ⇒ ω(r).

2nd order: h(r, θ),m(r, θ),k(r, θ) (at least C0)

Surface of the star determined by: r = a+ξ(a, θ), where
P̂ (r + ξ(r, θ), θ) = P (r), so that P̂ (a+ ξ(a, θ), θ) = 0.



Hartle’s model: 2nd order (I)

Metric at second order: h(r, θ), m(r, θ) and k(r, θ).

Using the decompositions h(r, θ) =
∑∞
l=0 hl(r)Pl(cos θ), etc...

in Hartle’s work it is argued that since

For l > 2: homogeneous equations (no sources from ω)

Equatorial symmetry (only even l’s)

then

h(r, θ) = h0(r) + h2(r)P2(cos θ)

m(r, θ) = m0(r) +m2(r)P2(cos θ)

k(r, θ) = k0(r) + k2(r)P2(cos θ)

⇒ ξ(r, θ) = ξ0(r) + ξ2(r)P2(cos θ)



Hartle’s model: 2nd order (II)

Field equations for the interior and BCs provide:
l = 0 problem: change in mass:

Interior l = 0 problem:

Hydrostatic equilibrium first integral γ − h0 = (...)ξ0 + (rotation)2

1st order inhomogeneous system of ODE’s for m0 and ξ0

BC: imposed at the origin on ξ0 and m0 to keep Ec unchanged

⇒ obtain the values ξ0(a) and m0(a)

Exterior AF vacuum l = 0 problem:

→ m−0 (r) = δM − J2

r3 , h−0 (r) = − 1
r−2M

(
δM − J2

r3

)
for some constant δM .

Matching:

Continuity of m0 at r = a ⇒ δM = m0(a) + J2

a3
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Hartle’s model: 2nd order (II)

Field equations for the interior and BCs provide

l = 2 problem: Shape

Hydrostatic equilibrium first integral
0 = h2 + (...)ξ2 + (rotation)2

Algebraic equation for m2

1st order inhomogeneous system of ODE’s for h2 and k2

BC: regularity at the origin for both h2, k2

and h2, k2 → 0 at infinity (AF)

Matching: Continuity for h2 and k2 at r = a.

ξ2 = ξ2(a,M, h2,Ω, ω)⇒ ε = −3ξ2(a)/2a



Revisiting Hartle’s model

Explicit assumptions

Barotropic equation of state
Stationary model
Axial and equatorial symmetry
Rigid rotation

Implicit assumptions

Absence of convective motions.

Explicit global coordinates in which the metric is, at least, C0.

Our work: global aim and (one) result

Put the model on firm grounds (given a consistent theory of
perturbed matchings to second order)

Result: that assumption is not consistent: [m0] 6= 0 in general.
In fact, the resulting expression for the change in mass δM
computed is not correct.
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Perturbed matching conditions to second order
Aim

Properly matched spacetimes (V −, g−αβ) and (V +, g+αβ) across

Σ− = Σ+(≡ Σ).

Now perturb to first order the metrics by g
(1)
αβ

− and g
(1)
αβ

+.

Which boundary conditions need to be imposed at points on Σ−

and Σ+ so that the matching conditions are satisfied in a linearised
sense?
And how does Σ get deformed? Do we get ~Z? (~Z±?)

We are going to go to second order: g
(2)
αβ

−, g
(2)
αβ

+,~Z±
2 .



First and second order perturbations

Perturbation theory:

V0

Vεψε

One parameter family of spacetimes (Vε, ĝε), with diffeomorphically
identified points, through ψε : V0 → Vε.

Background chosen at ε = 0 : (V0, g), with g ≡ ĝ0

Define the family of tensors gε on V0 by gε ≡ ψ∗ε(ĝε)
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First and second order perturbations

Perturbation theory:

V0

Vεψε

Family of tensors gε on (V0, g) such that g = g0

Metric perturbations: symmetric tensors defined on (V0, g)

K1 =
∂gε
∂ε

∣∣∣∣
ε=0

(= g(1)), K2 =
∂2gε
∂ε2

∣∣∣∣
ε=0

(= g(2))



First and second order perturbations

Perturbation theory: is the study of tensor fields K1 and K2 satisfying
certain field equations on a fixed background (V0, g).

The field equations for K1 and K2 come from imposing that gε satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: Rαβ(g) = 0.

We need to impose
∂Rαβ(gε)

∂ε

∣∣∣∣
ε=0

= 0 and
∂2Rαβ(gε)

∂ε2

∣∣∣∣
ε=0

= 0,
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First and second order perturbations

Perturbation theory: is the study of tensor fields K1 and K2 satisfying
certain field equations on a fixed background (V0, g).

The field equations for K1 and K2 come from imposing that gε satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: Rαβ(g) = 0.

We need to impose
∂Rαβ(gε)

∂ε

∣∣∣∣
ε=0

= 0 and
∂2Rαβ(gε)

∂ε2

∣∣∣∣
ε=0

= 0,

1st order vacuum field equation:

L(K1) ≡ 1
2 (2∇µ∇(αK

µ
1β) −∇µ∇

µK1αβ −∇α∇βKµ
1µ) = 0

2nd order vacuum field equation:
L(K2) + quadratic terms in (K1,∇K1) = 0

Non-vacuum Tαβ 6= 0, then 0 is substituted by the appropriate

perturbations of the matter fields, using Tαβ(ε).
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First and second order perturbations

Perturbation theory: inherent gauge freedom

Taking a different ψ means a
different gauge: say ψ(h)

This defines a ε-parameter

diffeomorphism: Ω
(h)
ε : V0 → V0

Recall gε ≡ ψ∗ε(ĝε).

Since ψ
(h)
ε = ψε ◦ Ω

(h)
ε ,

the new family of tensors is given by

g
(h)
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ε
∗(ĝε) = Ω

(h)
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First and second order perturbations

Perturbation theory: inherent gauge freedom

Taking a different ψ means a
different gauge: say ψ(h)

This defines a ε-parameter

diffeomorphism: Ω
(h)
ε : V0 → V0

Recall gε ≡ ψ∗ε(ĝε).

Since ψ
(h)
ε = ψε ◦ Ω

(h)
ε ,

the new family of tensors is given by

g
(h)
ε = ψ

(h)
ε
∗(ĝε) = Ω

(h)
ε
∗(gε)

(V0, g)

(Vε, ĝε)ψε
ψ

(h)
ε

Ω
(h)
ε

Define: ~s1 ≡ ∂Ωε
∂ε

∣∣
ε=0

, ~s2 ≡ ∂
∂ε
∂(Ωε+ε◦Ω−1

ε )
∂ε

∣∣∣
ε=0

∣∣∣
ε=0

+∇~s1~s1, then

K
(h)
1 = K1 + L~s1g (Bruni et al. (1997))

K
(h)
2 αβ = K2αβ + L~s2gαβ + 2L~s1K2αβ +−2sµ1s

ν
1Rαµβν + 2∇αsµ1∇βs1µ
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Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

1. Gluing: identify boundaries through Φ+ ◦ Φ−1
− : Σ+ = Σ−(≡ Σ)

embeddings: Φ± : Σ→ Σ±(ξa → xα± = Φα±(ξa))

2. Preliminary junction conditions: q+
ab = q−ab ≡ qab

3. Second matching conditions: κ+
ab = κ−ab ≡ κab

For two families (V−ε , ĝ−ε ,Σ−ε ) and (V+
ε , ĝ

+
ε ,Σ

+
ε ) we get a family of diff.

related Σε (⇒ diff. related to Σ0), and the corresponding q+
ε , q−ε , κ+

ε

and κ−ε , and matching equations q+
ε = q−ε , κ+

ε = κ−ε



Standard (Darmois) matching conditions

Take a matched background configuration:
(V+

0 , g
+
0 ) matched to (V−0 , g

−
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+
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−
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−
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Standard (Darmois) matching conditions

Take a matched background configuration:
(V+

0 , g
+
0 ) matched to (V−0 , g

−
0 ) accross Σ+

0 = Σ−0 ≡ Σ0:

The linearised matching conditions are just ∂εq
+
ε |ε=0 = ∂εq

−
ε |ε=0

∂εκ
+
ε |ε=0 = ∂εκ

−
ε |ε=0



Standard (Darmois) matching conditions

Take a matched background configuration:
(V+

0 , g
+
0 ) matched to (V−0 , g

−
0 ) accross Σ+

0 = Σ−0 ≡ Σ0:

And, to second order ∂2
εq

+
ε |ε=0 = ∂2

εq
−
ε |ε=0

∂2
εκ

+
ε |ε=0 = ∂2

εκ
−
ε |ε=0



Standard (Darmois) matching conditions

Take a matched background configuration:
(V+

0 , g
+
0 ) matched to (V−0 , g

−
0 ) accross Σ+

0 = Σ−0 ≡ Σ0:

We want to write these equations in terms of K±1 |Σ± (and K±2 |Σ±) and
background objects only. Recall these will be equations in Σ0.

How to construct the tensors qε and κε:



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

p



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

p
Σ̂ε



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

p
Σ̂ε



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

p
Σ̂ε



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

p
Σ̂ε

φε



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

p
Σ̂ε

φε

γp(ε)
pε

The composition of ψ−1
ε ◦ φε provides, for any p ∈ Σ0 a path γp(ε) ⊂ W0.



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

Σ̂ε

φε

Z

The composition of ψ−1
ε ◦ φε provides, for any p ∈ Σ0 a path γp(ε) ⊂ W0.

The tangent of γp(ε) defines a vector ~Z1 at points on Σ0. In terms of the
coordinated embedding Φε ≡ ψ−1

ε ◦ φε it reads Zα1 (ξa) = ∂εΦ
α(ξa, ε)|ε=0

And the acceleration ~Z2:
Zα2 (ξa) = ∂2

εΦα(ξa, ε)|ε=0 + Γαβγ(x0(ξa))Zβ1 (ξa)Zγ1 (ξa)



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

Σ̂ε

φε

Z

The composition of ψ−1
ε ◦ φε provides, for any p ∈ Σ0 a path γp(ε) ⊂ W0.

⇒ ~Z1, ~Z2

By construction, under spacetime gauges ~s1 and ~s2, ~Z’s transform as

~Z
(h)
1 = ~Z1 − ~s1

~Z
(h)
2 = ~Z2 − ~s2 − 2∇~Z1

~s1 + 2∇~s1~s1



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

Σ̂ε

φε

Z

The composition of ψ−1
ε ◦ φε provides, for any p ∈ Σ0 a path γp(ε) ⊂ W0.

⇒ ~Z1, ~Z2

We can decompose Zα = Qnα + Tα|Σ0 ,

and take instead quantities defined in Σ0: Q and T a Q↔ Φ∗Q, Tα = dΦ(Ta)



First and second order deformations of hypersurfaces

For ±: take Vε as a submanifold with
boundary Σε in a larger Wε.

Each Σε projects down via ψ to W0.
This defines a ε-family
of hypersurfaces Σ̂ε on W0:

Σ̂ε = ψ−1
ε (Σε)

Not enough for ε derivatives:
how does p maps onto Σ̂ε?

Need a prescription on how p is
mapped through Σε:
hypersurface gauge freedom.

(W0, g)

(Wε, ĝε)ψε Σε

Σ0

Σ̂ε

φε

Z

The composition of ψ−1
ε ◦ φε provides, for any p ∈ Σ0 a path γp(ε) ⊂ W0.

Deformation vectors ~Z±1 and ~Z±2 (at either side ±)

~Z±1 → Q±1 , T
a
1
±, ~Z±2 → Q±2 , T

a
2
±

By construction, Q’s and T a’s depend on the spacetime gauges ψ±, and
T a’s also depend on the hypersurface gauge φ (but not Q’s)



First order perturbed matching conditions

Take the background configuration: the spacetime V±0 with metrics g±, the
embeddings Φ± from a timelike (codim 1) Σ (= Σ0), eαa = dΦ(∂a), and
corresponding (unit) normals n±α |Σ± .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: q(1) ≡ ∂εqε|ε=0 and κ(1) ≡ ∂εκε|ε=0:

Perturbed metric tensor K1

1st order deformation vector of Σ (unknown): ~Z1 → Q1, ~T1



First order perturbed matching conditions

Take the background configuration: the spacetime V±0 with metrics g±, the
embeddings Φ± from a timelike (codim 1) Σ (= Σ0), eαa = dΦ(∂a), and
corresponding (unit) normals n±α |Σ± .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: q(1) ≡ ∂εqε|ε=0 and κ(1) ≡ ∂εκε|ε=0:

Perturbed metric tensor K1

1st order deformation vector of Σ (unknown): ~Z1 → Q1, ~T1

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.

q
(1)
ab = L~T1

qab + 2Q1κab + eαae
β
bK1αβ |Σ,

κ
(1)
ab = L~T1

κab −DaDbQ1 +Q1(nµnνRαµβνe
α
ae
β
b + κacκ

c
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+
1

2
K1αβn

αnβκab − nµS(1)µ
αβ eαae

β
b |Σ,



First order perturbed matching conditions

Take the background configuration: the spacetime V±0 with metrics g±, the
embeddings Φ± from a timelike (codim 1) Σ (= Σ0), eαa = dΦ(∂a), and
corresponding (unit) normals n±α |Σ± .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: q(1) ≡ ∂εqε|ε=0 and κ(1) ≡ ∂εκε|ε=0:

Perturbed metric tensor K1

1st order deformation vector of Σ (unknown): ~Z1 → Q1, ~T1

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.

q
(1)
ab = L~T1

qab + 2Q1κab + eαae
β
bK1αβ |Σ,

κ
(1)
ab = L~T1

κab −DaDbQ1 +Q1(nµnνRαµβνe
α
ae
β
b + κacκ

c
b)

+
1

2
K1αβn

αnβκab − nµS(1)µ
αβ eαae

β
b |Σ,

where Da is the three dimensional covariant derivative of (Σ, qab) and

2S
(1)α
βγ ≡ ∇β K1

α
γ +∇γ K1

α
β −∇αK1βγ



First order perturbed matching conditions

Take the background configuration: the spacetime V±0 with metrics g±, the
embeddings Φ± from a timelike (codim 1) Σ (= Σ0), eαa = dΦ(∂a), and
corresponding (unit) normals n±α |Σ± .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: q(1) ≡ ∂εqε|ε=0 and κ(1) ≡ ∂εκε|ε=0:

Perturbed metric tensor K1

1st order deformation vector of Σ (unknown): ~Z1 → Q1, ~T1

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.

q
(1)
ab = L~T1

qab + 2Q1κab + eαae
β
bK1αβ |Σ,

κ
(1)
ab = L~T1

κab −DaDbQ1 +Q1(nµnνRαµβνe
α
ae
β
b + κacκ

c
b)

+
1

2
K1αβn

αnβκab − nµS(1)µ
αβ eαae

β
b |Σ,

Theorem (Mars (2005)): 1st order matching conditions are fulfilled:

iff ∃ Q±1 and ~T±1 such that q
(1)
ab

+ = q
(1)
ab
−, κ

(1)
ab

+ = κ
(1)
ab
−



Second order perturbed matching conditions

Take the first order matched configuration.
Ingredients: to compute the 2nd order perturbations of the first and second
fund. forms: q(2) ≡ ∂2

εqε|ε=0 and κ(2) ≡ ∂2
εκε|ε=0:

Perturbed metric tensor K2

1st order deformation vector of Σ (unknown): ~Z2 → Q2, ~T2



Second order perturbed matching conditions

Take the first order matched configuration.
Ingredients: to compute the 2nd order perturbations of the first and second
fund. forms: q(2) ≡ ∂2

εqε|ε=0 and κ(2) ≡ ∂2
εκε|ε=0:

Perturbed metric tensor K2

1st order deformation vector of Σ (unknown): ~Z2 → Q2, ~T2

Theorem (Mars (2005)): perturbations of hypersurfs.

q
(2)
ab = L ~T2

qab + 2Q2κab +K2αβe
α
ae
β
b + 2L ~T1

q
(1)
ab − L ~T1

L ~T1
qab +

+ L
2Q1

~τ ′−2Q1κ( ~T1)−D ~T1
~T1
qab + 2DaQ1DbQ1

+ 2
(
T1
cT1

dκcd − 2 ~T1(Q1) + 2Q1Y
′
)
κab +

+ 2Q2
1

(
−nµnνRαµβνeαaeβb + κacκ

c
b

)
− 4Q1nµS ′

µ
αβe

α
ae
β
b

κ
(2)
ab = L ~T2

κab −DaDbQ2 −Q2n
µnνRαµβνe

α
ae
β
b +Q2κacκ

c
b − ....

where K1αβ = Y ′nαnβ + nατ
′
β + nβτ

′
α +K1

t
αβ



Second order perturbed matching conditions

Take the first order matched configuration.
Ingredients: to compute the 2nd order perturbations of the first and second
fund. forms: q(2) ≡ ∂2

εqε|ε=0 and κ(2) ≡ ∂2
εκε|ε=0:

Perturbed metric tensor K2

1st order deformation vector of Σ (unknown): ~Z2 → Q2, ~T2

Theorem (Mars (2005)): perturbations of hypersurfs.

q
(2)
ab = L ~T2

qab + 2Q2κab +K2αβe
α
ae
β
b + 2L ~T1

q
(1)
ab − L ~T1

L ~T1
qab +

+ L
2Q1

~τ ′−2Q1κ( ~T1)−D ~T1
~T1
qab + 2DaQ1DbQ1

+ 2
(
T1
cT1

dκcd − 2 ~T1(Q1) + 2Q1Y
′
)
κab +

+ 2Q2
1

(
−nµnνRαµβνeαaeβb + κacκ

c
b

)
− 4Q1nµS ′

µ
αβe

α
ae
β
b

κ
(2)
ab = L ~T2

κab −DaDbQ2 −Q2n
µnνRαµβνe

α
ae
β
b +Q2κacκ

c
b − ....

Theorem (Mars (2005)): 2nd order matching conditions are fulfilled:

iff ∃ Q±2 and ~T±2 such that q
(2)
ab

+ = q
(2)
ab
−, κ

(2)
ab

+ = κ
(2)
ab
−



Perturbed matching

Perturbed matching conditions to second order:

q(1)+
ab = q(1)−

ab, κ(1)+
ab = κ(1)−

ab, q(2)+
ab = q(2)−

ab, κ(2)+
ab = κ(2)−

ab

q
(1)
ab , κ

(1)
ab , q

(2)
ab , κ

(2)
ab are gauge invariant under spacetime

perturbation gauge transformations by construction. But they are
not hypersurface-gauge invariant.

However, the equations are gauge invariant under both spacetime
and hypersurface perturbation gauge transformations

Fulfilling the matching conditions at each order requires showing the
existence of two vectors ~Z± (at each order) such that these
equations are satisfied

~Z± are gauge dependent (both spacetime and hypersurface).
Both (±) can be set to zero simultaneously using spacetime gauges.
But one has to be careful, then.

A hypersurface gauge can be used to set either T+ or T− to zero,
but not both.



Revisiting Hartle’s model

Geometric approach

1) Build a static and spher. symm. background configuration

2) Add stationary and axisymm. metric and hypersurface
perturbations

3) Perturbed matching

3.1) 1st order
3.2) 2nd order

Model of isolated rotating star in equilibrium

4) Matter content

5) Particularize the previous matching conditions
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Revisiting Hartle’s model

Geometric approach

1) Build a static and spher. symm. background configuration X

2) Add stationary and axisymm. metric and hypersurface
perturbations

3) Perturbed matching

3.1) First order
3.2) Second order

Model of isolated rotating star in equilibrium

1 Matter content

2 Particularize the previous matching conditions



Geometric approach

Family of metrics

gε = −eν(r) (1 + 2ε2h(r, θ)
)
dt2 + eλ(r) (1 + 2ε2m(r, θ)

)
dr2

+r2(1 + 2ε2k(r, θ))
[
dθ2 + sin2 θ(dϕ− εω(r, θ)dt)2] +O(ε3).

Perturbation tensors: Take ε−derivatives in ε = 0

K1 = ∂εgε|ε=0,

K2 = ∂2
εgε|ε=0

Introduce axisymmetric deformation vectors (unknowns)

~Z±1 = Q±1 (τ, ϑ)~n+ T t1
±

(τ, ϑ)~e1 + Tϕ1
±

(τ, ϑ)~e2 + T θ1
±

(τ, ϑ)~e3

~Z±2 = Q±2 (τ, ϑ)~n+ T t2
±

(τ, ϑ)~e1 + Tϕ2
±

(τ, ϑ)~e2 + T θ2
±

(τ, ϑ)~e3



Geometric approach

Family of metrics

gε = −eν(r) (1 + 2ε2h(r, θ)
)
dt2 + eλ(r) (1 + 2ε2m(r, θ)

)
dr2

+r2(1 + 2ε2k(r, θ))
[
dθ2 + sin2 θ(dϕ− εω(r, θ)dt)2] +O(ε3).

Perturbation tensors: Take ε−derivatives in ε = 0

K1 = −2r2 sin2 θωdtdϕ

K2 =
(
−4eνh(r, θ) + 2r2 sin2 θω2(r, θ)

)
dt2 + 4eλm(r, θ)dr2

+4r2k(r, θ)dΩ2

Introduce axisymmetric deformation vectors (unknowns)

~Z±1 = Q±1 (τ, ϑ)~n+ T t1
±

(τ, ϑ)~e1 + Tϕ1
±

(τ, ϑ)~e2 + T θ1
±

(τ, ϑ)~e3

~Z±2 = Q±2 (τ, ϑ)~n+ T t2
±

(τ, ϑ)~e1 + Tϕ2
±

(τ, ϑ)~e2 + T θ2
±

(τ, ϑ)~e3



Revisiting Hartle’s model

Geometric approach

1) Build a static and spher. symm. background configuration X

2) Add stationary and axisymm. metric and hypersurface
perturbations X

3) Perturbed matching

3.1) First order
3.2) Second order

Model of isolated rotating star in equilibrium

1 Matter content

2 Particularize the previous matching conditions



First order perturbations

Building the 1st order perturbation of the 1st and 2nd fundamental forms

Background (already matched)

Metric: g±0
Unit normal ~n±

First order

Hypersurface-deformation vector ~Z1 (unknown) → Q1, ~T1

Metric-perturbation tensor K1

Perturbed first fundamental form

q
(1)
ab = 2eν

(ν,r
2
e−λ/2Q1 − T t1 ,τ

)
dτ2 + 2r2

0 sin2 ϑ(Tϕ1 ,τ −ω)dτdφ

+2
(
r2
0T

θ
1 ,τ −eνT t1 ,ϑ

)
dτdϑ+ r2

0 sin 2ϑT θ1 dφ
2 + 2r2

0 sin2 ϑTϕ1 ,ϑ dφdϑ

+2r0(−e−λ/2Q1 + r0T
θ
1 ,ϑ )dϑ2



First order perturbations

Building the 1st order perturbation of the 1st and 2nd fundamental forms

Background (already matched)

Metric: g±0
Unit normal ~n±

First order

Hypersurface-deformation vector ~Z1 (unknown) → Q1, ~T1

Metric-perturbation tensor K1

Perturbed second fundamental form

κ
(1)
ab

=

(
1

4
e
ν−λ

(
Q1

(
λ,r ν,r −2

(
ν,rr +ν,

2
r

))
+ 4e

λ
2 ν,r T

t
1 ,τ

)
−Q1,ττ

)
dτ

2

+2r0e
−λ/2

sin
2
ϑ(ω − Tϕ1 ,τ +r0ω,r )dτdφ

+

(
e
−λ

2
(
e
ν
ν,r T

t
1 ,ϑ −2r0T

θ
1 ,τ

)
− 2Q1,τ,ϑ

)
dτdϑ

− sinϑe
−λ

(
cosϑe

λ
Q1,ϑ + sinϑ

(
r0λ,r

2
− 1

)
Q1 + 2r0 cosϑe

λ
2 T

θ
1

)
dφ

2

−2r0e
−λ/2

sin
2
ϑT

ϕ
1 ,ϑ dφdϑ +

{
−Q1,ϑϑ −

1

2
e
−λ

(r0λ,r −2)Q1 − 2r0e
−λ

2 T
θ
1 ,ϑ

}
dϑ

2



First order perturbations

Theorem 1 in [Mars2005]: Find ~Z± that solve the system

[q′ab] = 0 , [κ′ab] = 0.

Integrate it to determine [ω], [ω,r ], [T1] and Q±1

Results in

[ω] = b1, [ω,r ] = 0,

[Q1] = 0, Q+
1 [λ,r ] = 0,

[T t1 ] = C1, [Tϕ1 ] = b1τ + C2, [T θ1 ] = 0.

C1 and C2 cannot be determined due to the isometries of the
background (M.Mars, F.C.Mena, R.Vera (2007))



Revisiting Hartle’s model

Geometric approach

1) Build a static and spher. symm. background configuration X

2) Add stationary and axisymm. metric and hypersurface
perturbations X

3) Perturbed matching

3.1) First order X
3.2) Second order

Model of isolated rotating star in equilibrium

1 Matter content

2 Particularize the previous matching conditions



Second order perturbations

Building the perturbation of the first and second fundamental
forms

Background (matched)

Metric: g±0
Tangent basis and unit normal {~e±i }, ~n±

First order (matched)

Hypersurface deformation vector ~Z1

Metric-perturbation tensor K1

Second order

Hypersurface deformation vector ~Z2 (unknown)
Metric-perturbation tensor K2

q
(2)
ab = ...(really long expression)...,

κ
(2)
ab = ...(much longer)...



Second order perturbations

Theorem 1 in [Mars2005]. Find ~Z±
2 that solve the system

[h′′ab] = 0 , [κ′′ab] = 0.

Results (2nd order integration constants in blue)

[
T t2
]

= −H0τ +H1,

[Tϕ2 ] = 2b1(T t1 + τT θ1 cotϑ) +D2,[
T θ2

]
= (b1τ cosϑ(b1τ − 2Tϕ1 )− F0) sinϑ,[

Q̃2

]
= q cosϑ+Q,

[h]−
[
ν,r e

−λ/2Q̃2

4

]
=

H0

2
,

[h,r ]−
[(

ν,r e
−λ/2

4

)
,r Q̃2

]
=

ν,r
2

[m],

[k]− [e−λ/2Q̃2]

2r0
=

F0

2
cosϑ,

[k,r ]−
[(

e−λ/2

2r

)
,r Q̃2

]
=

eλ/2q cosϑ

2r2
0

+
[m]

r0
,



Revisiting Hartle’s model

Geometric approach

1) Build a static and spher. symm. background configuration X

2) Add stationary and axisymm. metric and hypersurface
perturbations X

3) Perturbed matching

3.1) First order X
3.2) Second order X

Model of isolated rotating star in equilibrium

1 Matter content

2 Particularize the previous matching conditions



Field equations

KVFs: timelike ~ξ± and (unique) axial ~η

We consider a perturbed perfect fluid: Energy momentum tensor of
the ε-family T εαβ = (Eε + P ε)uεαu

ε
β + P εgεαβ with Pε = Pε(Eε)

4-velocity : gε(~uε, ~uε) = −1 and ~u ∝ ~ξ + εΩ~η

Also expand ~uε = ~u+ ε~u(1) + 1
2ε

2~u(2) +O(ε3) and

Eε = E + εE(1) +
ε2

2
E(2) +O(ε3)

P ε = P + εP (1) +
ε2

2
P (2) +O(ε3)



Second order field equations

In progress: show that the second order functions must finally be of the
form h(r, θ) = h0(r) + h2(r)P2(cos θ) and the same for m and k, given
the two problems linked by the matching conditions found.
l = 0 sector:

Perfect fluid

Perturbed 4-velocity ~u(2) ∝ ∂t
Define the pressure
perturbation factor
(following Hartle):

P̃0 := P
(2)
0 /(2(E + P )).

1st order ODE system for
{m+

0 , P̃0} and algebraic
equation for h̃+

0 .

BC on {m+
0 , P̃0} so that

central density is fixed.

Asymptotically flat vacuum

Solutions of the EFE’s

h−0 (r−) = − 1

r− − 2M

(
δM − J2

r3
−

)
,

r−e
−λ−m−0 (r−) = δM − J2

r3
−
.
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Second order matching in the l = 0 sector

{[q(2)
ab ] = 0, [κ

(2)
ab ] = 0} and field equations for l = 0 imply:

For the metric functions

[h0] =
H0

2
, [h′0] =

a−M
a(a− 2M)

[m0] , [m0] = −4π
a3

M
[E]P̃0(a)

The matching condition on m0 determines the excess of mass δM in
terms of interior quantities. In terms of Hartle’s functions and notation:

[mH
0 ] = −4π

a3

M
(a− 2M)E(a)pH0

∗(a)

δM = mH
0 (a) +

J2

a3
+ 4π

a3

M
(a− 2M)E(a)pH0

∗(a).
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