formal proof between mathematics and computer science

Freek Wiedijk

Radboud University Nijmegen The Netherlands

June 13, 2015

do formal proof in mathematics and formal proof in computer science require different approaches?

- do formal proof in mathematics and formal proof in computer science require different approaches?
- what are the ingredients of a formal proof system? (in case you want to build one yourself)

- do formal proof in mathematics and formal proof in computer science require different approaches?
- what are the ingredients of a formal proof system? (in case you want to build one yourself)
- what are the unsolved problems in formal proof? (in case you think you can do better than the state of the art)

- do formal proof in mathematics and formal proof in computer science require different approaches?
- what are the ingredients of a formal proof system? (in case you want to build one yourself)
- what are the unsolved problems in formal proof? (in case you think you can do better than the state of the art)
- can one be certain a formal proof is fully correct?

- do formal proof in mathematics and formal proof in computer science require different approaches?
- what are the ingredients of a formal proof system? (in case you want to build one yourself)
- what are the unsolved problems in formal proof? (in case you think you can do better than the state of the art)
- can one be certain a formal proof is fully correct?
- how does computation fit into formal proof?

my research interests

interactive formal proof

▶ formal proof for mathematics

formal proof languages formal proof interfaces

FEAR project formal proof and computer algebra

logical frameworks partiality in formal proof

▶ formal proof for computer science

 $\begin{array}{l} CH_2O \ project \\ formal \ version \ of \ the \ C \ standard \\ Robbert \ Krebbers \end{array}$

static analysis + interactive formal proof

formal proof for computer science: zero days exploits

CH_2O operational semantics

$$\begin{split} & \frac{\Gamma, m \vdash (v_1 \circledcirc v_2) \text{ defined}}{([v_1]_{\Omega_1} \circledcirc [v_2]_{\Omega_2}, m) \twoheadrightarrow_{h} ([v_1 \circledcirc v_2]_{\Omega_1 \cup \Omega_2}, m)} \\ & (\text{load } [a]_{\Omega}, m) \twoheadrightarrow_{h} ([m\langle a \rangle_{\Gamma}]_{\Omega}, \text{force}_{\Gamma} a m) \\ & \underline{\text{writable}}_{\Gamma} a m \quad \tau = \text{typeof } a \quad \Gamma, m \vdash (\tau) v \text{ defined} \quad v' = (\tau) v \\ & ([a]_{\Omega_1} := [v]_{\Omega_2}, m) \twoheadrightarrow_{h} ([v']_{\{a\} \cup \Omega_1 \cup \Omega_2}, \text{lock}_{\Gamma} a (m[a := v']_{\Gamma}))) \\ & \frac{(e_1, m_1) \multimap_{h} (e_2, m_2)}{\mathbf{S}(\mathcal{P}[\Box], \mathcal{E}[e_1], m_1) \twoheadrightarrow \mathbf{S}(\mathcal{P}[\Box], \mathcal{E}[e_2], m_2)} \\ & \text{ context } \mathcal{E}[\Box] \text{ chosen non-deterministically} \\ & \mathbf{S}(\mathcal{P}[\Box], (\searrow, e), m) \twoheadrightarrow \mathbf{S}(\mathcal{P}[\Box_e], e, m) \\ & \mathbf{S}(\mathcal{P}[\Box_e], [v]_{\Omega}, m) \twoheadrightarrow \mathbf{S}(\mathcal{P}[\Box], (\nearrow, e), \text{ unlock } \Omega m) \\ & \mathbf{S}(\mathcal{P}[\Box], (\searrow, \text{ if } (e) s_1 \text{ else } s_2), m) \twoheadrightarrow \mathbf{S}(\mathcal{P}[\text{if } (\Box_e) s_1 \text{ else } s_2], e, m) \\ & \frac{m \vdash (\text{zero } v_b) \text{ defined} \quad \neg \text{zero } v_b \\ & \mathbf{S}(\mathcal{P}[\text{if } (\Box_e) s_1 \text{ else } s_2], [v]_{\Omega}, m) \twoheadrightarrow \mathbf{S}(\mathcal{P}[\text{if } (e) \Box \text{ else } s_2], (\searrow, s_1), \text{ unlock } \Omega m) \end{split}$$

mathematics versus computer science

different cultures?

mathematics versus computer science

different cultures?

Alexander Grothendieck (Fields medal 1966)

Ken Thompson & Dennis Ritchie (Turing award 1983)

trying out formal proof: four formal proof systems

= proof assistants

= interactive theorem provers

primarily developed for mathematics primarily developed for computer science

Coq 🚺

Isabelle/HOL 🚟 💳

HOL Light 🚟 🛄

trying out formal proof: five formal proof systems

= proof assistants

= interactive theorem provers

primarily developed for mathematics primarily developed for computer science

Coq 🚺

Isabelle/HOL 🚟 💳

HOL Light 🗮 🛄

HOL4 駫

biggest successes per system

► Coq

four color theorem (mathematics) odd order theorem (mathematics) CompCert C compiler (computer science)

Isabelle/HOL

seL4 operating system (computer science)

HOL Light

prime number theorem (mathematics) Flyspeck project = Kepler conjecture (mathematics)

► HOL4

ARM processor (computer science) CakeML compiler (computer science)

Mizar

textbook on continuous lattices (mathematics)

state of the art

mathematics

formal proof: not yet routine serious formal proof convincingly demonstrated

just one practical example: Flyspeck

theoretical computer science formal proof: routine

conferences: ITP, CPP, POPL

practical computer science formal proof: not yet routine scalable formal proof not yet convincingly demonstrated spin-off technologies: model checking, SAT/SMT solvers

the ingredients

teaching an interactive theorem prover

- ► statements
- ► proof steps
- ► definitions
- ▶ imports
- ▶ proof automation

the ingredients

teaching an interactive theorem prover

- ▶ statements 13%
- ▶ proof steps 59%
- ► definitions 6%
- ▶ imports 1%
- ▶ proof automation 4%

the ingredients

teaching an interactive theorem prover

- ▶ statements 13%
- ▶ proof steps 59%
- ► definitions 6%
- ▶ imports 1%
- ▶ proof automation 4%
- ▶ comments 7%
- ▶ blank lines 10%

Let p be a prime factor with multiplicity n of the order of a finite group G, so that the order of G can be written as p^nm , where n > 0 and p does not divide m. Let n_p be the number of Sylow p-subgroups of G. Then the following hold:

- n_p divides *m*, which is the index of the Sylow *p*-subgroup in *G*.
- $n_p \equiv 1 \mod p$.
- ▶ $n_p = |G : N_G(P)|$, where P is any Sylow p-subgroup of G and N_G denotes the normalizer.

Let p be a prime factor with multiplicity n of the order of a finite group G, so that the order of G can be written as $p^n m$, where n > 0 and p does not divide m. Let n_p be the number of Sylow p-subgroups of G. Then the following hold:

- ▶ n_p divides m, which is the index of the Sylow p-subgroup in G.
- $\blacktriangleright \ n_p \equiv 1 \bmod p.$
- ▶ $n_p = |G : N_G(P)|$, where P is any Sylow p-subgroup of G and N_G denotes the normalizer.

Coq statement

```
[/\ ∀ P, [max P | p.-subgroup(G) P] = p.-Sylow(G) P,
    [transitive G, on 'Syl_p(G) | 'JG],
    ∀ P, p.-Sylow(G) P → #|'Syl_p(G)| = #|G : 'N_G(P)|
& prime p → #|'Syl_p(G)| %% p = 1%N].
```

Let p be a prime factor with multiplicity n of the order of a finite group G, so that the order of G can be written as $p^n m$, where n > 0 and p does not divide m. Let n_p be the number of Sylow p-subgroups of G. Then the following hold:

- n_p divides m, which is the index of the Sylow p-subgroup in G.
- $\blacktriangleright \ n_p \equiv 1 \bmod p.$
- ▶ n_p = |G : N_G(P)|, where P is any Sylow p-subgroup of G and N_G denotes the normalizer.

HOL Light statement

```
!e op i G p.
group (G,op,i,e)
==> FINITE G
==> prime p
==> (!n m. CARD G = p EXP n * m
==> coprime (p,m)
==> CARD {K | subgroup op i K G /\ CARD K = p EXP n}
MOD p = 1)
```

Let p be a prime factor with multiplicity n of the order of a finite group G, so that the order of G can be written as $p^n m$, where n > 0 and p does not divide m. Let n_p be the number of Sylow p-subgroups of G. Then the following hold:

- n_p divides m, which is the index of the Sylow p-subgroup in G.
- $\blacktriangleright \ n_p \equiv 1 \bmod p.$
- ▶ n_p = |G : N_G(P)|, where P is any Sylow p-subgroup of G and N_G denotes the normalizer.

Mizar statement

for G being finite Group, p being prime (natural number) holds card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 & card the_sylow_p-subgroups_of_prime(p,G) divides ord G;

proof example with procedural tactics: Coq/Ssreflect

proof example with procedural tactics: Coq/Ssreflect

```
pose maxp A P := [max P | p.-subgroup(A) P]; pose S := [set P | maxp G P].
pose oG := orbit 'JG%act G.
have actS: [acts G, on S | 'JG].
  apply/subset P \Rightarrow x Gx; rewrite 3!inE; apply/subset P \Rightarrow P; rewrite 3!inE.
  exact: max pgroupJ.
have S pG P: P \in S \rightarrow P \subset G \wedge p.-group P.
  by rewrite in E \Rightarrow /maxgroupp/andP[].
have SmaxN P Q: Q \in S \rightarrow Q \subset 'N(P) \rightarrow maxp 'N G(P) Q.
  rewrite inE \Rightarrow /maxgroupP[/andP[sQG pQ] maxQ] nPQ.
  apply/maxgroupP; rewrite /psubgroup subsetI sQG nPQ.
  by split \Rightarrow // R; rewrite subset I-andbA andbCA \Rightarrow /andP[]; exact: maxQ.
have nrmG P: P \subset G \rightarrow P <| 'N G(P).
  by move \Rightarrow sPG; rewrite /normal subsetIr subsetI sPG normG.
have sylS P: P \leq  p.-Sylow('N G(P)) P.
  move \Rightarrow S P; have [sPG pP] := S pG P S P.
  by rewrite normal max pgroup Hall ?nrmG //; apply: SmaxN; rewrite ?normG.
have{SmaxN} defCS P: P \in S \rightarrow 'Fix (S |'JG)(P) = [set P].
  move \Rightarrow S P; apply/set P \Rightarrow Q; rewrite {1}in setI {1}afixJG.
  apply/andP/set1P\Rightarrow [[S Q nQP]|->{Q}]; last by rewrite normG.
  apply/esym/val_inj; case: (S_pG Q) \Rightarrow //= sQG_.
  by apply: uniq_normal_Hall (SmaxN Q _ _ ) \Rightarrow //=; rewrite ?sylS ?nrmG.
```

proof example with procedural tactics: Coq/Ssreflect

```
pose maxp A P := [max P | p.-subgroup(A) P]; pose S := [set P | maxp G P].
pose oG := orbit 'JG%act G.
have actS: [acts G, on S | 'JG].
  apply/subset P \Rightarrow x Gx; rewrite 3!inE; apply/subset P \Rightarrow P; rewrite 3!inE.
  exact: max pgroupJ.
have S pG P: P \in S \rightarrow P \subset G \wedge p.-group P.
  by rewrite in E \Rightarrow /maxgroupp/andP[].
have SmaxN P Q: Q \in S \rightarrow Q \subset 'N(P) \rightarrow maxp 'N G(P) Q.
  rewrite inE \Rightarrow /maxgroupP[/andP[sQG pQ] maxQ] nPQ.
  apply/maxgroupP; rewrite /psubgroup subsetI sQG nPQ.
  by split \Rightarrow // R; rewrite subset I-andbA andbCA \Rightarrow /andP[]; exact: maxQ.
have nrmG P: P \subset G \rightarrow P <| 'N G(P).
  by move \Rightarrow sPG; rewrite /normal subsetIr subsetI sPG normG.
have sylS P: P \leq  p.-Sylow('N G(P)) P.
  move \Rightarrow S P; have [sPG pP] := S pG P S P.
  by rewrite normal max pgroup Hall ?nrmG //; apply: SmaxN; rewrite ?normG.
have{SmaxN} defCS P: P \in S \rightarrow 'Fix (S |'JG)(P) = [set P].
  move \Rightarrow S P; apply/set P \Rightarrow Q; rewrite {1}in setI {1}afixJG.
  apply/andP/set1P\Rightarrow [[S Q nQP]|->{Q}]; last by rewrite normG.
  apply/esym/val_inj; case: (S_pG Q) \Rightarrow //= sQG_.
  by apply: uniq_normal_Hall (SmaxN Q _ _ ) \Rightarrow //=; rewrite ?sylS ?nrmG.
```

proof example with declarative steps only: Mizar

```
ex h being Element of G st y = h & Q9 | h = Q9
  proof
    set h = v:
    the carrier of Q9 c= the carrier of G by GROUP_2:def 5;
    then reconsider h as Element of G by A33;
    take h:
    thus y = h;
    for g being Element of G holds g in Q9 iff g in Q9 |^ h
    proof
      let g be Element of G;
      hereby
        assume
A34: g in Q9;
        ex g9 being Element of G st g = g9 |^ h & g9 in Q9
        proof
          set g9 = h * g * h";
           take g9;
           thus g9 | h = h" * g9 * h by GROUP 3:def 2
             .= h" * (h * (g * h")) * h by GROUP 1:def 3
             .= (h" * h) * (g * h") * h by GROUP_1:def 3
             .= 1 G * (g * h") * h by GROUP 1:def 5
```

flavors of definitions

abbreviations (mathematics, computer science)

 $f(x_1,\ldots,x_n):=\ldots$

characterisations (mathematics)

 $f(x_1,\ldots,x_n):=$ 'the unique y such that $P(x_1,\ldots,x_n,y)$ '

recursive definitions (computer science)

 $f(x_1,\ldots,x_n):=\ldots$ \longleftarrow may contain f

algebraic datatypes (computer science)

lists, trees, syntax

 inductively defined predicates (computer science) smallest relation closed under certain inference rules

▶ formal proof in mathematics

specific choice of definition not important

few small definitions, relatively easy to get correct

proofs need insight

proofs interesting

mostly first order reasoning

▶ formal proof in computer science

specific choice of definition matters

many large definitions, difficult to get correct

proofs largely trivial proofs mostly not interesting

many inductions with many cases

the problems

unimportant issues

 looking for the 'right' logical foundations set theory, HOL, type theory, HoTT all work just as well

the problems

unimportant issues

- looking for the 'right' logical foundations set theory, HOL, type theory, HoTT all work just as well
- making it look like natural language
 - the COBOL fallacy formal proof language \approx programming language

► automation

integration of computer algebra MetiTarski

► automation

integration of computer algebra MetiTarski

hammers

Sledgehammer, HOL(y)Hammer

► automation

integration of computer algebra MetiTarski

hammers

Sledgehammer, HOL(y)Hammer

► libraries

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \dots$

```
\begin{array}{l} \mathsf{semigroup} \supset \mathsf{groups} \supset \mathsf{rings} \supset \mathsf{fields} \supset \mathsf{ordered} \ \mathsf{fields} \supset \ldots \\ \mathsf{scalars} \subset \mathsf{vectors} \subset \mathsf{matrixes} \subset \mathsf{tensors} \subset \ldots \end{array}
```

just a single 0

automation

integration of computer algebra MetiTarski

hammers

Sledgehammer, HOL(y)Hammer

libraries

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\ldots$

```
\begin{array}{l} \mathsf{semigroup} \supset \mathsf{groups} \supset \mathsf{rings} \supset \mathsf{fields} \supset \mathsf{ordered} \ \mathsf{fields} \supset \ldots \\ \mathsf{scalars} \subset \mathsf{vectors} \subset \mathsf{matrixes} \subset \mathsf{tensors} \subset \ldots \end{array}
```

just a single 0

MathML fragment of mathematics

certainty

what could possibly go wrong?

bugs in the implementation of the proof system

certainty

what could possibly go wrong?

bugs in the implementation of the proof system not a problem
certainty

what could possibly go wrong?

- bugs in the implementation of the proof system not a problem
- logical foundations are inconsistent not a serious problem

certainty

what could possibly go wrong?

- bugs in the implementation of the proof system not a problem
- logical foundations are inconsistent not a serious problem
- definitions do not match informal understanding the real problem

Andrzej Trybulec:

definitions are a debt proved lemmas pay back that debt

formalization

de Bruijn criterion: what to trust?

formalization

proof system sources

formalization

proof system sources

> compiler sources

> > 18

de Bruijn criterion: what to trust?

formalization

formalization

Magnus Myreen, Ramana Kumar, Scott Owens, e.a. 'Cake' = Cambridge & Kent

	implemented in	verified in
Poly/ML	Poly/ML	_
HOL4 kernel	Poly/ML	—
HOL4 system	Poly/ML	—
OCaml	OCaml	—
HOL Light kernel	OCaml	
HOL Light system	OCaml	—
CakeML	HOL4*	HOL4
vHOL kernel	HOL4*	HOL4

*extracted	to	CakeML	HOL4
------------	----	--------	------

Magnus Myreen, Ramana Kumar, Scott Owens, e.a. 'Cake' = Cambridge & Kent

	implemented in	verified in
Poly/ML	Poly/ML	_
HOL4 kernel	Poly/ML	—
HOL4 system	Poly/ML	—
OCaml	OCaml	—
HOL Light kernel	OCaml	—
HOL Light system	OCaml	—
CakeML	HOL4*	HOL4
vHOL kernel	HOL4*	HOL4
vHOL system	CakeML	HOL4
	*extracted to CakeML	HOL4

Magnus Myreen, Ramana Kumar, Scott Owens, e.a. 'Cake' = Cambridge & Kent

	implemented in	verified in
Poly/ML	Poly/ML	
HOL4 kernel	Poly/ML	—
HOL4 system	Poly/ML	
OCaml	OCaml	
HOL Light kernel	OCaml	
HOL Light system	OCaml	
CakeML	vHOL*	vHOL
vHOL kernel	vHOL*	vHOL
vHOL system	CakeML	vHOL
	*extracted to CakeML	vHOL

Magnus Myreen, Ramana Kumar, Scott Owens, e.a. 'Cake' = Cambridge & Kent

implemented in verified in

CakeML	vHOL*	vHOL
vHOL kernel	vHOL*	vHOL
vHOL system	CakeML	vHOL
	*extracted to CakeML	vHOL

proofs that depend on programs

examples

four color theorem

- check unavoidability of configurations
- check reducibility of configurations

Mertens conjecture

compute zeroes of Riemann zeta function to many decimals

► Kepler conjecture

- solve many linear programs
- check many non-linear inequalities
- enumerate a collection of tame graphs

proofs that depend on programs

examples

four color theorem

- check unavoidability of configurations
- check reducibility of configurations

Mertens conjecture

compute zeroes of Riemann zeta function to many decimals

► Kepler conjecture

- solve many linear programs
- check many non-linear inequalities
- enumerate a collection of tame graphs

how to know these programs are correct?

proofs that depend on programs

examples

four color theorem

- check unavoidability of configurations
- check reducibility of configurations

Mertens conjecture

compute zeroes of Riemann zeta function to many decimals

► Kepler conjecture

- solve many linear programs
- check many non-linear inequalities
- enumerate a collection of tame graphs

how to know these programs are correct?

how do these programs fit into a formal proof?

a spectrum of programming languages for mathematics

- computation by deduction HOL
- high-level functional programming languages ML
- low-level imperative programming languages
 C
- machine code ×86

conclusions

developing a formal proof system

- without good automation it will not be very usable
- ▶ without a good lemma **library** it will not be very appealing

conclusions

developing a formal proof system

- without good automation it will not be very usable
- without a good lemma library it will not be very appealing
- without a small proof kernel it will not be utterly reliable
- without computation it will not handle proofs that depend on large programs

table of contents

contents

my research interests

mathematics versus computer science

the ingredients

the problems

certainty

proofs that depend on programs

conclusions

table of contents