Projective Segre Codes

Rafael H. Villarreal*, joint work with Azucena Tochimani and Maria Vaz Pinto

Departamento de Matemáticas
CINVESTAV-IPN, México

Special Session on Homological and Combinatorial Commutative Algebra

Meeting AMS, EMS, SPM

Porto, Portugal, June 10-13, 2015.

Let a_{1}, a_{2} be positive integers and let $\mathbb{P}^{a_{1}-1}, \mathbb{P}^{a_{2}-1}, \mathbb{P}^{a_{1} a_{2}-1}$ be projective spaces over a field K.

The Segre embedding is given by

$$
\begin{aligned}
\psi: \mathbb{P}^{a_{1}-1} \times \mathbb{P}^{a_{2}-1} & \rightarrow \mathbb{P}^{a_{1} a_{2}-1} \\
\left(\left[\alpha_{1}, \ldots, \alpha_{a_{1}}\right],\left[\beta_{1}, \ldots, \beta_{a_{2}}\right]\right) & \rightarrow\left[\alpha_{i} \beta_{j}\right],
\end{aligned}
$$

$\left[\alpha_{i} \beta_{j}\right]=\left[\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \ldots, \alpha_{1} \beta_{a_{2}}, \ldots, \alpha_{a_{1}} \beta_{1}, \alpha_{a_{1}} \beta_{2}, \ldots, \alpha_{a_{1}} \beta_{a_{2}}\right]$.
The map ψ is well-defined and injective.

Given $\mathbb{X}_{i} \subset \mathbb{P}^{p_{i}-1}, i=1,2$, the image of $\mathbb{X}_{1} \times \mathbb{X}_{2}$ under the map ψ, denoted by \mathbb{X}, is called the Segre product of \mathbb{X}_{1} and \mathbb{X}_{2}.

Consider the following polynomial rings over a field K with the standard grading:

$$
\begin{gathered}
K[\mathbf{x}]=K\left[x_{1}, \ldots, x_{a_{1}}\right]=\oplus_{d=0}^{\infty} K[\mathbf{x}]_{d}, \\
K[\mathbf{y}]=K\left[y_{1}, \ldots, y_{a_{2}}\right]=\oplus_{d=0}^{\infty} K[\mathbf{y}]_{d}, \\
K[\mathbf{t}]=K\left[t_{1,1}, \ldots, t_{a_{1}, a_{2}}\right]=\oplus_{d=0}^{\infty} K[\mathbf{t}]_{d} .
\end{gathered}
$$

The vanishing ideal of $\mathbb{X}_{1}\left(\right.$ resp. $\left.\mathbb{X}_{2}\right)$ is the ideal of $K[\mathbf{x}]$ (resp. $K[\mathbf{y}]$) generated by the homogeneous polynomials that vanish at all points of \mathbb{X}_{1} (resp. \mathbb{X}_{2}).
The vanishing ideal $I(\mathbb{X})$ of \mathbb{X} is a graded ideal of $K[\mathbf{t}]$, where the $t_{i, j}$ variables are ordered as $t_{1,1}, \ldots, t_{1, a_{2}}, \ldots, t_{a_{1}, 1}, \ldots, t_{a_{1}, a_{2}}$.

Notation for Hilbert function and invariants of $K[\mathbf{t}] / I(\mathbb{X})$:

- $H_{\mathbb{X}}(d)=$ Hilbert function of $K[\mathbf{t}] / I(\mathbb{X})$,
- $\operatorname{reg} K[\mathbf{t}] / I(\mathbb{X})=$ regularity index,
- $\operatorname{deg} K[\mathbf{t}] / I(\mathbb{X})=$ degree.

The coordinate ring

$$
K[t] / I(\mathbb{X})
$$

and its algebraic invariants can be expressed in terms of the coordinate rings

$$
K[\mathbf{x}] / I\left(\mathbb{X}_{1}\right) \text { and } K[\mathbf{y}] / I\left(\mathbb{X}_{2}\right)
$$

To see this we need to define the Segre product.

Definition

Let $A=\oplus_{d \geq 0} A_{d}, B=\oplus_{d \geq 0} B_{d}$ be two standard algebras over a field K. The Segre product of A and B, denoted by $A \otimes_{\mathcal{S}} B$, is the graded algebra

$$
A \otimes_{\mathcal{S}} B:=\left(A_{0} \otimes_{K} B_{0}\right) \oplus\left(A_{1} \otimes_{K} B_{1}\right) \oplus \cdots \subset A \otimes_{K} B
$$

with the normalized grading $\left(A \otimes_{\mathcal{S}} B\right)_{d}:=A_{d} \otimes_{k} B_{d}$ for $d \geq 0$. The tensor product algebra $A \otimes_{K} B$ is graded by

$$
\left(A \otimes_{K} B\right)_{p}:=\sum_{i+j=p} A_{i} \otimes_{K} B_{j} .
$$

Example

The Segre product of $K[\mathbf{x}]$ and $K[\mathbf{y}]$ is

$$
K[\mathbf{x}] \otimes_{\mathcal{S}} K[\mathbf{y}] \simeq K\left[\left\{x_{i} y_{j} \mid 1 \leq i \leq a_{1}, 1 \leq j \leq a_{2}\right\}\right],
$$

and the tensor product of $K[\mathbf{x}]$ and $K[\mathbf{y}]$ is

$$
K[\mathbf{x}] \otimes_{K} K[\mathbf{y}] \simeq K[\mathbf{x}, \mathbf{y}] .
$$

The next result is well-known assuming that \mathbb{X}_{1} and \mathbb{X}_{2} are projective algebraic sets.

Theorem

If \mathbb{X} is the Segre product of \mathbb{X}_{1} and \mathbb{X}_{2}, then:
(a) $K[\mathbf{x}] / I\left(\mathbb{X}_{1}\right) \otimes_{\mathcal{S}} K[\mathbf{y}] / I\left(\mathbb{X}_{2}\right) \simeq K[\mathbf{t}] / I(\mathbb{X})$.
(b) $\left(K[\mathbf{x}] / I\left(\mathbb{X}_{1}\right)\right)_{d} \otimes_{K}\left(K[\mathbf{y}] / I\left(\mathbb{X}_{2}\right)\right)_{d} \simeq(K[\mathbf{t}] / I(\mathbb{X}))_{d}, d \geq 0$.
(c) $H_{\mathbb{X}_{1}}(d) H_{\mathbb{X}_{2}}(d)=H_{\mathbb{X}}(d)$ for $d \geq 0$.
(d) $\operatorname{reg}(K[\mathbf{t}] / I(\mathbb{X}))=\max \left\{\operatorname{reg}\left(K[\mathbf{x}] / I\left(\mathbb{X}_{i}\right)\right)\right\}_{i=1}^{2}$.
(e) $\operatorname{deg}(K[\mathbf{t}] / I(\mathbb{X}))=$ $\operatorname{deg}\left(K[\mathbf{x}] / I\left(\mathbb{X}_{1}\right)\right) \operatorname{deg}\left(K[\mathbf{y}] / I\left(\mathbb{X}_{2}\right)\right)\binom{\rho_{1}+\rho_{2}-2}{\rho_{1}-1}$, where $\rho_{1}=\operatorname{dim}\left(K[\mathbf{x}] / I\left(\mathbb{X}_{1}\right)\right), \rho_{2}=\operatorname{dim}\left(K[\mathbf{y}] / I\left(\mathbb{X}_{2}\right)\right)$.

Linear Codes

Let $K=\mathbb{F}_{q}$ be a finite field and let C be a $[s, k]$ linear code of length s and dimension k, that is, C is a linear subspace of K^{s} with $k=\operatorname{dim}_{K}(C)$.
Given a subcode D of C, the support of D is:

$$
\chi(D):=\left\{i \mid \exists\left(a_{1}, \ldots, a_{s}\right) \in D, a_{i} \neq 0\right\} .
$$

The r th generalized Hamming weight of C is:
$\delta_{r}(C):=\min \left\{|\chi(D)|: D\right.$ is a subcode of $\left.C, \operatorname{dim}_{K}(D)=r\right\}$.
If $r=1, \delta_{1}(C)$ is the minimum distance of C.

Direct product codes

Let $C_{1} \subset K^{s_{1}}$ and $C_{2} \subset K^{s_{2}}$ be two linear codes of dimensions k_{1} and k_{2}, respectively.
The direct product of C_{1} and C_{2}, denoted by $C_{1} \otimes C_{2}$, is the linear code consisting of all $s_{1} \times s_{2}$ matrices in which the rows belong to C_{2} and the columns to C_{1}.

Proposition (Wei and Yang, IEEE Trans. Inform., 1993)
(a) $C_{1} \otimes C_{2}$ has length $s_{1} s_{2}$, dimension $k_{1} k_{2}$, and minimum distance $\delta_{1}\left(C_{1}\right) \delta_{1}\left(C_{2}\right)$.
(b) $\delta_{2}(C)=\min \left\{\delta_{1}\left(C_{1}\right) \delta_{2}\left(C_{2}\right), \delta_{2}\left(C_{1}\right) \delta_{1}\left(C_{2}\right)\right\}$.

Consider the bilinear map ψ_{0} given by

$$
\begin{aligned}
\psi_{0}: K^{s_{1}} \times K^{s_{2}} & \longrightarrow M_{s_{1} \times s_{2}}(K) \\
),\left(b_{1}, \ldots, b_{s_{2}}\right)\right) & \longmapsto\left[\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \ldots & a_{1} b_{s_{2}} \\
a_{2} b_{1} & a_{2} b_{2} & \ldots & a_{2} b_{s_{2}} \\
\vdots & \vdots & & \vdots \\
a_{s_{1}} b_{1} & a_{s_{1}} b_{2} & \ldots & a_{s_{1}} b_{s_{2}}
\end{array}\right]
\end{aligned}
$$

Lemma

There is an isomorphism of K-vector spaces

$$
T: C_{1} \otimes_{K} C_{2} \rightarrow C_{1} \otimes C_{2}
$$

such that $T(a \otimes b)=\psi_{0}(a, b)$ for $a \in C_{1}$ and $b \in C_{2}$.

Projective Reed-Muller-type codes

Let $K=\mathbb{F}_{q}$ be a finite field,
$X=\left\{\left[P_{1}\right], \ldots,\left[P_{m}\right]\right\} \subset \mathbb{P}^{s-1}$ with $m=|X|$,
$S=K\left[t_{1}, \ldots, t_{s}\right]$ a polynomial ring.
Fix a degree $d \geq 1$. For each i there is $f_{i} \in S_{d}$ such that $f_{i}\left(P_{i}\right) \neq 0$. There is a K-linear map given by

$$
\mathrm{ev}_{d}: S_{d} \rightarrow K^{m}, \quad f \mapsto\left(\frac{f\left(P_{1}\right)}{f_{1}\left(P_{1}\right)}, \ldots, \frac{f\left(P_{m}\right)}{f_{m}\left(P_{m}\right)}\right) .
$$

The image of S_{d} under ev ${ }_{d}$, denoted by $C_{X}(d)$, is called a projective Reed-Muller-type code of degree d on X.

The basic parameters of the linear code $C_{X}(d)$ are:
(a) length: $|X|$,
(b) dimension: $\operatorname{dim}_{K} C_{X}(d)$,
(c) minimum distance: $\delta_{1}\left(C_{X}(d)\right)$.

The following gives the well-known relation between projective Reed-Muller-type codes and the theory of Hilbert functions:
(a) $\operatorname{deg}(S / I(X))=|X|$.
(b) $H_{X}(d)=\operatorname{dim}_{K} C_{X}(d)$ for $d \geq 0$.
(c) $\delta_{1}\left(C_{X}(d)\right)=1$ for $d \geq \operatorname{reg}(S / I(X))$.

The basic parameters of projective Reed-Muller-type codes have been computed in a number of cases:

- If $X=\mathbb{P}^{s-1}, C_{X}(d)$ this is the classical projective Reed-Muller code and formulas for its basic parameters were given by [Sørensen, IEEE Trans. Inform. Theory, 1991].
- If X is a projective torus, $C_{X}(d)$ is the generalized projective Reed-Solomon code and formulas for its basic parameters were given by
[Sarmiento, Vaz Pinto, -, Appl. Algebra Engrg.
Comm. Comput., 2011].
> X is a projective torus if X is the image of $\left(K^{*}\right)^{s}$, under the $\operatorname{map}\left(K^{*}\right)^{s} \rightarrow \mathbb{P}^{s-1}, x \rightarrow[x]$, where $K^{*}=K \backslash\{0\}$.

In what follows $K=\mathbb{F}_{q}$ is a finite field

Definition

If \mathbb{X} is the Segre product of \mathbb{X}_{1} and \mathbb{X}_{2}, we say that the projective Reed-Muller-type code $C_{\mathbb{X}}(d)$ is a projective Segre code of degree d.

We come to our main result:

Theorem (Tochimani, Vaz Pinto, -, 2014)

Let \mathbb{X} be the Segre product of \mathbb{X}_{1} and \mathbb{X}_{2}. If $d \geq 1$, then:
(a) $|\mathbb{X}|=\left|\mathbb{X}_{1}\right|\left|\mathbb{X}_{2}\right|$,
(b) $\operatorname{dim}_{K}\left(C_{\mathbb{X}}(d)\right)=\operatorname{dim}_{K}\left(C_{\mathbb{X}_{1}}(d)\right) \operatorname{dim}_{K}\left(C_{\mathbb{X}_{2}}(d)\right)$,
(c) $\delta_{1}\left(C_{\mathbb{X}}(d)\right)=\delta_{1}\left(C_{\mathbb{X}_{1}}(d)\right) \delta_{1}\left(C_{\mathbb{X}_{2}}(d)\right)$,
(d) $C_{\mathbb{X}}(d)$ is the direct product $C_{\mathbb{X}_{1}}(d) \otimes C_{\mathbb{X}_{2}}(d)$,
(e) $\delta_{2}\left(C_{\mathbb{X}}(d)\right)=$ $\min \left\{\delta_{1}\left(C_{\mathbb{X}_{1}}(d)\right) \delta_{2}\left(C_{\mathbb{X}_{2}}(d)\right), \delta_{2}\left(C_{\mathbb{X}_{1}}(d)\right) \delta_{1}\left(C_{\mathbb{X}_{2}}(d)\right)\right\}$,
(f) $\delta_{1}\left(C_{\mathbb{X}}(d)\right)=1$ for $d \geq \max \left\{\operatorname{reg}\left(K[\mathbf{x}] / I\left(\mathbb{X}_{1}\right)\right), \operatorname{reg}\left(K[\mathbf{y}] / I\left(\mathbb{X}_{2}\right)\right)\right\}$.

This result tells us that the direct product of projective Reed-Muller-type codes is again a projective Reed-Muller-type code.

Applications

Our main theorem gives generalizations of some results:

- (a_{1}) If $\mathbb{X}_{1}=\mathbb{P}^{\mathrm{a}_{1}-1}$ and $\mathbb{X}_{2}=\mathbb{P}^{a_{2}-1}$, we recover the formula for the minimum distance of $C_{\mathbb{X}}(d)$ given by [González, Rentería, Tapia-Recillas, Finite Fields Appl., 2002)].
- (a_{2}) If \mathbb{X}_{i} is a projective torus for $i=1,2$, we recover the formula for the minimum distance of $C_{\mathbb{X}}(d)$ given by [González, et. al., Congr. Numer., 2003].

We also recover the following result:

Corollary (González, et. al., Int. J. Contemp. Math. Sci., 2009)

Let \mathbb{X} be the Segre product of two projective torus \mathbb{X}_{1} and \mathbb{X}_{2}. Then $\delta_{2}\left(C_{\mathbb{X}}(d)\right)$ is equal to

$$
\min \left\{\delta_{1}\left(C_{\mathbb{X}_{1}}(d)\right) \delta_{2}\left(C_{\mathbb{X}_{2}}(d)\right), \delta_{2}\left(C_{\mathbb{X}_{1}}(d)\right) \delta_{1}\left(C_{\mathbb{X}_{2}}(d)\right)\right\}
$$

Definition

If \mathbb{X}_{i} is parameterized by monomials $z^{v_{1}}, \ldots, z^{v_{s}}$, we say that $C_{\mathbb{X}_{i}}(d)$ is a parameterized projective code.

Corollary

If $C_{\mathbb{X}_{i}}(d)$ is a parameterized projective code for $i=1,2$, then so is the corresponding projective Segre code $C_{\mathbb{X}}(d)$.

THE END

