▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

On some approaches of topological complexity

J.M. García Calcines

Departamento de Matemáticas, Estadística e I.O. Universidad de La Laguna

AMS-EMS-SPM International Meeting, Porto

Contents of the talk

Topological complexity of robot motion planning.

- Motion planning problem
- Topological complexity
- An auxiliary invariant: Lusternik-Schnirelmann category

2 Approaches to topological complexity

- Weak topological complexity
- Category of the h. cofibre of the diagonal map
- Monoidal topological complexity

Approaches to topological complexity 00000000000000

First part: Topological complexity of robot motion planning

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Configuration space.

The **configuration space** X associated to a given mechanical system S is the set of all possible states of S. In most applications, the configuration space comes equipped with a structure of topological space.

Configuration space.

The **configuration space** X associated to a given mechanical system S is the set of all possible states of S. In most applications, the configuration space comes equipped with a structure of topological space.

• States (or configurations) of the system *S* correspond to points $A \in X$

Configuration space.

The **configuration space** X associated to a given mechanical system S is the set of all possible states of S. In most applications, the configuration space comes equipped with a structure of topological space.

- States (or configurations) of the system *S* correspond to points $A \in X$
- Motions of the system from the state *A* to the state *B* correspond to **paths** in *X* joining *A* to *B*.

< ロト < 団ト < 三ト < 三ト < 三日 < のへの

Some examples of configuration spaces:

• A robot moving on a room with obstacles

• A *robot arm* consisting of several bars connected by revolving joins. We allow self-intersections of the arm

The configuration space is $X = S^1 \times S^1 \times ... \times S^1$

• A *robot arm* consisting of several bars connected by revolving joins. We allow self-intersections of the arm

The configuration space is $X = S^1 \times S^1 \times ... \times S^1$ In the spacial case we have: $X = S^2 \times S^2 \times ... \times S^2$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• A *flying robot* that can translate and rotate.

A configuration requires 6 parameters: (x, y, z) for translation, and Euler angles (α, β, γ) for rotation. The configuration space is $X = \mathbb{R}^3 \times SO(3)$.

• A rigid bar moving freely in the 3-space, where the center is fixed

• A rigid bar moving freely in the 3-space, where the center is fixed

The configuration space is \mathbb{RP}^2 (the real projective plane)

Approaches to topological complexity

Motion planning problem.

Motion planning is a central theme in robotics

Approaches to topological complexity

▲ロト ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▲ のので

Motion planning problem.

Motion planning is a central theme in robotics

Motion planning

The **motion planning problem** consists of producing a continuous motion that connects a start configuration *A* and a goal configuration *B*.

Approaches to topological complexity

Motion planning problem.

Motion planning is a central theme in robotics

Motion planning

The **motion planning problem** consists of producing a continuous motion that connects a start configuration *A* and a goal configuration *B*.

Motion planning has several robotics applications: automation (or automatic control), robotic surgery, architectural design, video game artificial intelligence, the study of biological molecules, et cetera...

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motion planning algorithm

In terms of the configuration space *X* the motion planning algorithm:

- **Input**: a point $(A, B) \in X \times X$
- **Output**: a path $\alpha : [0, 1] \to X$ such that $\alpha(0) = A$ and $\alpha(1) = B$.

Motion planning algorithm

In terms of the configuration space *X* the motion planning algorithm:

- **Input**: a point $(A, B) \in X \times X$
- **Output**: a path $\alpha : [0, 1] \to X$ such that $\alpha(0) = A$ and $\alpha(1) = B$.

If X is the configuration space, then consider the free path fibration:

$$\pi: X^I \to X \times X, \quad \alpha \mapsto (\alpha(0), \alpha(1))$$

Motion planning algorithm

In terms of the configuration space *X* the motion planning algorithm:

- **Input**: a point $(A, B) \in X \times X$
- **Output**: a path $\alpha : [0, 1] \to X$ such that $\alpha(0) = A$ and $\alpha(1) = B$.

If X is the configuration space, then consider the free path fibration:

$$\pi: X^I \to X \times X, \qquad \alpha \mapsto (\alpha(0), \alpha(1))$$

where X^{I} denotes the space of all paths in X.

Motion planning algorithm

In terms of the configuration space *X* the motion planning algorithm:

- **Input**: a point $(A, B) \in X \times X$
- **Output**: a path $\alpha : [0, 1] \to X$ such that $\alpha(0) = A$ and $\alpha(1) = B$.

If X is the configuration space, then consider the free path fibration:

$$\pi: X^I \to X \times X, \quad \alpha \mapsto (\alpha(0), \alpha(1))$$

where X^{I} denotes the space of all paths in X.

In these terms, a motion planning algorithm is precisely a **section** (not necessarily continuous) of π . That is, a map

$$s: X \times X \to X^I$$

such that $\pi \circ s = id$

Continuity of a motion planning algorithm *s* is desired. It means that the suggested route s(A, B) of going from *A* to *B* depends continuously on the states *A* and *B*

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Continuity of a motion planning algorithm *s* is desired. It means that the suggested route s(A, B) of going from *A* to *B* depends continuously on the states *A* and *B*

Theorem

There exists a *continuous section* $s : X \times X \to X^I$ of π if and only if the space X is contractible.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Continuity of a motion planning algorithm *s* is desired. It means that the suggested route s(A, B) of going from *A* to *B* depends continuously on the states *A* and *B*

Theorem

There exists a *continuous section* $s : X \times X \to X^I$ of π if and only if the space X is contractible.

Consequence

In general, motion planning algorithms have discontinuities.

Continuity of a motion planning algorithm *s* is desired. It means that the suggested route s(A, B) of going from *A* to *B* depends continuously on the states *A* and *B*

Theorem

There exists a *continuous section* $s : X \times X \to X^I$ of π if and only if the space X is contractible.

Consequence

In general, motion planning algorithms have discontinuities.

We can consider **local** continuous sections of π . These are maps defined on an open subset $U \subset X \times X$

$$s: U \to X^I$$

such that $\pi \circ s = inc : U \hookrightarrow X \times X$.

Approaches to topological complexity

▲ロト ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▲ のので

Topological complexity of a topological space

In order to study the discontinuities in these algorithms the following notion was introduced by M. Farber in 2003:

Approaches to topological complexity

Topological complexity of a topological space

In order to study the discontinuities in these algorithms the following notion was introduced by M. Farber in 2003:

Definition (Farber)

The (normalized) **topological complexity** of a topological space *X*, TC(X), is the least non-negative integer *k* such that $X \times X$ can be covered by k + 1 open subsets

$$X \times X = U_0 \cup U_1 \cup ... \cup U_k$$

on each of which $\pi: X^I \to X \times X$ admits a *local continuous section*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

A general invariant

Definition

The **sectional category** (or Schwarz genus) of a fibration $p : E \rightarrow B$, secat(p), is the least integer k such that B can be covered by k + 1 open subsets $B = U_0 \cup U_1 \cup ... \cup U_k$ on each of which there exists a local continuous section $s_i : U_i \rightarrow E$

A general invariant

Definition

The **sectional category** (or Schwarz genus) of a fibration $p : E \rightarrow B$, secat(p), is the least integer k such that B can be covered by k + 1 open subsets $B = U_0 \cup U_1 \cup ... \cup U_k$ on each of which there exists a local continuous section $s_i : U_i \rightarrow E$

The sectional category can be defined to any map $f : X \to Y$ by just requiring local continuous homotopy sections $s_i : U_i \to E$. That is $ps_i \simeq inc : U_i \hookrightarrow B$.

A general invariant

Definition

The **sectional category** (or Schwarz genus) of a fibration $p : E \rightarrow B$, secat(p), is the least integer k such that B can be covered by k + 1 open subsets $B = U_0 \cup U_1 \cup ... \cup U_k$ on each of which there exists a local continuous section $s_i : U_i \rightarrow E$

The sectional category can be defined to any map $f : X \to Y$ by just requiring local continuous homotopy sections $s_i : U_i \to E$. That is $ps_i \simeq inc : U_i \hookrightarrow B$.

Equivalently, we can take the associated fibration of f:

and define $\operatorname{secat}(f) := \operatorname{secat}(p)$.

Topological complexity is a sectional category

 $TC(X) = secat(\pi : X^I \to X \times X)$. Observe that we can also consider

 $TC(X) = secat(\Delta_X : X \to X \times X)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Topological complexity is a sectional category

 $TC(X) = secat(\pi : X^I \to X \times X)$. Observe that we can also consider

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

Useful property for computations

Let $p : E \to B$ be any map and consider $p^* : H^*(B) \to H^*(E)$ the homomorphism induced in cohomology of p. If $x_1, ..., x_k \in H^*(B)$ are such that $p^*(x_i) = 0$ and $x_1 \cup ... \cup x_k \neq 0$, then secat $(p) \ge k$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Topological complexity is a sectional category

 $TC(X) = secat(\pi : X^I \to X \times X)$. Observe that we can also consider

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

Useful property for computations

Let $p : E \to B$ be any map and consider $p^* : H^*(B) \to H^*(E)$ the homomorphism induced in cohomology of p. If $x_1, ..., x_k \in H^*(B)$ are such that $p^*(x_i) = 0$ and $x_1 \cup ... \cup x_k \neq 0$, then secat $(p) \ge k$. In other words, secat $(p) \ge nil \ker(p^*)$.

Topological complexity is a sectional category

 $TC(X) = secat(\pi : X^I \to X \times X)$. Observe that we can also consider

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

Useful property for computations

Let $p : E \to B$ be any map and consider $p^* : H^*(B) \to H^*(E)$ the homomorphism induced in cohomology of p. If $x_1, ..., x_k \in H^*(B)$ are such that $p^*(x_i) = 0$ and $x_1 \cup ... \cup x_k \neq 0$, then secat $(p) \ge k$. In other words, secat $(p) \ge nil \ker(p^*)$.

The *nilpotency* nil *I* of an ideal $I \triangleleft R$ is the least integer *k* such that $I^{k+1} = 0$.

Topological complexity is a sectional category

 $TC(X) = secat(\pi : X^I \to X \times X)$. Observe that we can also consider

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

Useful property for computations

Let $p : E \to B$ be any map and consider $p^* : H^*(B) \to H^*(E)$ the homomorphism induced in cohomology of p. If $x_1, ..., x_k \in H^*(B)$ are such that $p^*(x_i) = 0$ and $x_1 \cup ... \cup x_k \neq 0$, then $\operatorname{secat}(p) \ge k$. In other words, $\operatorname{secat}(p) \ge \operatorname{nil} \operatorname{ker}(p^*)$.

The *nilpotency* nil *I* of an ideal $I \triangleleft R$ is the least integer *k* such that $I^{k+1} = 0$.

The property for topological complexity

Taking cohomology with coefficients in any field we have that

$$(\Delta_X)^* = \cup : H^*(X) \otimes H^*(X) \to H^*(X)$$

is precisely the cup product. The kernel of \cup is called the *ideal of zero-divisors* of $H^*(X)$. Therefore $TC(X) \ge nil ker(\cup)$

Back to topological complexity

Basic properties:

- TC(X) = 0 if and only if $X \simeq *$ is contractible
- TC(*X*) depends only on the homotopy type of *X*

Back to topological complexity

Basic properties:

- TC(X) = 0 if and only if $X \simeq *$ is contractible
- TC(*X*) depends only on the homotopy type of *X*

Examples of easy standard computations:

•
$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$$

Back to topological complexity

Basic properties:

- TC(X) = 0 if and only if $X \simeq *$ is contractible
- TC(*X*) depends only on the homotopy type of *X*

Examples of easy standard computations:

•
$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$$

• Let S_g be the compact connected orientable surface of genus g. Then

$$\mathrm{TC}(S_g) = \begin{cases} 2 & \text{if } g \leq 1 \\ 4 & \text{if } g \geq 2 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Back to topological complexity

Basic properties:

- TC(X) = 0 if and only if $X \simeq *$ is contractible
- TC(*X*) depends only on the homotopy type of *X*

Examples of easy standard computations:

•
$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$$

• Let S_g be the compact connected orientable surface of genus g. Then

$$\mathrm{TC}(S_g) = \begin{cases} 2 & \text{if } g \leq 1 \\ 4 & \text{if } g \geq 2 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

How hard is the computation of TC?

Theorem (Farber-Tabachnikov-Yuzvinski (2003))

If $n \neq 1, 3, 7$, then $\text{TC}(\mathbb{RP}^n)$ is the least integer *k* for which there is an immersion

 $\mathbb{RP}^n \hookrightarrow \mathbb{R}^k$

How hard is the computation of TC?

Theorem (Farber-Tabachnikov-Yuzvinski (2003))

If $n \neq 1, 3, 7$, then $TC(\mathbb{RP}^n)$ is the least integer *k* for which there is an immersion

 $\mathbb{RP}^n \hookrightarrow \mathbb{R}^k$

In general, the computation of topological complexity is a very hard task!

How hard is the computation of TC?

Theorem (Farber-Tabachnikov-Yuzvinski (2003))

If $n \neq 1, 3, 7$, then $TC(\mathbb{RP}^n)$ is the least integer *k* for which there is an immersion

 $\mathbb{RP}^n \hookrightarrow \mathbb{R}^k$

In general, the computation of topological complexity is a very hard task!

Strategy

One way of dealing with topological complexity is to consider approximations that, in some sense, are more manageable and therefore more computable.

An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. **category** of a space *X*, cat(X), is the least non-negative integer *k* such that *X* admits an open cover $X = U_0 \cup U_1 \cup ... \cup U_k$ where each U_i is contractible in *X*

An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. **category** of a space *X*, cat(X), is the least non-negative integer *k* such that *X* admits an open cover $X = U_0 \cup U_1 \cup ... \cup U_k$ where each U_i is contractible in *X*

Basic properties

• cat(X) = 0 if and only if $X \simeq *$ is contractible.

An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. **category** of a space *X*, cat(X), is the least non-negative integer *k* such that *X* admits an open cover $X = U_0 \cup U_1 \cup ... \cup U_k$ where each U_i is contractible in *X*

Basic properties

- cat(X) = 0 if and only if $X \simeq *$ is contractible.
- cat(*X*) depends only on the homotopy type of *X*

An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. **category** of a space *X*, cat(X), is the least non-negative integer *k* such that *X* admits an open cover $X = U_0 \cup U_1 \cup ... \cup U_k$ where each U_i is contractible in *X*

Basic properties

- cat(X) = 0 if and only if $X \simeq *$ is contractible.
- cat(*X*) depends only on the homotopy type of *X*
- $\operatorname{cat}(X) = \operatorname{secat}(* \to X)$

An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. **category** of a space *X*, cat(X), is the least non-negative integer *k* such that *X* admits an open cover $X = U_0 \cup U_1 \cup ... \cup U_k$ where each U_i is contractible in *X*

Basic properties

- cat(X) = 0 if and only if $X \simeq *$ is contractible.
- cat(*X*) depends only on the homotopy type of *X*
- $\operatorname{cat}(X) = \operatorname{secat}(* \to X)$
- $cat(X) \ge cuplenght(X)$

An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. **category** of a space *X*, cat(X), is the least non-negative integer *k* such that *X* admits an open cover $X = U_0 \cup U_1 \cup ... \cup U_k$ where each U_i is contractible in *X*

Basic properties

- cat(X) = 0 if and only if $X \simeq *$ is contractible.
- cat(*X*) depends only on the homotopy type of *X*
- $\operatorname{cat}(X) = \operatorname{secat}(* \to X)$
- cat(X) ≥ cuplenght(X)
- Let *X* be any path-connected space. Then

 $\operatorname{cat}(X) \leq \operatorname{TC}(X) \leq 2 \operatorname{cat}(X)$

Topological complexity of robot motion planning. ○○○○○○○○○● Approaches to topological complexity

Second part: Approaches of TC

First approach: Weak topological complexity

Let $p : E \hookrightarrow B$ be a cofibration. We consider:

$$T^{n}(p) := \{(b_{0}, b_{1}, ..., b_{n}) \in B^{n+1} : b_{i} \in E \text{ for some } i\}$$

and denote $k_n : T^n(p) \hookrightarrow B^{n+1}$ the natural inclusion.

First approach: Weak topological complexity

Let $p : E \hookrightarrow B$ be a cofibration. We consider:

$$T^{n}(p) := \{(b_{0}, b_{1}, ..., b_{n}) \in B^{n+1} : b_{i} \in E \text{ for some } i\}$$

and denote $k_n : T^n(p) \hookrightarrow B^{n+1}$ the natural inclusion. If *p* is any map, then we consider *p'* its associated cofibration. Then $T^n(p) := T^n(p')$ and there is an induced map $k_n : T^n(p) \to B^{n+1}$

First approach: Weak topological complexity

Let $p : E \hookrightarrow B$ be a cofibration. We consider:

$$T^{n}(p) := \{(b_{0}, b_{1}, ..., b_{n}) \in B^{n+1} : b_{i} \in E \text{ for some } i\}$$

and denote $k_n : T^n(p) \hookrightarrow B^{n+1}$ the natural inclusion. If *p* is any map, then we consider *p'* its associated cofibration. Then $T^n(p) := T^n(p')$ and there is an induced map $k_n : T^n(p) \to B^{n+1}$

Theorem (Whitehead characterization of sectional category)

Let *p* be any map, where *B* is a normal space. Then $secat(p) \le n$ if and only if there is, up to homotopy, a lift

First approach: Weak topological complexity

Let $p : E \hookrightarrow B$ be a cofibration. We consider:

$$T^{n}(p) := \{(b_{0}, b_{1}, ..., b_{n}) \in B^{n+1} : b_{i} \in E \text{ for some } i\}$$

and denote $k_n : T^n(p) \hookrightarrow B^{n+1}$ the natural inclusion. If *p* is any map, then we consider *p'* its associated cofibration. Then $T^n(p) := T^n(p')$ and there is an induced map $k_n : T^n(p) \to B^{n+1}$

Theorem (Whitehead characterization of sectional category)

Let *p* be any map, where *B* is a normal space. Then $secat(p) \le n$ if and only if there is, up to homotopy, a lift

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Particular cases

If p = * : * → X, then Tⁿ(p) = Tⁿ(X) is the usual fat-wedge and we obtain the well-known Whitehead characterization of cat(X).

Particular cases

- If $p = * : * \to X$, then $T^n(p) = T^n(X)$ is the usual fat-wedge and we obtain the well-known Whitehead characterization of cat(X).
- If $p = \Delta_X : X \to X \times X$, then

 $T^{n}(\Delta_{X}) = \{(y_{0}, y_{1}, ..., y_{n}) \in (X \times X)^{n+1} : y_{i} \in \Delta(X) \text{ for some } i\}$

Moreover, $TC(X) \le n$ if and only if

Particular cases

- If $p = * : * \to X$, then $T^n(p) = T^n(X)$ is the usual fat-wedge and we obtain the well-known Whitehead characterization of cat(X).
- If $p = \Delta_X : X \to X \times X$, then

$$T^{n}(\Delta_{X}) = \{(y_{0}, y_{1}, ..., y_{n}) \in (X \times X)^{n+1} : y_{i} \in \Delta(X) \text{ for some } i\}$$

Moreover, $TC(X) \le n$ if and only if

$$X \times X \xrightarrow{\Delta_{n+1}} (X \times X)^{n+1}$$

Observation

If X is a CW-complex or a topological manifold, then the diagonal map Δ_X is a cofibration. The spaces for which this fact holds are called *locally equiconnected*.

Weak sectional category

Definition

Let $p : E \to B$ be any map. The **weak sectional category** of p, wsecat(p) is the least integer n such that the composition $l_n \Delta_{n+1} \simeq *$ is null-homotopic:

where the bottom row is the homotopy cofibre of k_n .

Weak sectional category

Definition

Let $p : E \to B$ be any map. The **weak sectional category** of p, wsecat(p) is the least integer n such that the composition $l_n \Delta_{n+1} \simeq *$ is null-homotopic:

where the bottom row is the homotopy cofibre of k_n .

- wsecat(p) \leq secat(p) (use Whitehead characterization)
- When *p* = * : * → *X*, then we recover the usual notion of *weak category*, wcat(*X*), in the sense of Berstein-Hilton.

Properties of weak sectional category

Theorem (L.Vandembroucq, G.-C.)

Let $p : E \to B$ be any map, and C_p denote its homotopy cofibre. Then the following hold:

- wsecat $(p) \leq wcat(B)$
- wsecat $(p) \ge \operatorname{nil} \ker p^*$
- $wcat(C_p) 1 \le wsecat(p) \le wcat(C_p)$
- If the map *p* admits a *homotopy retraction*, then

$$wsecat(p) = wcat(C_p)$$

Moreover nil ker $p^* = \text{cuplength}(C_p)$.

Properties of weak sectional category

Theorem (L.Vandembroucq, G.-C.)

Let $p : E \to B$ be any map, and C_p denote its homotopy cofibre. Then the following hold:

- wsecat $(p) \leq wcat(B)$
- wsecat $(p) \ge \operatorname{nil} \ker p^*$
- $wcat(C_p) 1 \le wsecat(p) \le wcat(C_p)$
- If the map *p* admits a *homotopy retraction*, then

$$wsecat(p) = wcat(C_p)$$

Moreover nil ker $p^* = \text{cuplength}(C_p)$.

Topological complexity of robot motion planning. 0000000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Weak topological complexity

Definition (Weak topological complexity)

The weak topological complexity of a space X is

 $wTC(X) := wsecat(\Delta_X)$

the weak sectional category of the diagonal map $\Delta_X : X \to X \times X$.

Weak topological complexity

Definition (Weak topological complexity)

The weak topological complexity of a space X is

 $wTC(X) := wsecat(\Delta_X)$

the weak sectional category of the diagonal map $\Delta_X : X \to X \times X$.

Corollary (Properties of weak topological complexity)

Let *X* be any space. Then, if C_{Δ_X} denotes the homotopy cofibre of the diagonal map $\Delta_X : X \to X \times X$ we have:

- wTC(X) \geq nil ker (\cup) = cuplength(C_{Δ_X})
- wTC(X) = wcat(C_{Δ_X}).

Weak topological complexity

Definition (Weak topological complexity)

The weak topological complexity of a space X is

```
wTC(X) := wsecat(\Delta_X)
```

the weak sectional category of the diagonal map $\Delta_X : X \to X \times X$.

Corollary (Properties of weak topological complexity)

Let *X* be any space. Then, if C_{Δ_X} denotes the homotopy cofibre of the diagonal map $\Delta_X : X \to X \times X$ we have:

• wTC(X)
$$\geq$$
 nil ker (\cup) = cuplength(C_{Δ_X})

• wTC(X) = wcat(C_{Δ_X}).

Comment

The inequality wTC(X) \geq nil ker (\cup) can be strict. For instance, if $X = S^3 \cup_{\alpha} e^7$ is the 7-skeleton of Sp(2), then it can be proved that nil ker (\cup) = 2 and wTC(X) = 3. Topological complexity of robot motion planning. 0000000000

Second approach: the category of C_{Δ_X}

We have seen that $wTC(X) = wcat(C_{\Delta_X})$. Is it true that $TC(X) = cat(C_{\Delta_X})$?

Second approach: the category of C_{Δ_x}

We have seen that wTC(X) = wcat(C_{Δ_X}). Is it true that TC(X) = cat(C_{Δ_X})? Arkowitz and Strom proved that if $A \xrightarrow{h} Y \xrightarrow{\alpha} C_h$ is a homotopy cofibre, then cat(C_h) \leq secat(h) + 1. In our case we have:

 $\operatorname{cat}(C_{\Delta_X}) \leq \operatorname{TC}(X) + 1$

Second approach: the category of C_{Δ_x}

We have seen that wTC(X) = wcat(C_{Δ_X}). Is it true that TC(X) = cat(C_{Δ_X})? Arkowitz and Strom proved that if $A \xrightarrow{h} Y \xrightarrow{\alpha} C_h$ is a homotopy cofibre, then cat(C_h) \leq secat(h) + 1. In our case we have:

$$\operatorname{cat}(C_{\Delta_X}) \leq \operatorname{TC}(X) + 1$$

Using a Ganea-type characterization of sectional category (iterated fibred joins of the map) and classical homotopy methods we obtain:

Theorem (L.Vandembroucq, G.C.)

Let *X* be a (q - 1)-connected finite dimensional CW-complex $(q \ge 1)$.

- If dim $(X) \le q(\operatorname{TC}(X) + 1) 2$, then cat $(C_{\Delta_X}) \le \operatorname{TC}(X)$.
- If $2 \dim(X) \le 2q 2 + q \operatorname{cat}(C_{\Delta_X})$, then $\operatorname{TC}(X) \le \operatorname{cat}(C_{\Delta_X})$.

Examples in which $TC(X) = cat(C_{\Delta_X})$

- $\operatorname{TC}(S^n) = \operatorname{cat}(C_{\Delta_{S^n}})$
- If X is an *H*-space, then $TC(X) = cat(X) = cat(C_{\Delta_X})$
- If *X* is a closed, 1-connected symplectic manifold. Then $TC(X) = cat(C_{\Delta_X})$
- If $X = \Sigma_g$ is a compact orientable surface of genus g, then $TC(X) = cat(C_{\Delta_X})$
- If *X* is any finite graph, then $TC(X) = cat(C_{\Delta_X})$
- If $X = F(\mathbb{R}^m, n)$ is the space of configurations of *n* distinct points in \mathbb{R}^m

$$F(\mathbb{R}^m, n) = \{(x_1, \dots, x_n) \in (\mathbb{R}^m)^n : x_i \neq x_j \text{ for } i \neq j\}$$

with $n, m \ge 2$, then $TC(X) = cat(C_{\Delta_X})$

The case of real projective spaces

In this case we need more sophisticated techniques. The key point is the non-existence of elements of Hopf invariant one (Adams, F.J.).

The case of real projective spaces

In this case we need more sophisticated techniques. The key point is the non-existence of elements of Hopf invariant one (Adams, F.J.).

Theorem (L.Vandembroucq, G.-C.)

Let $n \ge 0$ be any integer. Then $TC(\mathbb{RP}^n) = cat(C_{\Delta_{\mathbb{RP}^n}})$.

The case of real projective spaces

In this case we need more sophisticated techniques. The key point is the non-existence of elements of Hopf invariant one (Adams, F.J.).

Theorem (L.Vandembroucq, G.-C.)

Let $n \ge 0$ be any integer. Then $TC(\mathbb{RP}^n) = cat(C_{\Delta_{\mathbb{RP}^n}})$.

Corollary

If $n \neq 1, 3, 7$, then $cat(C_{\Delta_{\mathbb{RP}^n}})$ is the least integer k such that \mathbb{RP}^n can be immersed in \mathbb{R}^k

The case of real projective spaces

In this case we need more sophisticated techniques. The key point is the non-existence of elements of Hopf invariant one (Adams, F.J.).

Theorem (L.Vandembroucq, G.-C.)

Let $n \ge 0$ be any integer. Then $TC(\mathbb{RP}^n) = cat(C_{\Delta_{\mathbb{RP}^n}})$.

Corollary

If $n \neq 1, 3, 7$, then $cat(C_{\Delta_{\mathbb{RP}^n}})$ is the least integer k such that \mathbb{RP}^n can be immersed in \mathbb{R}^k

Open problem

Is it true that $TC(X) = cat(C_{\Delta_X})$ for any space *X*?

So far we haven't found any counterexamples!

Topological complexity of robot motion planning. 0000000000 Approaches to topological complexity

▲ロト ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▲ のので

Third approach: Monoidal topological complexity

The following situation is not desirable for a local continuous motion planning algorithm $s: U \to X^I$:

Topological complexity of robot motion planning 0000000000 Approaches to topological complexity

▲ロト ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▲ のので

Third approach: Monoidal topological complexity

The following situation is not desirable for a local continuous motion planning algorithm $s: U \to X^I$:

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Topological complexity of robot motion planning. 0000000000

Approaches to topological complexity

Third approach: Monoidal topological complexity

The following situation is not desirable for a local continuous motion planning algorithm $s: U \to X^I$:

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

We want *s* to be *optimal* by requiring s(A, A) to be the static path at *A* (i.e., no movement from *A* to *A*!!!)
Definition (Iwase-Sakai)

The **monoidal topological complexity** of a space X, $TC^{M}(X)$, is the least non-negative integer k such that $X \times X$ admits an open cover

 $X \times X = U_0 \cup U_1 \cup \ldots \cup U_k$

such that for any $i, \Delta_X(X) \subset U_i$ and $\pi : X^I \to X \times X$ admits a local continuous section s_i satisfying $s_i(A, A) = c_A$ (i.e., the constant path at A).

Definition (Iwase-Sakai)

The **monoidal topological complexity** of a space X, $TC^{M}(X)$, is the least non-negative integer k such that $X \times X$ admits an open cover

 $X \times X = U_0 \cup U_1 \cup \ldots \cup U_k$

such that for any $i, \Delta_X(X) \subset U_i$ and $\pi : X^I \to X \times X$ admits a local continuous section s_i satisfying $s_i(A, A) = c_A$ (i.e., the constant path at A).

Theorem (Iwase, Sakai)

If X is a CW complex, then $TC(X) \le TC^{M}(X) \le TC(X) + 1$

Definition (Iwase-Sakai)

The **monoidal topological complexity** of a space X, $TC^{M}(X)$, is the least non-negative integer k such that $X \times X$ admits an open cover

 $X \times X = U_0 \cup U_1 \cup \ldots \cup U_k$

such that for any $i, \Delta_X(X) \subset U_i$ and $\pi : X^I \to X \times X$ admits a local continuous section s_i satisfying $s_i(A, A) = c_A$ (i.e., the constant path at A).

Theorem (Iwase, Sakai)

If X is a CW complex, then $TC(X) \le TC^{M}(X) \le TC(X) + 1$

Iwase-Sakai's conjecture

For any CW-complex X, $TC(X) = TC^{M}(X)$

Definition (Iwase-Sakai)

The **monoidal topological complexity** of a space X, $TC^{M}(X)$, is the least non-negative integer k such that $X \times X$ admits an open cover

 $X \times X = U_0 \cup U_1 \cup \ldots \cup U_k$

such that for any $i, \Delta_X(X) \subset U_i$ and $\pi : X^I \to X \times X$ admits a local continuous section s_i satisfying $s_i(A, A) = c_A$ (i.e., the constant path at A).

Theorem (Iwase, Sakai)

If X is a CW complex, then $TC(X) \le TC^{M}(X) \le TC(X) + 1$

Iwase-Sakai's conjecture

For any CW-complex X, $TC(X) = TC^{M}(X)$

Theorem (Dranishnikov)

If X is a (q-1)-connected CW-complex and dim $(X) \le q(\operatorname{TC}(X)+1)-2$, then $\operatorname{TC}(X) = \operatorname{TC}^{M}(X)$.

Let $p : E \hookrightarrow B$ be a cofibration. Recall the *n*-th sectional fat wedge:

$$T^{n}(p) = \{(b_{0}, b_{1}, ..., b_{n}) \in B^{n+1} : b_{i} \in E \text{ for some } i\}$$

Definition (Doeraene, El Haouari)

Let $p : E \hookrightarrow B$ be a cofibration. The **relative category** of p, relcat(p) is the least non-negative integer n such that there is a map $\phi : B \to T^n(p)$ such that $\phi p = \tau_n$ and $k_n \phi \simeq \Delta_{n+1}$ rel. E

If p is any map, then relcat(p) := relcat(p') where p' is the cofibration associated to p.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any l.e. space *X* we have the equality $TC^M(X) = relcat(\Delta_X)$

Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any l.e. space *X* we have the equality $TC^M(X) = relcat(\Delta_X)$

Doeraene-El Haouari's conjecture

If *p* admits a homotopy retraction, then secat(p) = relcat(p)

Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any l.e. space *X* we have the equality $TC^M(X) = relcat(\Delta_X)$

Doeraene-El Haouari's conjecture

If *p* admits a homotopy retraction, then secat(p) = relcat(p)

For $p = \Delta_X$ we have Iwase-Sakai's conjecture $TC(X) = TC^M(X)$

Topological complexity of robot motion planning. 0000000000

Weak relative category

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Definition (Weak relative category)

Let $p : E \hookrightarrow B$ be a cofibration. The **weak relative category** of p, wrelcat(p), is the least integer n such that the composition $l_n \Delta_{n+1} \simeq *$ rel. E:

Topological complexity of robot motion planning. 0000000000

Weak relative category

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Definition (Weak relative category)

Let $p : E \hookrightarrow B$ be a cofibration. The **weak relative category** of p, wrelcat(p), is the least integer n such that the composition $l_n \Delta_{n+1} \simeq *$ rel. E:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタペ

Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

Let $p : E \hookrightarrow B$ be a cofibration and $C_p = B/E$ its homotopy cofibre. Then the following chain of inequalities holds:

```
\operatorname{cuplength}(C_p) \leq \operatorname{wcat}(C_p) = \operatorname{wrelcat}(p) \leq \operatorname{relcat}(p)
```

Moreover, if p admits a homotopy retraction, then wrelcat(p) = wsecat(p).

Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

Let $p : E \hookrightarrow B$ be a cofibration and $C_p = B/E$ its homotopy cofibre. Then the following chain of inequalities holds:

```
\operatorname{cuplength}(C_p) \leq \operatorname{wcat}(C_p) = \operatorname{wrelcat}(p) \leq \operatorname{relcat}(p)
```

Moreover, if p admits a homotopy retraction, then wrelcat(p) = wsecat(p).

Definition (Weak monoidal topological complexity)

Let *X* be a locally equiconnected space (i.e., Δ_X is a cofibration). Then we define the **weak monoidal topological complexity** of *X* as

 $wTC^{M}(X) := wrelcat(\Delta_X)$

Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

Let $p : E \hookrightarrow B$ be a cofibration and $C_p = B/E$ its homotopy cofibre. Then the following chain of inequalities holds:

```
\operatorname{cuplength}(C_p) \leq \operatorname{wcat}(C_p) = \operatorname{wrelcat}(p) \leq \operatorname{relcat}(p)
```

Moreover, if p admits a homotopy retraction, then wrelcat(p) = wsecat(p).

Definition (Weak monoidal topological complexity)

Let *X* be a locally equiconnected space (i.e., Δ_X is a cofibration). Then we define the **weak monoidal topological complexity** of *X* as

 $wTC^{M}(X) := wrelcat(\Delta_X)$

Corollary

If X is a CW-complex, then wTC(X) = wTC^M(X). Moreover, this number agrees with wcat(C_{Δ_X}).

Thanks for listening!

