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the questions

I do formal proof in mathematics and formal proof in computer
science require different approaches?

I what are the ingredients of a formal proof system?
(in case you want to build one yourself)

I what are the unsolved problems in formal proof?
(in case you think you can do better than the state of the art)

I can one be certain a formal proof is fully correct?

I how does computation fit into formal proof?
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my research interests

interactive formal proof

I formal proof for mathematics

formal proof languages
formal proof interfaces

FEAR project
formal proof and computer algebra

logical frameworks
partiality in formal proof

I formal proof for computer science

CH2O project
formal version of the C standard
Robbert Krebbers

static analysis + interactive formal proof
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formal proof for computer science: zero days exploits
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CH2O operational semantics

Γ,m ` (v1 } v2) defined
([v1]Ω1} [v2]Ω2 ,m) _h ([v1 } v2]Ω1∪Ω2 ,m)

(load [a]Ω,m) _h ([m〈a〉Γ]Ω, forceΓa m)

writableΓ a m τ = typeof a Γ,m ` (τ)v defined v′ = (τ)v
([a]Ω1 := [v]Ω2 ,m) _h ([v′]{a}∪Ω1∪Ω2 , lockΓa (m[a := v′]Γ))

(e1,m1) _h (e2,m2)
S(P[�], E[e1],m1) _ S(P[�], E[e2],m2)

context E[�] chosen non-deterministically

S(P[�], (↘, e),m) _ S(P[�e], e,m)

S(P[�e], [v]Ω,m) _ S(P[�], (↗, e), unlockΩ m)

S(P[�], (↘, if (e) s1 else s2),m) _ S(P[if (�e) s1 else s2], e,m)

m ` (zero vb) defined ¬ zero vb
S(P[if (�e) s1 else s2], [vb]Ω,m) _ S(P[if (e)� else s2], (↘, s1), unlockΩ m)
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mathematics versus computer science

different cultures?

Alexander Grothendieck Ken Thompson & Dennis Ritchie
(Fields medal 1966) (Turing award 1983)
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trying out formal proof:

five

four formal proof systems

= proof assistants
= interactive theorem provers

primarily developed primarily developed
for mathematics for computer science

Coq
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HOL Light

HOL4



⇐←6→

trying out formal proof: five formal proof systems

= proof assistants
= interactive theorem provers

primarily developed primarily developed
for mathematics for computer science

Coq

Mizar Isabelle/HOL

HOL Light

HOL4



⇐←7→

biggest successes per system

I Coq
four color theorem (mathematics)
odd order theorem (mathematics)
CompCert C compiler (computer science)

I Isabelle/HOL
seL4 operating system (computer science)

I HOL Light
prime number theorem (mathematics)
Flyspeck project = Kepler conjecture (mathematics)

I HOL4
ARM processor (computer science)
CakeML compiler (computer science)

I Mizar
textbook on continuous lattices (mathematics)
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state of the art

I mathematics
formal proof: not yet routine
serious formal proof convincingly demonstrated

just one practical example: Flyspeck

I theoretical computer science
formal proof: routine

conferences: ITP, CPP, POPL

I practical computer science
formal proof: not yet routine
scalable formal proof not yet convincingly demonstrated

spin-off technologies: model checking, SAT/SMT solvers
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the ingredients

teaching an interactive theorem prover

I statements

13%

I proof steps

59%

I definitions

6%

I imports

1%

I proof automation

4%

I comments

7%

I blank lines

10%
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statement example: Sylow theorem Google: 100 theorems

I informal statement
Let p be a prime factor with multiplicity n of the order of a finite group
G, so that the order of G can be written as pnm, where n > 0 and p
does not divide m. Let np be the number of Sylow p-subgroups of G.
Then the following hold:

I np divides m, which is the index of the Sylow p-subgroup in G.
I np ≡ 1 mod p.
I np = |G : NG(P)|, where P is any Sylow p-subgroup of G

and NG denotes the normalizer.

I statement
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I np ≡ 1 mod p.
I np = |G : NG(P)|, where P is any Sylow p-subgroup of G

and NG denotes the normalizer.

I Mizar statement

for G being finite Group, p being prime (natural number) holds
card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
card the_sylow_p-subgroups_of_prime(p,G) divides ord G;
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proof example with procedural tactics: Coq/Ssreflect

. . .
pose maxp A P := [max P | p.-subgroup(A) P]; pose S := [set P | maxp G P].
pose oG := orbit ’JG%act G.
have actS: [acts G, on S | ’JG].

apply/subsetP⇒ x Gx; rewrite 3!inE; apply/subsetP⇒ P; rewrite 3!inE.
exact: max_pgroupJ.

have S_pG P: P \in S → P \subset G ∧ p.-group P.
by rewrite inE ⇒ /maxgroupp/andP[].

have SmaxN P Q: Q \in S → Q \subset ’N(P) → maxp ’N_G(P) Q.
rewrite inE ⇒ /maxgroupP[/andP[sQG pQ] maxQ] nPQ.
apply/maxgroupP; rewrite /psubgroup subsetI sQG nPQ.
by split⇒ // R; rewrite subsetI -andbA andbCA ⇒ /andP[_]; exact: maxQ.

have nrmG P: P \subset G → P <| ’N_G(P).
by move⇒ sPG; rewrite /normal subsetIr subsetI sPG normG.

have sylS P: P \in S → p.-Sylow(’N_G(P)) P.
move⇒ S_P; have [sPG pP] := S_pG P S_P.
by rewrite normal_max_pgroup_Hall ?nrmG //; apply: SmaxN; rewrite ?normG.

have{SmaxN} defCS P: P \in S → ’Fix_(S |’JG)(P) = [set P].
move⇒ S_P; apply/setP⇒ Q; rewrite {1}in_setI {1}afixJG.
apply/andP/set1P⇒ [[S_Q nQP]|->{Q}]; last by rewrite normG.
apply/esym/val_inj; case: (S_pG Q) ⇒ //= sQG _.
by apply: uniq_normal_Hall (SmaxN Q _ _ _) ⇒ //=; rewrite ?sylS ?nrmG.

. . .
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proof example with declarative steps only: Mizar
. . .

ex h being Element of G st y = h & Q9 |^ h = Q9
proof

set h = y;
the carrier of Q9 c= the carrier of G by GROUP_2:def 5;
then reconsider h as Element of G by A33;
take h;
thus y = h;
for g being Element of G holds g in Q9 iff g in Q9 |^ h
proof

let g be Element of G;
hereby

assume
A34: g in Q9;

ex g9 being Element of G st g = g9 |^ h & g9 in Q9
proof

set g9 = h * g * h";
take g9;
thus g9 |^ h = h" * g9 * h by GROUP_3:def 2

.= h" * (h * (g * h")) * h by GROUP_1:def 3

.= (h" * h) * (g * h") * h by GROUP_1:def 3

.= 1_G * (g * h") * h by GROUP_1:def 5
. . .
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flavors of definitions

I abbreviations (mathematics, computer science)

f (x1, . . . , xn) := . . .

I characterisations (mathematics)

f (x1, . . . , xn) := ‘the unique y such that P(x1, . . . , xn, y)’

I recursive definitions (computer science)

f (x1, . . . , xn) := . . . ←− may contain f

I algebraic datatypes (computer science)

lists, trees, syntax

I inductively defined predicates (computer science)

smallest relation closed under certain inference rules
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differences

I formal proof in mathematics
specific choice of definition not important

few small definitions, relatively easy to get correct

proofs need insight
proofs interesting

mostly first order reasoning

I formal proof in computer science
specific choice of definition matters

many large definitions, difficult to get correct

proofs largely trivial
proofs mostly not interesting

many inductions with many cases
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the problems

unimportant issues

I looking for the ‘right’ logical foundations

set theory, HOL, type theory, HoTT
all work just as well

I making it look like natural language

the COBOL fallacy
formal proof language ≈ programming language
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important issues

I automation

integration of computer algebra
MetiTarski

hammers
Sledgehammer, HOL(y)Hammer

I libraries

N ⊂ Z ⊂ Q ⊂ R ⊂ . . .
semigroup ⊃ groups ⊃ rings ⊃ fields ⊃ ordered fields ⊃ . . .
scalars ⊂ vectors ⊂ matrixes ⊂ tensors ⊂ . . .

just a single 0

MathML fragment of mathematics
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certainty

what could possibly go wrong?

I bugs in the implementation of the proof system

not a problem

I logical foundations are inconsistent
not a serious problem

I definitions do not match informal understanding
the real problem

Andrzej Trybulec:
definitions are a debt
proved lemmas pay back that debt



⇐←17→

certainty

what could possibly go wrong?

I bugs in the implementation of the proof system
not a problem

I logical foundations are inconsistent
not a serious problem

I definitions do not match informal understanding
the real problem

Andrzej Trybulec:
definitions are a debt
proved lemmas pay back that debt



⇐←17→

certainty

what could possibly go wrong?

I bugs in the implementation of the proof system
not a problem

I logical foundations are inconsistent
not a serious problem

I definitions do not match informal understanding
the real problem

Andrzej Trybulec:
definitions are a debt
proved lemmas pay back that debt



⇐←17→

certainty

what could possibly go wrong?

I bugs in the implementation of the proof system
not a problem

I logical foundations are inconsistent
not a serious problem

I definitions do not match informal understanding
the real problem

Andrzej Trybulec:
definitions are a debt
proved lemmas pay back that debt



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compiler

proof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compiler

proof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

formalization

definitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

lemmasdefinitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

lemmasdefinitions

compilerproof system
sources

compiler
sources



⇐←18→

de Bruijn criterion: what to trust?

proof system

‘proof object’

digest proofs

proof kernel

lemmasdefinitions

compilerproof system
sources

compiler
sources



⇐←19→

CakeML and the verified HOL Light kernel

Magnus Myreen, Ramana Kumar, Scott Owens, e.a.
‘Cake’ = Cambridge & Kent

implemented in verified in
Poly/ML Poly/ML —
HOL4 kernel Poly/ML —
HOL4 system Poly/ML —
OCaml OCaml —
HOL Light kernel OCaml —
HOL Light system OCaml —
CakeML HOL4∗ HOL4
vHOL kernel HOL4∗ HOL4

vHOL system CakeML HOL4

∗extracted to CakeML HOL4
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proofs that depend on programs

examples

I four color theorem
I check unavoidability of configurations
I check reducibility of configurations

I Mertens conjecture
I compute zeroes of Riemann zeta function to many decimals

I Kepler conjecture
I solve many linear programs
I check many non-linear inequalities
I enumerate a collection of tame graphs

how to know these programs are correct?

how do these programs fit into a formal proof?
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a spectrum of programming languages for mathematics

I computation by deduction
HOL

I high-level functional programming languages
ML

I low-level imperative programming languages
C

I machine code
x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel Coq kernel HOL Light kernel

ML

HOL

ML
HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel Coq kernel HOL Light kernel

ML

HOL

ML
HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel Coq kernel HOL Light kernel

ML

HOL

ML
HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel Coq kernel HOL Light kernel

ML

HOL

ML
HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel Coq kernel HOL Light kernel

ML

HOL

ML

HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel

Coq kernel

HOL Light kernel

ML

HOL

Coq kernel

‘ML’

HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel

Coq kernel

HOL Light kernel

ML

HOL

Coq kernel

‘ML’
HOL Light kernel++

C

x86



⇐←22→

the Poincaré principle: fitting computation to the logic

formally proving
` F(M )−→−→N

Isabelle kernel

Coq kernel

HOL Light kernel

ML

HOL

Coq kernel

‘ML’
HOL Light kernel++

x86



⇐←23→

conclusions

developing a formal proof system

I without good automation it will not be very usable

I without a good lemma library it will not be very appealing

I without a small proof kernel it will not be utterly reliable

I without computation it will not handle proofs that depend
on large programs



⇐←23→

conclusions

developing a formal proof system

I without good automation it will not be very usable

I without a good lemma library it will not be very appealing

I without a small proof kernel it will not be utterly reliable

I without computation it will not handle proofs that depend
on large programs



⇐←24→

any questions?



⇐←25→

table of contents

contents

my research interests

mathematics versus computer science

the ingredients

the problems

certainty

proofs that depend on programs

conclusions

table of contents


	formal proof between mathematics and computer science
	1. the questions
	my research interests
	2. interactive formal proof
	3. formal proof for computer science: zero days exploits
	4. CH2O operational semantics

	mathematics versus computer science
	5. different cultures?
	6. trying out formal proof: five formal proof systems
	7. biggest successes per system
	8. state of the art

	the ingredients
	9. teaching an interactive theorem prover
	10. statement example: Sylow theorem 
	11. proof example with procedural tactics: Coq/Ssreflect
	12. proof example with declarative steps only: Mizar
	13. flavors of definitions
	14. differences

	the problems
	15. unimportant issues
	16. important issues

	certainty
	17. what could possibly go wrong?
	18. de Bruijn criterion: what to trust?
	19. CakeML and the verified HOL Light kernel

	proofs that depend on programs
	20. examples
	21. a spectrum of programming languages for mathematics
	22. the Poincaré principle: fitting computation to the logic

	conclusions
	23. developing a formal proof system
	24. any questions?

	table of contents
	25. contents



