Opers, spectral networks and the T3 theory

Lotte Hollands

University of Oxford

based on arXiv:1312.2979 with A. Neitzke and work in progress

$$\mathcal{N}=2$$
 theory

holomorphic k-differential

punctured four-dimensional Riemann surface
$$\longleftrightarrow$$
 quantum field theory $T[C]$ $\{\varphi_2, \dots, \varphi_K\}$ \longleftrightarrow vacua $\varphi_k = u_k(z)(dz)^k$

T[3] theory

Proposal [Nekrasov-Rosly-Shatashvili]

PSL(2) Oper

ightharpoonup PSL(2) oper is locally a linear differential operator

$$D = d^2 + a,$$

that acts on $\left(-\frac{1}{2}\right)$ -differentials on C.

- ▶ Coefficient a transforms as a Schwartzian derivative.
- ▶ If we write

$$a = \{f, z\}(dz)^2,$$

then f defines a projective structure on C.

Example: hypergeometric oper

- ightharpoonup C is the three-punctured sphere.
- ▶ The canonical PSL(2) oper on C is

$$D = d^2 + t_0(z),$$

with the uniformization term

$$t_0(z) = \frac{1 - z + z^2}{2z^2(z - 1)^2} dz^2.$$

ightharpoonup A generic PSL(2) oper on C is of the form

$$D = d^2 + t_0(z) + \varphi_2(z),$$

where $\varphi_2(z)$ is a holomorphic quadratic differential on C (with regular poles at the punctures).

Hitchin moduli space

▶ Consider the moduli space $\mathcal{M}_{\zeta}[C]$ of solutions to the Hitchin equations on C:

$$F_D - [\Phi, \Phi] = 0$$

$$D\Phi = 0$$

$$D * \Phi = 0$$

- ▶ For $\zeta = 0$ this is the Hitchin complex integrable system.
- ▶ For $\zeta \neq 0$ it is the moduli space \mathcal{M}_{flat} of flat $G_{\mathbb{C}}$ connections on C.

Space of opers

▶ The space of opers is a Lagrangian of \mathcal{M}_{flat}

▶ Given choice of Darboux coordinates $\{\alpha, \beta\}$, we may consider its generating function

$$\frac{\partial W_O(\alpha)}{\partial \alpha} = \beta. \tag{1}$$

Proposal [Nekrasov-Rosly-Shatashvili]

generating function
$$W_O(\alpha)$$
 superpotential of of space of $PSL(2)$ opers \longleftrightarrow two-dimensional field theory
$$(\text{emerging from }T[C]$$
 on $\mathbb{R}^2_\epsilon \times \mathbb{R}^2)$

if $\{\alpha, \beta\}$ are complex Fenchel-Nielsen coordinates on C.

Complex Fenchel-Nielsen coordinates

- ▶ Coordinates on the $PSL(2, \mathbb{C})$ character variety.
- \triangleright Defined with respect to pair of pants decomposition of C.

- ▶ To each pants curve γ_{α} we associate two coordinates.
- ▶ The length coordinate α is defined as

$$\operatorname{Tr} M_{\gamma_{\alpha}} = e^{\frac{\alpha}{2}} + e^{-\frac{\alpha}{2}}.$$

▶ The twist coordinate β can be defined through a Hamiltonian flow.

Example

four-punctured \longleftrightarrow SU(2) gauge theory sphere with four hypers $\text{complex structure } q \longleftrightarrow \text{coupling constant } q = \exp(\tau)$

Example

- ▶ When $q \to 0$ the PSL(2) oper can be approximated by a hypergeometric oper.
- We find that $W_O(\alpha)$ is indeed the twisted superpotential for T[C].

Higher rank generalization

- ► [Work in progress with Andrew Neitzke]
- ► Find higher rank generalization of complex Fenchel-Nielsen coordinates.

Spectral Network

- ▶ Fix C and set of k-differentials $\{\varphi_2, \ldots, \varphi_K\}$.
- Write

$$0 = w^{K} - \sum_{k=2}^{K} \varphi_{k} w^{K-k} = \prod_{i=1}^{K} (w - \lambda_{i})$$

 Spectral network is a collection of trajectories on C, such that

$$\lambda_i(v) - \lambda_j(v) \in \mathbb{R}$$

for any non-zero tangent vector v.

• When K=2 this is just the critical graph of a foliation defined by the differential φ_2 .

FG network for K=2

▶ Generically all leaves end on punctures:

 \triangleright Such a network is dual to an ideal triangulation of C.

FN network for K=2

▶ Other extreme, no leaves ending on punctures and all leaves compact:

▶ Such a network is dual to a pants decomposition of *C* and generated by a Strebel differential:

$$\oint_{\gamma_{\alpha}} \sqrt{\varphi_2} \in \mathbb{R}$$

Nonabelianization

Nonabelianization is a map $\psi_{\mathcal{W}}$:

$$\mathcal{M}_{flat}(\Sigma, \mathbb{C}^*)$$

$$\downarrow$$

$$\mathcal{M}_{flat}(C, G_{\mathbb{C}}).$$

Idea

- ▶ Given flat GL(1) connection ∇^{ab} in a complex line bundle over Σ , can we push-forward to find a flat GL(K) connection ∇ on C?
- Not quite. We can find $\nabla = \pi_* \nabla^{ab}$ on a complement of the branch locus, but it does not extend smoothly. Reason:

When we go around branch point the sheets get permuted, this shows up as nontrivial monodromy.

Details

- Nonabelianization is a recipe for fixing up the monodromy using the data of a spectral network W.
- We cut the surface C into pieces $C \setminus W$.
- ▶ On each of the pieces we define ∇ as $\pi_*\nabla^{ab}$.
- ▶ We reglue along the gluing lines with non-trivial automorphisms of $\pi_* \nabla^{ab}$.
- ▶ These are given by unipotent matrices 1 + e with $e: \mathcal{L}_i \to \mathcal{L}_j$ when the label of the wall is ij.

Spectral coordinates

- ▶ For many W (including the examples we discussed) the map ψ_{W} is invertible and there is also a canonical way to obtain a connection ∇^{ab} on Σ from a non-abelian connection ∇ on C.
- ▶ Given the GL(1) connection ∇^{ab} we can construct interesting numbers

$$\chi_{\gamma} = \mathrm{Hol}_{\gamma} \nabla^{ab} \in \mathbb{C}^*$$

for any $\gamma \in H^1(\Sigma, \mathbb{Z})$.

- ▶ These numbers are thus coordinates on the moduli space of non-abelian flat connections.
- ▶ We call them spectral coordinates.

Darboux coordinates K=2

- \triangleright If \mathcal{W} is generated by a generic quadratic differential, then we recover the Fock-Goncharov coordinates.
- ightharpoonup If $\mathcal W$ is generated by a Strebel differential, then we recover the complex Fenchel-Nielsen coordinates.

Higher rank complex Fenchel-Nielsen coordinates

▶ A generalized Strebel differential is a tuple of differentials such that

 $\oint_{\gamma_A}\lambda\in\mathbb{R}$

for a choice of A-cycles $\{\gamma_A\}$ on Σ .

- ▶ Define a rank K Fenchel-Nielsen network as a spectral network generated by a generalized Strebel differential.
- ▶ We propose that rank K complex Fenchel-Nielsen coordinates are the spectral coordinates for a rank K Fenchel-Nielsen network.

Example T[3]

► Example of rank 3 Fenchel-Nielsen network:

- ▶ To do: find superpotential of T[3] theory.
- ▶ Puzzle: many inequivalent networks!