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What are dislocations?

Dislocations are defects in solid crystalline structures. A

dislocation is characterized by its Burgers vector, which

describes the lattice mismatch.
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What are dislocations?

Dislocations are defects in solid crystalline structures. A

dislocation is characterized by its Burgers vector, which

describes the lattice mismatch. There are two main types of

dislocations, namely edge dislocations and screw dislocations.

Dislocations modify the physical and chemical properties

of a material.
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What to do with dislocations?

The study of dislocations began with [Volterra, Taylor]
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What to do with dislocations?

The study of dislocations began with [Volterra, Taylor]

One can do:

Screw dislocations [Cermelli, Gurtin]

Edge dislocations [Cermelli, Leoni]
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The study of dislocations began with [Volterra, Taylor]
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In all this, how do dislocations form (nucleation)? Plastic

deformation, grain boundary initiation, interface

interactions, . . .
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What to do with dislocations?
The study of dislocations began with [Volterra, Taylor]

One can do:

Screw dislocations [Cermelli, Gurtin]

Edge dislocations [Cermelli, Leoni]

Existence and stability of screw dislocations [Hudson, Ortner]

Pile-up and scaling of edge dislocations [Geers, van Meurs,

Muntean, Peerlings, Peletier, Scardia]

Discrete models [Alicandro, De Luca, Garroni, Ponsiglione]

Multiscale Models (AC) [Luskin, Ortner]

In all this, how do dislocations form (nucleation)? Plastic

deformation, grain boundary initiation, interface

interactions, . . .

We do: dynamics for a system of screw dislocations subject

to antiplane shear, in the context of linearised elasticity.
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Dislocations

Let Ω ⊂ R
2 be a Lipschitz domain, let Z := {z1, . . . , zN} ⊂ Ω

denote the set of dislocations sites, and let B := {b1, . . . ,bN} be

the set of Burgers vectors associated with Z. Let µ > 0 and λ be

the Lamé constants of the material and let L := µdiag(1, λ2) be

the associated elasticity tensor.
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Dislocations

Let Ω ⊂ R
2 be a Lipschitz domain, let Z := {z1, . . . , zN} ⊂ Ω

denote the set of dislocations sites, and let B := {b1, . . . ,bN} be

the set of Burgers vectors associated with Z. Let µ > 0 and λ be

the Lamé constants of the material and let L := µdiag(1, λ2) be

the associated elasticity tensor.

We say that a vector field h in Ω \ Z corresponds to a system of

dislocations at the points in Z with Burgers vectors B if

{

curl h =
∑N

i=1 biδzi
in Ω,

div Lh = 0 in Ω,
where bi =

∫

γi

h · dx; bi = bie3.

Here, γi is a closed CCW oriented path enclosing only the

dislocation zi.
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Energy functional

We consider the elastic energy

J(h) =

∫

Ω

W(h(x))dx.
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Energy functional

We consider the elastic energy
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∫

Ω

W(h(x))dx.

Explicit calculations (one dislocation in a disk) show that this

energy explodes logarithmically.
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Energy functional

We consider the elastic energy

J(h) =

∫

Ω

W(h(x))dx.

Explicit calculations (one dislocation in a disk) show that this

energy explodes logarithmically. The idea is to consider a

regularized energy by removing cores Cε,i of size ε around the

dislocations to get rid of the singularities, and study the system in

the perforated domain Ωε := Ω \ (∪N
i=1Cε,i).
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Energy functional

We consider the elastic energy

J(h) =

∫

Ω

W(h(x))dx.

Explicit calculations (one dislocation in a disk) show that this

energy explodes logarithmically. The idea is to consider a

regularized energy by removing cores Cε,i of size ε around the

dislocations to get rid of the singularities, and study the system in

the perforated domain Ωε := Ω \ (∪N
i=1Cε,i).

Therefore, consider the energy

Jε(h) =

∫

Ωε

W(h(x))dx= c| log ε|+ U(z1, . . . , zN) + o(ε).

Marco Morandotti (SISSA) Dynamics of screw dislocations 12 June 2015 5 / 21



The renormalized energy

At a minimum for the energy, the renormalized energy is given by

U(z1, . . . , zN) = US(z1, . . . , zN) + UI(z1, . . . , zN) + UE(z1, . . . , zN),
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The renormalized energy

At a minimum for the energy, the renormalized energy is given by

U(z1, . . . , zN) = US(z1, . . . , zN) + UI(z1, . . . , zN) + UE(z1, . . . , zN),

with

US(z1, . . . , zN) =
N
∑

i=1

µλb2
i

4π
log R +

N
∑

i=1

∫

Ω\CR,i

W(ki)dx,

UI(z1, . . . , zN) =

N−1
∑

i=1

N
∑

j=i+1

∫

Ω

kj · Lkidx,

UE(z1, . . . , zN) =

∫

Ω

W(∇u0)dx +
N
∑

i=1

∫

∂Ω

u0Lki · n ds,

where u0 solves a Neumann problem in Ω.
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Force on a dislocation

To compute the force on a dislocation, we derive the renorma-

lized energy with respect to the position of the dislocation.
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Force on a dislocation

To compute the force on a dislocation, we derive the renorma-

lized energy with respect to the position of the dislocation.

Theorem

The gradient of the renormalized energy with respect to zℓ is

given in terms of the Eshelby stress C = W(h0)I − h0(Lh0)
⊤. In

particular,

∇zℓ
U(z1, . . . , zN) = −

∫

∂Cℓ,R

{

W(h0)I − h0(Lh0)
⊤
}

n ds.
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Force on a dislocation

To compute the force on a dislocation, we derive the renorma-

lized energy with respect to the position of the dislocation.

Theorem

The gradient of the renormalized energy with respect to zℓ is

given in terms of the Eshelby stress C = W(h0)I − h0(Lh0)
⊤. In

particular,

∇zℓ
U(z1, . . . , zN) = −

∫

∂Cℓ,R

{

W(h0)I − h0(Lh0)
⊤
}

n ds.

The Peach-Köhler force on the dislocation zℓ has the expression

jℓ(zℓ) = −∇zℓ
U = bℓJL



∇u0(zℓ) +
∑

i6=ℓ

ki(zℓ)



.
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We want to be able to explain a picture like this
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Glide directions and the equation of motion

We assume, for physical reasons, that only a finite number of

directions is admissible for motion. Call G := {g1, . . . ,gM} ⊂ S
1 the

set of the glide directions.
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Glide directions and the equation of motion

We assume, for physical reasons, that only a finite number of

directions is admissible for motion. Call G := {g1, . . . ,gM} ⊂ S
1 the

set of the glide directions. The equation of motion for every

single dislocation is

żℓ = (jℓ · gℓ)gℓ ,

where gℓ ∈ G is the direction that maximises the dissipation, i.e.,

gℓ∈ arg max{jℓ · g : g ∈ G}.
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directions is admissible for motion. Call G := {g1, . . . ,gM} ⊂ S
1 the

set of the glide directions. The equation of motion for every

single dislocation is

żℓ = (jℓ · gℓ)gℓ ,

where gℓ ∈ G is the direction that maximises the dissipation, i.e.,

gℓ∈ arg max{jℓ · g : g ∈ G}.

Stating an existence and uniqueness theorem for these equation

is rather painful, since the vector field on the right-hand side can

be multivalued.
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Glide directions and the equation of motion

We assume, for physical reasons, that only a finite number of

directions is admissible for motion. Call G := {g1, . . . ,gM} ⊂ S
1 the

set of the glide directions. The equation of motion for every

single dislocation is

żℓ = (jℓ · gℓ)gℓ ,

where gℓ ∈ G is the direction that maximises the dissipation, i.e.,

gℓ ∈ {g−
ℓ (z1, . . . , zN),g

+
ℓ (z1, . . . , zN)}.

Stating an existence and uniqueness theorem for these equation

is rather painful, since the vector field on the right-hand side can

be multivalued.
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Filippov solutions

At those ambiguity points where the right-hand side (jℓ · gℓ)gℓ

fails to be single-valued, a weaker notion of solution is needed.

The theory developed by Filippov for ODE’s takes care of this

aspect and allows us to recover the results one can expect from

heuristics. Those results are also supported by numerical and

experimental evidence.
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Filippov solutions

At those ambiguity points where the right-hand side (jℓ · gℓ)gℓ

fails to be single-valued, a weaker notion of solution is needed.

The theory developed by Filippov for ODE’s takes care of this

aspect and allows us to recover the results one can expect from

heuristics. Those results are also supported by numerical and

experimental evidence.

The ambiguity set A is given by solving jℓ · g = 0 for g = g+

ℓ − g−
ℓ

g±
ℓ ∈ G, dissipation-maximizing directions.
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At those ambiguity points where the right-hand side (jℓ · gℓ)gℓ

fails to be single-valued, a weaker notion of solution is needed.

The theory developed by Filippov for ODE’s takes care of this

aspect and allows us to recover the results one can expect from

heuristics. Those results are also supported by numerical and

experimental evidence.

The ambiguity set A is given by solving jℓ · g = 0 for g = g+

ℓ − g−
ℓ

g±
ℓ ∈ G, dissipation-maximizing directions.

Ω = R
2. The set A is the union of hyperplanes.
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Filippov solutions

At those ambiguity points where the right-hand side (jℓ · gℓ)gℓ

fails to be single-valued, a weaker notion of solution is needed.

The theory developed by Filippov for ODE’s takes care of this

aspect and allows us to recover the results one can expect from

heuristics. Those results are also supported by numerical and

experimental evidence.

The ambiguity set A is given by solving jℓ · g = 0 for g = g+

ℓ − g−
ℓ

g±
ℓ ∈ G, dissipation-maximizing directions.

Ω = R
2. The set A is the union of hyperplanes.

Ω ⊂ R
2. The structure of A is more complicated, due to the

presence of the term ∇u0 in the expression of the force.
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Setting for the equations of motion

Set Z := (z1, . . . , zN) ∈ ΩN and Gℓ(Z) := arg max{jℓ(Z) · g : g ∈ G}.
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Setting for the equations of motion

Set Z := (z1, . . . , zN) ∈ ΩN and Gℓ(Z) := arg max{jℓ(Z) · g : g ∈ G}.

The problem of the dynamics consists in solving the system of

ordinary differential inclusions

{

żℓ ∈ Fℓ(Z),

zℓ(0) = zℓ,0,
Fℓ(Z) := {(jℓ(Z) · g)g : g ∈ Gℓ(Z)},

for given initial conditions z1,0, . . . , zN,0 ∈ Ω.

Marco Morandotti (SISSA) Dynamics of screw dislocations 12 June 2015 11 / 21



Setting for the equations of motion

Set Z := (z1, . . . , zN) ∈ ΩN and Gℓ(Z) := arg max{jℓ(Z) · g : g ∈ G}.

The problem of the dynamics consists in solving the system of

ordinary differential inclusions

{

żℓ ∈ Fℓ(Z),

zℓ(0) = zℓ,0,
Fℓ(Z) := {(jℓ(Z) · g)g : g ∈ Gℓ(Z)},

for given initial conditions z1,0, . . . , zN,0 ∈ Ω.

Fℓ(Z) =















{0} if jℓ(Z) = 0,

{(jℓ(Z) · gℓ(Z))gℓ(Z)} if jℓ(Z) 6= 0 and Gℓ(Z) = {gℓ(Z)},

{(jℓ(Z) · g±
ℓ (Z))g±

ℓ (Z)} if jℓ(Z) 6= 0 and Gℓ(Z) = {g±
ℓ (Z)}.
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Setting for the equations of motion

Set Z := (z1, . . . , zN) ∈ ΩN and Gℓ(Z) := arg max{jℓ(Z) · g : g ∈ G}.

The problem of the dynamics consists in solving the system of

ordinary differential inclusions

{

Ż ∈ F(Z),

Z(0) = Z0,
F(Z) := F1(Z)× · · · × FN(Z),

for given initial conditions Z0 := (z1,0, . . . , zN,0).
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Setting for the equations of motion

Set Z := (z1, . . . , zN) ∈ ΩN and Gℓ(Z) := arg max{jℓ(Z) · g : g ∈ G}.

The problem of the dynamics consists in solving the system of

ordinary differential inclusions

{

Ż ∈ F(Z),

Z(0) = Z0,
F(Z) := F1(Z)× · · · × FN(Z),

for given initial conditions Z0 := (z1,0, . . . , zN,0). Filipov’s recipe

tells us to look at the system

{

Ż ∈ co F(Z),

Z(0) = Z0.
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The local existence theorem

Set D(F) := ΩN \ ∪j<kΠjk.

Theorem (Local Existence)

Let Ω ⊂ R
2 be a connected open set, let Z0 ∈ D(F) be a given

initial configuration of dislocations. Then the initial value problem

{

Ż ∈ co F(Z),

Z(0) = Z0.

has a solution Z : [0,T] → D(F).
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The local existence theorem

Set D(F) := ΩN \ ∪j<kΠjk.

Theorem (Local Existence)

Let Ω ⊂ R
2 be a connected open set, let Z0 ∈ D(F) be a given

initial configuration of dislocations. Then the initial value problem

{

Ż ∈ co F(Z),

Z(0) = Z0.

has a solution Z : [0,T] → D(F).

In view of the definition of D(F) and of how T is determined,

solutions exists as long as dislocations stay away from ∂Ω and do

not collide.
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Uniqueness
Define A :=

⋃N
ℓ=1 Aℓ, Aℓ := {Z ∈ D(F) : card(Gℓ) = 2}.
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Uniqueness
Define A :=

⋃N
ℓ=1 Aℓ, Aℓ := {Z ∈ D(F) : card(Gℓ) = 2}.

Lemma

The ambiguity set A is contained in a countable union of smooth

manifolds of dimension 6 2N − 1.
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Uniqueness
Define A :=

⋃N
ℓ=1 Aℓ, Aℓ := {Z ∈ D(F) : card(Gℓ) = 2}.

Lemma

The ambiguity set A is contained in a countable union of smooth

manifolds of dimension 6 2N − 1.

Moreover, the set Sℓ := {Z ∈ D(F) : jℓ(Z) · g0 = 0,∇Z(jℓ(Z) · g0) = 0}

has dimension 6 2N − 2, for every ℓ ∈ {1, . . . ,N}.

Marco Morandotti (SISSA) Dynamics of screw dislocations 12 June 2015 13 / 21



Uniqueness
Define A :=

⋃N
ℓ=1 Aℓ, Aℓ := {Z ∈ D(F) : card(Gℓ) = 2}.

Lemma

The ambiguity set A is contained in a countable union of smooth

manifolds of dimension 6 2N − 1.

Moreover, the set Sℓ := {Z ∈ D(F) : jℓ(Z) · g0 = 0,∇Z(jℓ(Z) · g0) = 0}

has dimension 6 2N − 2, for every ℓ ∈ {1, . . . ,N}.

These conditions ensure we can prove

Theorem (Local Uniqueness – user-friendly version)

If the initial configuration Z0 ∈ Aℓ \ (Sℓ ∪ Ezero ∪ Esrc) for some

ℓ ∈ {1, . . . ,N}, then (right) uniqueness holds.
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Uniqueness
Define A :=

⋃N
ℓ=1 Aℓ, Aℓ := {Z ∈ D(F) : card(Gℓ) = 2}.

Lemma

The ambiguity set A is contained in a countable union of smooth

manifolds of dimension 6 2N − 1.

Moreover, the set Sℓ := {Z ∈ D(F) : jℓ(Z) · g0 = 0,∇Z(jℓ(Z) · g0) = 0}

has dimension 6 2N − 2, for every ℓ ∈ {1, . . . ,N}.

These conditions ensure we can prove

Theorem (Local Uniqueness – user-friendly version)

If the initial configuration Z0 ∈ Aℓ \ (Sℓ ∪ Ezero ∪ Esrc) for some

ℓ ∈ {1, . . . ,N}, then (right) uniqueness holds.

Uniqueness holds until either a collision occurs, or a dislocation

hits the boundary, or a source is reached, or the ambiguity set

is no longer smooth.
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Cross-Slip and Fine Cross-Slip

z1

z2

z3

Ω
G

R
2NZ

V+

V−
A1
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Cross-Slip and Fine Cross-Slip

z1

z2

z3

Ω
G

R
2NZ

V+

V−
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z1

z2

z3

Ω
G

R
2N

Z

V+

V−

A1

l
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Motion - I: one dislocation in the half-plane

Let us consider a single dislocation z = (0, z2) with Burgers

modulus b, and let Ω = R
2
+ be the upper half-plane. Let also

L = I.
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Motion - I: one dislocation in the half-plane

Let us consider a single dislocation z = (0, z2) with Burgers

modulus b, and let Ω = R
2
+ be the upper half-plane. Let also

L = I. The Peach-Köhler force reads

j(z) = bJ∇u0(z)
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Motion - I: one dislocation in the half-plane

Let us consider a single dislocation z = (0, z2) with Burgers

modulus b, and let Ω = R
2
+ be the upper half-plane. Let also

L = I. The Peach-Köhler force reads

j(z) = bJ∇u0(z) =
b2

4πz2

(

0

−1

)

.
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Motion - I: one dislocation in the half-plane

Let us consider a single dislocation z = (0, z2) with Burgers

modulus b, and let Ω = R
2
+ be the upper half-plane. Let also

L = I. The Peach-Köhler force reads

j(z) = bJ∇u0(z) =
b2

4πz2

(

0

−1

)

.

If −e2 ∈ G, then the equation of motion is

(

ż1

ż2

)

= −
b2

4π

(

0

z2

)

, z(0) =

(

0

d0

)

.
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Motion - I: one dislocation in the half-plane

Let us consider a single dislocation z = (0, z2) with Burgers

modulus b, and let Ω = R
2
+ be the upper half-plane. Let also

L = I. The Peach-Köhler force reads

j(z) = bJ∇u0(z) =
b2

4πz2

(

0

−1

)

.

If −e2 ∈ G, then the equation of motion is

(

ż1

ż2

)

= −
b2

4π

(

0

z2

)

, z(0) =

(

0

d0

)

.

This can be solved and we get

z1(t) = 0, ∀t; z2(t) =

√

d2
0 −

b2

2π
t, t ∈ [0,T], T =

2π

b2
d2

0.
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Motion - I: one dislocation in the half-plane
If −e2 /∈ G, then two possible cases arise: either there exists a

unique g ∈ G maximizing the power expended, or there exist two

such directions g±.
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Motion - I: one dislocation in the half-plane
If −e2 /∈ G, then two possible cases arise: either there exists a

unique g ∈ G maximizing the power expended, or there exist two

such directions g±. In the second case, the dislocation will glide

vertically anyway, and will hit the horizontal axis at the time

T′ =
2π

b2(g±
2 )

2
d2

0 > T.
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such directions g±. In the second case, the dislocation will glide

vertically anyway, and will hit the horizontal axis at the time

T′ =
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2 )

2
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0 > T.

In the first case, the equation of motion becomes
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ż1

ż2

)
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4πz2

(

g1

g2

)

, z(0) =

(

0
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)
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Motion - I: one dislocation in the half-plane
If −e2 /∈ G, then two possible cases arise: either there exists a

unique g ∈ G maximizing the power expended, or there exist two

such directions g±. In the second case, the dislocation will glide

vertically anyway, and will hit the horizontal axis at the time

T′ =
2π

b2(g±
2 )

2
d2

0 > T.

In the first case, the equation of motion becomes
(

ż1

ż2

)

= −
b2g2

4πz2

(

g1

g2

)

, z(0) =

(

0

d0

)

.

The solution is

z2(t) =

√

d2
0 −

b2g2
2

2π
t, z1(t) =

g1

g2

√

d2
0 −

b2g2
2

2π
t −

g1

g2
d0, t ∈ [0,T′].
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Motion - II: one dislocation in the unit disk

Let us now consider a single dislocation z = reiθ in the unit disk.
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Motion - II: one dislocation in the unit disk

Let us now consider a single dislocation z = reiθ in the unit disk.

Cumbersome computation in complex variable give

j(z) =
b2

2π

r

1 − r2
r̂.
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Motion - II: one dislocation in the unit disk

Let us now consider a single dislocation z = reiθ in the unit disk.

Cumbersome computation in complex variable give

j(z) =
b2

2π

r

1 − r2
r̂.

If the direction of z(0) is in G, then we have

ṙ =
b2

2π

r

1 − r2
, r(0) = r0 ,

we know the dislocation will hit the boundary of the disk in finite

time at

T =
2π

b2

(

r2
0

2
−

1

2
− log r0

)

.
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Motion - II: one dislocation in the unit disk

Let us now consider a single dislocation z = reiθ in the unit disk.

Cumbersome computation in complex variable give

j(z) =
b2

2π

r

1 − r2
r̂.

If the direction of z(0) is in G, then we have

ṙ =
b2

2π

r

1 − r2
, r(0) = r0 ,

we know the dislocation will hit the boundary of the disk in finite

time at

T =
2π

b2

(

r2
0

2
−

1

2
− log r0

)

.

If not, more complicated expression; problem still solvable.
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Motion - III: N dislocations in the half-plane

Consider now a system {zi}
N
i=1 ⊂ R

2
+ of N dislocations in the

half-plane.
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Motion - III: N dislocations in the half-plane

Consider now a system {zi}
N
i=1 ⊂ R

2
+ of N dislocations in the

half-plane. It is possible to show that the force on each

dislocation has the form

jℓ(zℓ) =
∑

i6=ℓ

bℓbi

2π

zℓ − zi

|zℓ − zi|2
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N
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+ of N dislocations in the

half-plane. It is possible to show that the force on each

dislocation has the form

jℓ(zℓ) =
∑

i6=ℓ

bℓbi

2π

zℓ − zi

|zℓ − zi|2
−

N
∑

m=1

bℓbm

2π

zℓ − z̄i

|zℓ − z̄i|2
, (z̄ = (z1,−z2)).
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Motion - III: N dislocations in the half-plane

Consider now a system {zi}
N
i=1 ⊂ R

2
+ of N dislocations in the

half-plane. It is possible to show that the force on each

dislocation has the form

jℓ(zℓ) =
∑

i6=ℓ

bℓbi

2π

zℓ − zi

|zℓ − zi|2
−

N
∑

m=1

bℓbm

2π

zℓ − z̄i

|zℓ − z̄i|2
, (z̄ = (z1,−z2)).

Replacement by reflection is tempting: we would get a system

of 2N dislocations in the whole R
2, no boundary term in the

force.
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Consider now a system {zi}
N
i=1 ⊂ R
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+ of N dislocations in the

half-plane. It is possible to show that the force on each

dislocation has the form

jℓ(zℓ) =
∑

i6=ℓ

bℓbi

2π

zℓ − zi

|zℓ − zi|2
−

N
∑

m=1

bℓbm

2π

zℓ − z̄i

|zℓ − z̄i|2
, (z̄ = (z1,−z2)).

Replacement by reflection is tempting: we would get a system

of 2N dislocations in the whole R
2, no boundary term in the

force. But. . . nobody guarantees that the new system would be

consistent with the prescribed glide directions.
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Motion - III: N dislocations in the half-plane

Consider now a system {zi}
N
i=1 ⊂ R

2
+ of N dislocations in the

half-plane. It is possible to show that the force on each

dislocation has the form

jℓ(zℓ) =
∑

i6=ℓ

bℓbi

2π

zℓ − zi

|zℓ − zi|2
−

N
∑

m=1

bℓbm

2π

zℓ − z̄i

|zℓ − z̄i|2
, (z̄ = (z1,−z2)).

Replacement by reflection is tempting: we would get a system

of 2N dislocations in the whole R
2, no boundary term in the

force. But. . . nobody guarantees that the new system would be

consistent with the prescribed glide directions.

Yet, the expression of the force above allows us to say that the

ambiguity set is smooth away from collisions, and this is good

for the dynamics.
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Motion - IV: some simulations
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Remarks and conclusions

The study of the smoothness of the ambiguity set A is crucial

to apply Filippov’s theory.
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The study of the smoothness of the ambiguity set A is crucial

to apply Filippov’s theory.

More general laws can be used for the dynamics, e.g.,

żℓ = (jℓ · eℓ)eℓ

Marco Morandotti (SISSA) Dynamics of screw dislocations 12 June 2015 20 / 21



Remarks and conclusions

The study of the smoothness of the ambiguity set A is crucial
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More general laws can be used for the dynamics, e.g.,

żℓ = m(eℓ)(jℓ · eℓ)eℓ,

m =mobility
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Remarks and conclusions

The study of the smoothness of the ambiguity set A is crucial

to apply Filippov’s theory.

More general laws can be used for the dynamics, e.g.,

żℓ = m(eℓ)max{(jℓ · eℓ − F(eℓ)),0}eℓ,

m =mobility, F =Peierls force
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The study of the smoothness of the ambiguity set A is crucial

to apply Filippov’s theory.

More general laws can be used for the dynamics, e.g.,

żℓ = m(eℓ)max{(jℓ · eℓ − F(eℓ))
p,0}eℓ,

m =mobility, F =Peierls force, power-law kinetics [we took

m ≡ 1, F ≡ 0, p = 1].
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Remarks and conclusions

The study of the smoothness of the ambiguity set A is crucial

to apply Filippov’s theory.

More general laws can be used for the dynamics, e.g.,

żℓ = m(eℓ)max{(jℓ · eℓ − F(eℓ))
p,0}eℓ,

m =mobility, F =Peierls force, power-law kinetics [we took

m ≡ 1, F ≡ 0, p = 1].

Modelling of collisions.

Temperature and thermal fluctuations.

Upscaling.

. . .
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Thank you very much for your attention!
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