
Navigating in the Cayley graph of SL2(Fp) and
applications to hashing

Vladimir Shpilrain (joint work with Lisa Bromberg and Alina
Vdovina)

The City College of New York

June 2015

Hash function

Definition

Let n ∈ N and let H : {0, 1}∗ → {0, 1}n be a function that takes a bit
string of an arbitrary length to a bit string of a fixed length n. We require
a hash function H to satisfy the following conditions:

1 preimage resistance: given output y , it is hard to find input x such
that H(x) = y ;

2 second preimage resistance: given input x1, it is hard to find another
input x2 6= x1 such that H(x1) = H(x2);

3 collision resistance: it is hard to find inputs x1 6= x2 such that
H(x1) = H(x2).

2 / 23

Early suggestions (especially the SHA family) did not really use any
mathematical ideas to ensure the above properties were met; the main
idea was just to ‘create a mess’ by using complex iterations.

An interesting direction is constructing hash functions that are provably
as secure as the underlying assumptions, e.g. the discrete logarithm
assumptions. These hash functions tend to not be efficient.

3 / 23

Cayley hash functions

We take a different approach, namely use two elements, A and B, of a
semigroup S , such that the Cayley graph of the semigroup generated by
A and B belongs to an expander family, in the hope that such a graph
will have large girth and therefore there will be no short relations
(‘collisions’).

To build a hash function from the Cayley graph, a message m (a bitstring
comprised of 0’s and 1’s) corresponds to a word in the elements A and B
of S , with A corresponding to 0 and B corresponding to 1. This is
represented on the Cayley graph as a (nonbacktracking) walk; the
endpoint of the walk is the hash value.

4 / 23

Tillich–Zémor hash function

The most popular implementation of hashing with the Cayley graph is
probably the one due to Tillich and Zémor [5]. Unlike functions in the
SHA family, the Tillich–Zémor hash function is not a block hash
function, but rather each bit is hashed individually.

More specifically, the “0” bit and the “1” bit are hashed to matrices A
and B (over a finite ring), respectively. Then, an arbitrary bit string is
hashed by using multiplication of matrices. For example, the bit string
1001101 is hashed to the matrix BA2B2AB.

5 / 23

Tillich–Zémor hash function (continued)

Tillich and Zémor use matrices A,B from the group SL2(R), where R is
a commutative ring defined by R = F2[x]/(p(x)). They took p(x) to be
the irreducible polynomial x131 + x7 + x6 + x5 + x4 + x + 1 over F2[x].
Thus, R is isomorphic to F2n , where n is the degree of the irreducible
polynomial p(x). Then, the matrices A and B are

A =

(
α 1
1 0

)
, B =

(
α α + 1
1 1

)
,

where α is a root of p(x).

This particular hash function was successfully attacked by Grassl, Ilić,
Magliveras and Steinwandt in 2011 [1], and Petit and Quisquatar in
2010 [2].

6 / 23

Matrices over Fp

Another idea is to use a pair of 2× 2 matrices A and B which generate a
free monoid over Z, and then reduce the entries modulo a large prime p
to get matrices over Fp.

Since there cannot be equality of two different products of positive
powers of A and B unless at least one of the entries in at least one of the
products is greater than or equal to p, this gives a lower bound on the
minimum length of bit strings where a collision may occur. This bound is
on the order of log p; we will give more precise bounds in two particular
examples.

7 / 23

An example of a pair of matrices over Z which generate a free monoid is

A(1) =

(
1 1
0 1

)
, B(1) =

(
1 0
1 1

)
.

These matrices are invertible and thus actually generate the group
SL2(Z). This group is not free, but the monoid generated by A(1) and
B(1) is free. Since only positive powers are used in hashing, this is all we
need.

However, a collision for the hash function corresponding to these
matrices over a large prime p was described by Tillich and Zémor [4] by
using what they called a “lifting attack”.

8 / 23

Note that a pair of matrices

A(x) =

(
1 x
0 1

)
, B(y) =

(
1 0
y 1

)
,

generate a free subgroup of SL2(Z) if xy ≥ 4 (Sanov [3] was the first to
prove this in the case x , y = 2). We will consider the cases where
x = y = 2 and x = y = 3.

9 / 23

The “lifting attack” on the hash function based on A(1) and B(1)
described by Tillich and Zémor is the only published attack on that hash
function. That particular attack does not work with A(2) and B(2) or
with A(3) and B(3).

10 / 23

Recall that when considered as matrices over Z, A(1) and B(1) generate
(as a monoid) the entire monoid of 2× 2 matrices over Z with positive
entries, SL2(Z+).

However, this is not the case with A(2) and B(2). Another result of
Sanov says that the subgroup of SL2(Z) generated by A(2) and B(2)
consists of all invertible matrices of the form(

1 + 4m1 2m2

2m3 1 + 4m4

)
,

where the mi are integers. This does not say much about the monoid
generated by these matrices, though. In fact, a generic matrix of the
form above would not belong to this monoid.

11 / 23

Note that the number of matrices in the above form which are
representable by positive words is negligible. In fact, the number of
distinct elements represented by all freely reducible words in A(2) and
B(2) of length n ≥ 2 is 4 · 3n−1, while the number of distinct elements
represented by positive words of length n ≥ 2 is 2n.

Problem

Find a form similar to Sanov’s for matrices in the monoid generated by
A(2) and B(2) over Z.

12 / 23

Tillich and Zémor’s lifting attack can still give an efficient algorithm
which finds relations of length O(log p) in the group generated by A(2)
and B(2) considered as matrices over Fp.

Theorem

There is an efficient heuristic algorithm that finds particular relations of
the form w(A(2),B(2)) = 1, where w is a group word of length O(log p),
and the matrices A(2) and B(2) are considered over Fp.

This does not affect the security of the hash function based on A(2) and
B(2) since only positive powers of A(2) and B(2) are used, and the
group relations produced by the algorithm will involve both negative and
positive powers with overwhelming probability.

13 / 23

Girth of the Cayley graph generated by A(k) and B(k)

For hashing, we use only positive powers, so we need only consider
products of positive powers of A(k) and B(k). We note that entries in a
matrix of a length n product of positive powers of A(k) and B(k) grow
fastest (as functions of n) in the alternating product of A(k) and B(k).
This is summarized in the following proposition.

Proposition

Let wn(a, b) be an arbitrary positive word of even length n, and let
Wn = wn(A(k),B(k)), with k ≥ 2. Let Cn = (A(k) · B(k))n/2. Then:
(a) the sum of entries in any row of Cn is at least as large as the sum of
entries in any row of Wn; (b) the largest entry of Cn is at least as large
as the largest entry of Wn.

14 / 23

Thus we consider powers of the matrix

C (k) = A(k)B(k) (1)

to get to entries larger than p “as quickly as possible”.

15 / 23

The matrix C (2) is (
5 2
2 1

)
.

If we denote

(C (2))n =

(
an bn

cn dn

)
,

then the following recurrence relations are easily proved by induction on
n:

an = 5an−1 + 2bn−1,

bn = cn = 2an−1 + bn−1,

dn = an−1.

16 / 23

Combining the recurrence relations for an and bn, we get
2bn = an − an−1, so 2bn−1 = an−1 − an−2. Plugging this into the
displayed recurrence relation for an gives

an = 6an−1 − an−2.

Similarly, we get
bn = 6bn−1 − bn−2.

Solving these recurrence relations (with appropriate initial conditions), we
get

an = (1
2 + 1√

8
)(3 +

√
8)n + (1

2 −
1√
8

)(3−
√

8)n,

bn = 1√
8

(3 +
√

8)n − 1√
8

(3−
√

8)n.

17 / 23

Thus, an is the largest entry of (C (2))n, and we conclude that no entry
of (C (2))n is larger than p as long as n < log

3+
√

8
p. Since

C (2) = A(2)B(2) is a product of two generators, (C (2))n has length 2n
as a word in the generators A(2) and B(2). Therefore, no two positive
words of length ≤ m in the generators A(2) and B(2) (considered as
matrices over Fp) can be equal as long as

m < 2 log
3+

√
8

p = log√
3+

√
8

p.

In particular, the girth of the Cayley graph of the semigroup generated by
A(2) and B(2) (considered as matrices over Fp) is at least
log√

3+
√

8
p ≈ log2.4 p.

18 / 23

Similarly, in the case of A(3) and B(3), the base of the logarithm is√
11+
√
117

2 ≈ 3.3. For example, if p is on the order of 2256, then there are

no collisions of the form u(A(3),B(3)) = v(A(3),B(3)) if positive words
u and v are of length less than 149.

19 / 23

Problem

Find an analogue of “Sanov’s form” for the subgroup of SL(2,Z)
generated by A(3),B(3).

Since there is no known analog of Sanov’s result for A(3) and B(3), at
this time there is no known efficient algorithm for producing relations of
length O(log p) even in the group generated by A(3) and B(3), let alone
in the monoid. We note that by the pigeonhole principle, such relations
do in fact exist.

At this time, there are no known attacks on hash functions corresponding
to the pair A(2) and B(2) nor on the pair A(3) and B(3). Therefore,
there is no visible threat to their security.

20 / 23

Problem

Determine which words in the matrices A(1),B(2) will have the fastest
growth of their entries.

This problem is of interest because if we can show the alternating
product again has fastest growth, then a similar calculation as was done
for A(2),B(2) and for A(3),B(3) would show a lower bound with a

smaller base. This means that the base of the logarithm is
√

2 +
√

3,
which is about 1.93. So this would mean that for p on the order of 2256,
there will be no collisions of the form u(A(1),B(2)) = v(A(1),B(2)) if
positive words u and v are of length less than 269. This is a stronger
bound than for either the A(2),B(2) case or the A(3),B(3) case.

21 / 23

Bibliography I

M. Grassl, I. Ilić, S. Magliveras, R. Steinwandt,
Cryptanalysis of the Tillich–Zémor hash function,
J. Cryptology 24 (2011) 148–156

C. Petit, J. Quisquatar,
Preimages for the Tillich–Zémor hash function,
in SAC 10, Lecture Notes in Comp. Sci. 6544 (2010) 282–301

I. N. Sanov,
A property of a representation of a free group (Russian),
Doklady Akad. Nauk SSSR (N.S.) 57 (1947) 657–659

J.-P. Tillich and G. Zémor,
Group-theoretic hash functions,
in Proceedings of the First French–Israeli Workshop on Algebraic
Coding, Lecture Notes in Comp. Sci. 781 (1993) 90–110

22 / 23

Bibliography II

J.-P. Tillich and G. Zémor,
Hashing with SL2,
in CRYPTO 1994, Lecture Notes in Comp. Sci. 839 (1994) 40–49

23 / 23

