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Configuration space.

The configuration space X associated to a given mechanical system S is the
set of all possible states of S. In most applications, the configuration space
comes equipped with a structure of topological space.

@ States (or configurations) of the system S correspond to points A € X

@ Motions of the system from the state A to the state B correspond to
paths in X joining A to B.



of robot motion plann

Some examples of configuration spaces:
e A robot moving on a room with obstacles

Free Space

Obstacles

./I- \ === Robot

XY _/
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e A robot arm consisting of several bars connected by revolving joins. We
allow self-intersections of the arm

plxy0) A0

The configuration space is X = §' x S' x ... x §!
In the spacial case we have: X = 5% x §? x ... x §?



e A flying robot that can translate and rotate.

A configuration requires 6 parameters: (x,y, z) for translation, and Euler
angles («, /3, ) for rotation.
The configuration space is X = R® x SO(3).

N




Topological complexity of robot motion planning.

o A rigid bar moving freely in the 3-space, where the center is fixed
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o A rigid bar moving freely in the 3-space, where the center is fixed

TS

The configuration space is RP? (the real projective plane)
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Motion planning problem.

Motion planning is a central theme in robotics

Motion planning

The motion planning problem consists of producing a continuous motion
that connects a start configuration A and a goal configuration B.

Motion planning has several robotics applications: automation (or automatic
control), robotic surgery, architectural design, video game artificial
intelligence, the study of biological molecules, et cetera...
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Motion planning algorithm

In terms of the configuration space X the motion planning algorithm:
o Input: a point (A,B) € X x X
@ Output: a path « : [0, 1] — X such that «(0) = A and (1) = B.
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Motion planning algorithm

In terms of the configuration space X the motion planning algorithm:
o Input: a point (A,B) € X x X
@ Output: a path « : [0, 1] — X such that «(0) = A and (1) = B.

If X is the configuration space, then consider the free path fibration:
X' =5 XxX, a=(a0),a(l))

where X’ denotes the space of all paths in X.

In these terms, a motion planning algorithm is precisely a section (not
necessarily continuous) of 7. That is, a map

siXxX—X

such that w o s = id
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Continuity of a motion planning algorithm s is desired. It means that the
suggested route s(A, B) of going from A to B depends continuously on the
states A and B

There exists a continuous section s : X x X — X! of 7 if and only if the
space X is contractible.

Consequence

In general, motion planning algorithms have discontinuities.

We can consider local continuous sections of 7. These are maps defined on
an open subset U C X x X
s:U—= X!

suchthat ros =inc: U — X x X.
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In order to study the discontinuities in
these algorithms the following notion
was introduced by M. Farber in 2003:

Definition (Farber)

The (normalized) topological complexity of a topological space X, TC(X),
is the least non-negative integer k such that X x X can be covered by k + 1
open subsets

XxX=UyUUU...UU

on each of which 7 : X! — X x X admits a local continuous section.
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A general invariant

The sectional category (or Schwarz genus) of a fibration p : E — B,
secat(p), is the least integer k such that B can be covered by k + 1 open
subsets B = Uy U U; U ... U Uy on each of which there exists a local
continuous section s; : U; — E
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A general invariant

Definition

The sectional category (or Schwarz genus) of a fibration p : E — B,
secat(p), is the least integer k such that B can be covered by k + 1 open
subsets B = Uy U U; U ... U Uy on each of which there exists a local
continuous section s; : U; — E

The sectional category can be defined to any map f : X — Y by just requiring
local continuous homotopy sections s; : U; — E. That is ps; ~ inc : U; — B.

Equivalently, we can take the associated fibration of f:

and define secat(f) := secat(p).
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The property for topological complexity

Taking cohomology with coefficients in any field we have that
(Ax)*=U:H"(X) @ H"(X) — H*(X)

is precisely the cup product. The kernel of U is called the ideal of
zero-divisors of H* (X). Therefore TC(X) > nil ker(U)
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How hard is the computation of TC?

Theorem (Farber-Tabachnikov-Yuzvinski (2003))

If n # 1,3, 7, then TC(RP") is the least integer k for which there is an
immersion

RP" — R¥

In general, the computation of topological complexity is a very hard task! )

One way of dealing with topological complexity is to consider
approximations that, in some sense, are more manageable and therefore
more computable.
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An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. category of a space X, cat(X), is the least non-negative integer k
such that X admits an open cover X = Uy U U, U ... U Uy where each U; is
contractible in X

v
Basic properties

e cat(X) = 0 if and only if X ~ * is contractible.

@ cat(X) depends only on the homotopy type of X
@ cat(X) = secat(x — X)
(X) =

o cat(X) > cuplenght(X)
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An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. category of a space X, cat(X), is the least non-negative integer k
such that X admits an open cover X = Uy U U, U ... U Uy where each U; is
contractible in X

v
Basic properties

cat(X) = 0 if and only if X ~ = is contractible.

cat(X) depends only on the homotopy type of X
cat(X) = secat(x — X)

cat(X) >

Let X be any path-connected space. Then

cuplenght(X)

cat(X) < TC(X) < 2 cat(X)
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Second part:




First approach: Weak topological complexity

Let p : E — B be a cofibration. We consider:
T"(p) := {(bo, b1, ...,b,) € B""' : b; € E for some i}

and denote k, : T"(p) < B"*! the natural inclusion.



First approach: Weak topological complexity

Let p : E — B be a cofibration. We consider:
T"(p) := {(bo, b1, ...,b,) € B""' : b; € E for some i}

and denote k, : T"(p) < B"*! the natural inclusion.
If p is any map, then we consider p’ its associated cofibration. Then
T"(p) := T"(p’) and there is an induced map k, : T"(p) — B"T!



First approach: Weak topological complexity

Let p : E — B be a cofibration. We consider:
T"(p) := {(bo, b1, ...,b,) € B""' : b; € E for some i}

and denote k, : T"(p) < B"*! the natural inclusion.
If p is any map, then we consider p’ its associated cofibration. Then
T"(p) := T"(p’) and there is an induced map k, : T"(p) — B"T!

Theorem (Whitehead characterization of sectional category)

Let p be any map, where B is a normal space. Then secat(p) < n if and only
if there is, up to homotopy, a lift

"(p)

5 k.

B — = Bn+1
AN




First approach: Weak topological complexity

Let p : E — B be a cofibration. We consider:
T"(p) := {(bo, b1, ...,b,) € B""' : b; € E for some i}

and denote k, : T"(p) < B"*! the natural inclusion.
If p is any map, then we consider p’ its associated cofibration. Then
T"(p) := T"(p’) and there is an induced map k, : T"(p) — B"T!

Theorem (Whitehead characterization of sectional category)

Let p be any map, where B is a normal space. Then secat(p) < n if and only
if there is, up to homotopy, a lift

"(p)

5 k.

B — = Bn+1
AN




Approaches to topological complexity

O®000

Particular cases

o If p = : % — X, then T"(p) = T"(X) is the usual fat-wedge and we
obtain the well-known Whitehead characterization of cat(X).




Approaches to topological complexity

O®000

Particular cases

o If p = : % — X, then T"(p) = T"(X) is the usual fat-wedge and we
obtain the well-known Whitehead characterization of cat(X).

o If p=Ax: X — X x X, then

T"(Ax) = {(y0,¥1, -, ¥n) € (X x X)"™' 1 y; € A(X) for some i}
Moreover, TC(X) < n if and only if

T"(Ax)

T

XXX —> (X x X)"t!

n+1




Particular cases

o If p = : % — X, then T"(p) = T"(X) is the usual fat-wedge and we
obtain the well-known Whitehead characterization of cat(X).

o If p=Ax: X — X x X, then
T"(Ax) = {(y0,¥1, -, ¥n) € (X x X)"™' 1 y; € A(X) for some i}
Moreover, TC(X) < n if and only if

T"(Ax)

T

XXX —> (X x X)"t!

n+1

Observation

| D
A\

If X is a CW-complex or a topological manifold, then the diagonal map Ay
is a cofibration. The spaces for which this fact holds are called locally
equiconnected.




Weak sectional category

Let p : E — B be any map. The weak sectional category of p, wsecat(p) is
the least integer n such that the composition /,A, 1| >~ * is null-homotopic:

B

AV l ; *
EN

™" (p) kn Bn+ 1 » Ck,,

where the bottom row is the homotopy cofibre of k;,.
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Weak sectional category

Let p : E — B be any map. The weak sectional category of p, wsecat(p) is
the least integer n such that the composition /,A, 1| >~ * is null-homotopic:

B

AV l ; *
EN

™" (p) kn Bn+ 1 » Ck,,

where the bottom row is the homotopy cofibre of k;,.

e wsecat(p) < secat(p) (use Whitehead characterization)

@ When p = x : x — X, then we recover the usual notion of weak
category, wcat(X), in the sense of Berstein-Hilton.



Properties of weak sectional category

Theorem (L.Vandembroucq, G.-C.)

Letp : E — B be any map, and C, denote its homotopy cofibre. Then the
following hold:

e wsecat(p) < wcat(B)

e wsecat(p) > nil ker p*

e wecat(C,) — 1 < wsecat(p) < wcat(C,)

o If the map p admits a homotopy retraction, then

wsecat(p) = wcat(C),)

Moreover nil ker p* = cuplength(C,).
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The weak topological complexity of a space X is
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Corollary (Properties of weak topological complexity)

Let X be any space. Then, if Ca, denotes the homotopy cofibre of the
diagonal map Ay : X — X x X we have:

e WIC(X) > nilker (U) = cuplength(Ca,)
o WIC(X) = wcat(Ca,).
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Definition (Weak topological complexity)

The weak topological complexity of a space X is
wTC(X) := wsecat(Ay)

the weak sectional category of the diagonal map Ay : X — X x X.
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Corollary (Properties of weak topological complexity)

Let X be any space. Then, if Ca, denotes the homotopy cofibre of the
diagonal map Ay : X — X x X we have:

e WIC(X) > nilker (U) = cuplength(Ca,)
o WIC(X) = wcat(Ca,).

Comment
The inequality wTC(X) > nil ker (U) can be strict.

For instance, if X = S* U,, e’ is the 7-skeleton of Sp(2), then it can be
proved that nil ker (U) = 2 and wTC(X) = 3.

| A\

N,
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We have seen that wTC(X) = wcat(Ca, ). Is it true that TC(X) = cat(Ca,)?

Arkowitz and Strom proved that if A BN G Cy, is a homotopy cofibre,
then cat(Cj,) < secat(h) + 1. In our case we have:

cat(Ca,) < TC(X) + 1

Using a Ganea-type characterization of sectional category (iterated fibred
joins of the map) and classical homotopy methods we obtain:

Theorem (L.Vandembroucq, G.C.)

Let X be a (¢ — 1)-connected finite dimensional CW-complex (g > 1).
o If dim(X) < ¢(TC(X) + 1) — 2, then cat(Ca, ) < TC(X).
o If 2dim(X) < 2g — 2 + gcat(Ca, ), then TC(X) < cat(Ca,).




Examples in which TC(X) = cat(Ca,)

o TC(S") = cat(Ca,.)
@ If X is an H-space, then TC(X) = cat(X) = cat(Ca,)

o If X is a closed, 1-connected symplectic manifold. Then
TC(X) = cat(Ca,)

o If X = ¥, is a compact orientable surface of genus g, then
TC(X) = cat(Cay)
o If X is any finite graph, then TC(X) = cat(Ca,)
o If X = F(R™, n) is the space of configurations of  distinct points in R”

FR™ n) = {(x1, ..., %) € (R™)" : x; # x; fori # j}

with n,m > 2, then TC(X) = cat(Ca,)
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The case of real projective spaces

In this case we need more sophisticated techniques. The key point is the
non-existence of elements of Hopf invariant one (Adams, F.J.).

Theorem (L.Vandembroucq, G.-C.)
Let n > 0 be any integer. Then TC(RP") = cat(Cay,. )-

If n # 1,3,7, then cat(Ca,,. ) is the least integer k such that RP" can be
immersed in R*

Open problem
Is it true that TC(X) = cat(Ca, ) for any space X?

So far we haven’t found any counterexamples!
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Third approach: Monoidal topological complexity

The following situation is not desirable for a local continuous motion
planning algorithm s : U — X’ : J

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

We want s to be optimal by requiring s(A, A) to be the static path at A (i.e.,
no movement from A to A!!!) J
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Definition (Iwase-Sakai)

The monoidal topological complexity of a space X, TCY (X), is the least
non-negative integer k such that X x X admits an open cover

XxX=UyuU U..UU;

such that for any i, Ay(X) C U; and 7 : X! — X x X admits a local
continuous section s; satisfying s;(A, A) = c4 (i.e., the constant path at A).
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Definition (Iwase-Sakai)

The monoidal topological complexity of a space X, TCY (X), is the least
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Iwase-Sakai’s conjecture

For any CW-complex X, TC(X) = TCY (X)
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non-negative integer k such that X x X admits an open cover

XxX=UyuU U..UU;

such that for any i, Ay(X) C U; and 7 : X! — X x X admits a local
continuous section s; satisfying s;(A, A) = c4 (i.e., the constant path at A).

4

Theorem (Iwase, Sakai)

If X is a CW complex, then TC(X) < TCY(X) < TC(X) + 1

Iwase-Sakai’s conjecture

For any CW-complex X, TC(X) = TCY (X)

Theorem (Dranishnikov)

If X is a (¢ — 1)-connected CW-complex and dim(X) < g(TC(X) + 1) — 2,
then TC(X) = TCY(X).
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Let p : E — B be a cofibration. Recall the n-th sectional fat wedge:

T"(p) = {(bo, b1, ...,b,) € B : b; € E for some i}

Definition (Doeraene, El Haouari)

Let p : E < B be a cofibration. The relative category of p, relcat(p) is the
least non-negative integer n such that there is a map ¢ : B — T"(p) such that
op = 1, and k,p ~ A, rel. E

E— T 1)

p L k

B: - B!
Apyy

If p is any map, then relcat(p) := relcat(p’) where p’ is the cofibration
associated to p.
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Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any le. space X we have the equality TCY (X) = relcat(Ax)
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Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any le. space X we have the equality TCY (X) = relcat(Ax)

Doeraene-El Haouari’s conjecture

If p admits a homotopy retraction, then secat(p) = relcat(p)




Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any le. space X we have the equality TCY (X) = relcat(Ax)

Doeraene-El Haouari’s conjecture

If p admits a homotopy retraction, then secat(p) = relcat(p)

For p = Ax we have Iwase-Sakai’s conjecture TC(X) = TCY (X) J
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Weak relative category

Definition (Weak relative category)

Let p : E — B be a cofibration. The weak relative category of p,
wrelcat(p), is the least integer n such that the composition [,A, | ~ * rel. E:

B

T'(p) ——= B" —— G,
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Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

Letp : E — B be a cofibration and C,, = B/E its homotopy cofibre. Then
the following chain of inequalities holds:

cuplength(C,) < wcat(C,) = wrelcat(p) < relcat(p)

Moreover, if p admits a homotopy retraction, then wrelcat(p) = wsecat(p).
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Definition (Weak monoidal topological complexity)

Let X be a locally equiconnected space (i.e., Ay is a cofibration). Then we
define the weak monoidal topological complexity of X as

wTCY (X) := wrelcat(Ay)
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Letp : E — B be a cofibration and C,, = B/E its homotopy cofibre. Then
the following chain of inequalities holds:

cuplength(C,) < wcat(C,) = wrelcat(p) < relcat(p)

Moreover, if p admits a homotopy retraction, then wrelcat(p) = wsecat(p).

Definition (Weak monoidal topological complexity)

Let X be a locally equiconnected space (i.e., Ay is a cofibration). Then we
define the weak monoidal topological complexity of X as

wTCY (X) := wrelcat(Ay)

| N

Corollary

If X is a CW-complex, then wTC(X) = wTCY (X). Moreover, this number
agrees with wcat(Ca, ).

A\




Thanks for listening!
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