Free idempotent generated semigroups and the endomorphism monoid of a free *G*-act Groups and idempotents

Victoria Gould

University of York

AMS-EMS-SPM meeting Porto, 12th June 2015 Throughout, *S* is a **semigroup**.

 $E = \{e \in S : e \text{ is idempotent}\} = E(S).$

S is idempotent generated if

$$S = \langle E \rangle = \{e_1 \dots e_n : e_i \in E\}.$$

Howie 1966

Every semigroup embeds into some $\langle E \rangle$.

Howie 1966

 $\mathcal{T}_n \setminus \mathcal{S}_n$ is idempotent generated.

J.A. Erdös 1967, Laffey 1973, Dawlings 1979

 $M_n(D) \setminus GL(n,D)$ is idempotent generated for any division ring D.

Putcha 2006

Conditions for the singular ideal of a reductive linear algebraic monoids to be idempotent generated.

Idempotent operators in analysis and mathematical physics

Topological semigroups - the Stone-Čech compactification $\beta(\mathbb{N})$

Our motivation today:

Nambooripad's theory of biordered sets

The free *G*-act $F_n(G)$ on $\{x_1, \ldots, x_n\}$ is given by

$$F_n(G) = Gx_1 \cup Gx_2 \cup \ldots \cup Gx_n = \{gx_i : g \in G, 1 \le i \le n\}$$

where

$$g(hx_i) = (gh)x_i.$$

For $\alpha \in \operatorname{End} F_n(G)$ we have $(gx_i)\alpha = g(x_i\alpha)$ so we write

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ g_1 x_{1\overline{\alpha}} & g_2 x_{2\overline{\alpha}} & \dots & g_n x_{n\overline{\alpha}} \end{pmatrix} \longleftrightarrow (g_1, g_2, \dots, g_n; \overline{\alpha})$$

giving

End $F_n(G) \cong G \wr_n \mathcal{T}_n$.

Fountain and Lewin 1992

Sing $End(F_n(G))$ is idempotent generated.

A maximal subgroup in End $F_n(G)$ of rank 1

Let $n \geq 2$. Put

$$\epsilon = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_1 & x_1 & \dots & x_1 \end{pmatrix}.$$

Then it is easy to see

$$H_{\epsilon} = \left\{ egin{pmatrix} x_1 & x_2 & \cdots & x_n \ gx_1 & gx_1 & \dots & gx_1 \end{pmatrix} : g \in G
ight\} \cong G.$$

$$H_{\epsilon} = \epsilon E \epsilon.$$

Check:

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ gx_1 & gx_1 & \dots & gx_1 \end{pmatrix} = \\ \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_1 & x_1 & \dots & x_1 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ gx_2 & x_2 & \dots & x_2 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_1 & x_1 & \dots & x_1 \end{pmatrix}$$

Nambooripad's theory of biordered sets: E = E(S) for a semigroup S

Fact *E* does not have to be a subsemigroup.

E is closed under **basic products** where ef is a basic product if

$$e \leq_{\mathcal{R}} f, f \leq_{\mathcal{R}} e, e \leq_{\mathcal{L}} f \text{ or } f \leq_{\mathcal{L}} e.$$

Here $\leq_{\mathcal{R}}$ and $\leq_{\mathcal{L}}$ are the pre-orders associated with Green's relations \mathcal{R} and \mathcal{L} .

- Under basic products, *E* satisfies a number of axioms; if *S* is regular, an extra axiom holds.
- A **biordered set** is a partial algebra satisfying these axioms; if the extra one also holds it is a **regular biordered set**.

Nambooripad 1979, Easdown 1985

E is a (regular) biordered set if and only if E = E(S) for a (regular) semigroup *S*.

Free idempotent generated semigroups

Let E be a biordered set. We can assume E = E(S) for a semigroup $S = \langle E \rangle$. Let

$$\overline{E} = \{\overline{e} : e \in E\}.$$

IG(E)

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, ef \text{ is a basic product} \rangle$$

- $IG(E) = \langle \overline{E} \rangle.$
- $\overline{e} \mapsto e$ is an onto morphism $IG(E) \rightarrow \langle E \rangle = S$.
- $E(IG(E)) = \overline{E} \cong E$, as a biordered set.

In view of the above, IG(E) is called the **free idempotent generated** semigroup on the biordered set *E*.

Questions

Given an idempotent generated semigroup S, find the groups $H_{\overline{e}}$ in IG(E).

More particularly, find when $H_{\overline{e}} \cong H_{e}$, that is, *e* is **good**.

These questions have a long and distinguished history:

Nambooripad, Pastijn 1970s/1980s, McElwee, Easdown, Brittenham, Margolis, Meakin 2000s, BMM, Gray, Ruškuc, Dolinka 2010s.

We consider IG(E) where $E = E(End F_n(G))$.

Yang Dandan

Theorem: Yang Dandan and G 2014

Let G be a group and let
$$n \ge 3$$
 and put
 $\epsilon = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ x_1 & x_1 & \cdots & x_1 \end{pmatrix} \in E(\operatorname{End} F_n(G)).$ Then ϵ is good:

$$H_{\overline{\epsilon}}\cong H_{\epsilon}\cong G.$$

Corollary: Gray and Ruškuc, 2012

Any group appears as a maximal subgroup of some IG(E).

- To consider the question of whether $H_{\overline{\epsilon}} \cong H_{\epsilon}$ for *higher rank* ϵ , we need to work harder. Much harder.
- We use the presentation of $H_{\bar{\epsilon}}$ given by Gray and Ruškuc in 2012.

Who is we now?

Igor Dolinka

Theorem: Dandan, Dolinka and G 2015

Let G be a group and let $n \ge 3$ and let $\epsilon \in E = E(\text{End } F_n(G))$ with rank $\epsilon = r \le n-2$. Then ϵ is good:

 $H_{\overline{\epsilon}}\cong H_{\epsilon}\cong G\wr_r \mathcal{S}_r.$

Corollary: Gray, Ruskuc 2011

If $e \in E(\mathcal{T}_n)$ and rank $e = r \le n-2$, then $H_{\overline{e}} \cong H_e \cong \mathcal{S}_r$.

- All such groups discovered in 1970s, 80s, 90s were free.
- 2002 it was formally conjectured that all such groups were free.
- 2009 Brittenham, Margolis and Meakin found Z ⊕ Z as a maximal subgroup of some IG(E).

Gray, Ruskuc 2012

Any group can arise in this way.

- c. 2010 Brittenham, Margolis and Meakin If $A \in E(M_n(D))$ and rank A = 1, then $H_{\overline{A}} \cong H_A \cong D^*$.
- c. 2011 **Dolinka, Gray** If $A \in E(M_n(D))$ and rank A < n/3, then $H_{\overline{A}} \cong H_A \cong GL(r, D)$.
- c. 2011 **Gray, Ruskuc** If $e \in E(\mathcal{T}_n)$ and rank $e = r \le n 2$, then $H_{\overline{e}} \cong H_e \cong S_r$.

Put G to be trivial in End $F_n(G)$ to obtain the result for \mathcal{T}_n .

 For all of these cases, the rank n−1 idempotents produce free groups in IG(E).