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First part: Topological complexity of robot motion planning



Topological complexity of robot motion planning. Approaches to topological complexity

Configuration space.

The configuration space X associated to a given mechanical system S is the
set of all possible states of S. In most applications, the configuration space
comes equipped with a structure of topological space.

States (or configurations) of the system S correspond to points A ∈ X

Motions of the system from the state A to the state B correspond to
paths in X joining A to B.
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Some examples of configuration spaces:
• A robot moving on a room with obstacles
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• A robot arm consisting of several bars connected by revolving joins. We
allow self-intersections of the arm

The configuration space is X = S1 × S1 × ...× S1

In the spacial case we have: X = S2 × S2 × ...× S2
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• A flying robot that can translate and rotate.

A configuration requires 6 parameters: (x, y, z) for translation, and Euler
angles (α, β, γ) for rotation.
The configuration space is X = R3 × SO(3).
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• A rigid bar moving freely in the 3-space, where the center is fixed

The configuration space is RP2 (the real projective plane)
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Motion planning problem.

Motion planning is a central theme in robotics

Motion planning

The motion planning problem consists of producing a continuous motion
that connects a start configuration A and a goal configuration B.

Motion planning has several robotics applications: automation (or automatic
control), robotic surgery, architectural design, video game artificial
intelligence, the study of biological molecules, et cetera...
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Motion planning algorithm

In terms of the configuration space X the motion planning algorithm:
Input: a point (A,B) ∈ X × X

Output: a path α : [0, 1]→ X such that α(0) = A and α(1) = B.

If X is the configuration space, then consider the free path fibration:

π : XI → X × X, α 7→ (α(0), α(1))

where XI denotes the space of all paths in X.

In these terms, a motion planning algorithm is precisely a section (not
necessarily continuous) of π. That is, a map

s : X × X → XI

such that π ◦ s = id
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Continuity of a motion planning algorithm s is desired. It means that the
suggested route s(A,B) of going from A to B depends continuously on the
states A and B

Theorem

There exists a continuous section s : X × X → XI of π if and only if the
space X is contractible.

Consequence

In general, motion planning algorithms have discontinuities.

We can consider local continuous sections of π. These are maps defined on
an open subset U ⊂ X × X

s : U → XI

such that π ◦ s = inc : U ↪→ X × X.
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Topological complexity of a topological space

In order to study the discontinuities in
these algorithms the following notion
was introduced by M. Farber in 2003:

Definition (Farber)

The (normalized) topological complexity of a topological space X, TC(X),
is the least non-negative integer k such that X × X can be covered by k + 1
open subsets

X × X = U0 ∪ U1 ∪ ... ∪ Uk

on each of which π : XI → X × X admits a local continuous section.
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A general invariant

Definition
The sectional category (or Schwarz genus) of a fibration p : E � B,
secat(p), is the least integer k such that B can be covered by k + 1 open
subsets B = U0 ∪ U1 ∪ ... ∪ Uk on each of which there exists a local
continuous section si : Ui → E

The sectional category can be defined to any map f : X → Y by just requiring
local continuous homotopy sections si : Ui → E. That is psi ' inc : Ui ↪→ B.

Equivalently, we can take the associated fibration of f :

X
f //

'
��?

??
??

??
? Y

Z
p

?? ??��������

and define secat(f ) := secat(p).
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Topological complexity is a sectional category

TC(X) = secat(π : XI → X × X). Observe that we can also consider

TC(X) = secat(∆X : X → X × X)

Useful property for computations

Let p : E → B be any map and consider p∗ : H∗(B)→ H∗(E) the
homomorphism induced in cohomology of p. If x1, ..., xk ∈ H∗(B) are such
that p∗(xi) = 0 and x1 ∪ ... ∪ xk 6= 0, then secat(p) ≥ k.
In other words, secat(p) ≥ nil ker(p∗).

The nilpotency nil I of an ideal I / R is the least integer k such that Ik+1 = 0.

The property for topological complexity

Taking cohomology with coefficients in any field we have that

(∆X)∗ = ∪ : H∗(X)⊗ H∗(X)→ H∗(X)

is precisely the cup product. The kernel of ∪ is called the ideal of
zero-divisors of H∗(X). Therefore TC(X) ≥ nil ker(∪)
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Back to topological complexity

Basic properties:

TC(X) = 0 if and only if X ' ∗ is contractible
TC(X) depends only on the homotopy type of X

Examples of easy standard computations:

TC(Sn) =

{
1 if n is odd
2 if n is even

Let Sg be the compact connected orientable surface of genus g. Then

TC(Sg) =

{
2 if g ≤ 1
4 if g ≥ 2
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How hard is the computation of TC?

Theorem (Farber-Tabachnikov-Yuzvinski (2003))

If n 6= 1, 3, 7, then TC(RPn) is the least integer k for which there is an
immersion

RPn ↪→ Rk

In general, the computation of topological complexity is a very hard task!

Strategy

One way of dealing with topological complexity is to consider
approximations that, in some sense, are more manageable and therefore
more computable.
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An auxiliary invariant: Lusternik-Schnirelmann category

Definition

The L.S. category of a space X, cat(X), is the least non-negative integer k
such that X admits an open cover X = U0 ∪ U1 ∪ ... ∪ Uk where each Ui is
contractible in X

Basic properties

cat(X) = 0 if and only if X ' ∗ is contractible.
cat(X) depends only on the homotopy type of X

cat(X) = secat(∗ → X)

cat(X) ≥ cuplenght(X)

Let X be any path-connected space. Then

cat(X) ≤ TC(X) ≤ 2 cat(X)
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Second part: Approaches of TC
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First approach: Weak topological complexity

Let p : E ↪→ B be a cofibration. We consider:

Tn(p) := {(b0, b1, ..., bn) ∈ Bn+1 : bi ∈ E for some i}

and denote kn : Tn(p) ↪→ Bn+1 the natural inclusion.

If p is any map, then we consider p′ its associated cofibration. Then
Tn(p) := Tn(p′) and there is an induced map kn : Tn(p)→ Bn+1

Theorem (Whitehead characterization of sectional category)

Let p be any map, where B is a normal space. Then secat(p) ≤ n if and only
if there is, up to homotopy, a lift

Tn(p)

kn

��
B

==

∆n+1

// Bn+1
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Particular cases

If p = ∗ : ∗ → X, then Tn(p) = Tn(X) is the usual fat-wedge and we
obtain the well-known Whitehead characterization of cat(X).

If p = ∆X : X → X × X, then

Tn(∆X) = {(y0, y1, ..., yn) ∈ (X × X)n+1 : yi ∈ ∆(X) for some i}

Moreover, TC(X) ≤ n if and only if

Tn(∆X)� _

��
X × X

99

∆n+1

// (X × X)n+1

Observation
If X is a CW-complex or a topological manifold, then the diagonal map ∆X

is a cofibration. The spaces for which this fact holds are called locally
equiconnected.
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Weak sectional category

Definition

Let p : E → B be any map. The weak sectional category of p, wsecat(p) is
the least integer n such that the composition ln∆n+1 ' ∗ is null-homotopic:

B

∆n+1

��
∗

""
Tn(p)

kn

// Bn+1
ln
// Ckn

where the bottom row is the homotopy cofibre of kn.

wsecat(p) ≤ secat(p) (use Whitehead characterization)
When p = ∗ : ∗ → X, then we recover the usual notion of weak
category, wcat(X), in the sense of Berstein-Hilton.
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Properties of weak sectional category

Theorem (L.Vandembroucq, G.-C.)

Let p : E → B be any map, and Cp denote its homotopy cofibre. Then the
following hold:

wsecat(p) ≤ wcat(B)

wsecat(p) ≥ nil ker p∗

wcat(Cp)− 1 ≤ wsecat(p) ≤ wcat(Cp)

If the map p admits a homotopy retraction, then

wsecat(p) = wcat(Cp)

Moreover nil ker p∗ = cuplength(Cp).
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Weak topological complexity

Definition (Weak topological complexity)

The weak topological complexity of a space X is

wTC(X) := wsecat(∆X)

the weak sectional category of the diagonal map ∆X : X → X × X.

Corollary (Properties of weak topological complexity)

Let X be any space. Then, if C∆X denotes the homotopy cofibre of the
diagonal map ∆X : X → X × X we have:

wTC(X) ≥ nil ker (∪) = cuplength(C∆X )

wTC(X) = wcat(C∆X ).

Comment

The inequality wTC(X) ≥ nil ker (∪) can be strict.
For instance, if X = S3 ∪α e7 is the 7-skeleton of Sp(2), then it can be
proved that nil ker (∪) = 2 and wTC(X) = 3.



Topological complexity of robot motion planning. Approaches to topological complexity

Weak topological complexity

Definition (Weak topological complexity)

The weak topological complexity of a space X is

wTC(X) := wsecat(∆X)

the weak sectional category of the diagonal map ∆X : X → X × X.

Corollary (Properties of weak topological complexity)

Let X be any space. Then, if C∆X denotes the homotopy cofibre of the
diagonal map ∆X : X → X × X we have:

wTC(X) ≥ nil ker (∪) = cuplength(C∆X )

wTC(X) = wcat(C∆X ).

Comment

The inequality wTC(X) ≥ nil ker (∪) can be strict.
For instance, if X = S3 ∪α e7 is the 7-skeleton of Sp(2), then it can be
proved that nil ker (∪) = 2 and wTC(X) = 3.



Topological complexity of robot motion planning. Approaches to topological complexity

Weak topological complexity

Definition (Weak topological complexity)

The weak topological complexity of a space X is

wTC(X) := wsecat(∆X)

the weak sectional category of the diagonal map ∆X : X → X × X.

Corollary (Properties of weak topological complexity)

Let X be any space. Then, if C∆X denotes the homotopy cofibre of the
diagonal map ∆X : X → X × X we have:

wTC(X) ≥ nil ker (∪) = cuplength(C∆X )

wTC(X) = wcat(C∆X ).

Comment

The inequality wTC(X) ≥ nil ker (∪) can be strict.
For instance, if X = S3 ∪α e7 is the 7-skeleton of Sp(2), then it can be
proved that nil ker (∪) = 2 and wTC(X) = 3.



Topological complexity of robot motion planning. Approaches to topological complexity

Second approach: the category of C∆X

We have seen that wTC(X) = wcat(C∆X ). Is it true that TC(X) = cat(C∆X )?

Arkowitz and Strom proved that if A h−→ Y α−→ Ch is a homotopy cofibre,
then cat(Ch) ≤ secat(h) + 1. In our case we have:

cat(C∆X ) ≤ TC(X) + 1

Using a Ganea-type characterization of sectional category (iterated fibred
joins of the map) and classical homotopy methods we obtain:

Theorem (L.Vandembroucq, G.C.)

Let X be a (q− 1)-connected finite dimensional CW-complex (q ≥ 1).
If dim(X) ≤ q(TC(X) + 1)− 2, then cat(C∆X ) ≤ TC(X).

If 2 dim(X) ≤ 2q− 2 + qcat(C∆X ), then TC(X) ≤ cat(C∆X ).
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Examples in which TC(X) = cat(C∆X )

TC(Sn) = cat(C∆Sn )

If X is an H-space, then TC(X) = cat(X) = cat(C∆X )

If X is a closed, 1-connected symplectic manifold. Then
TC(X) = cat(C∆X )

If X = Σg is a compact orientable surface of genus g, then
TC(X) = cat(C∆X )

If X is any finite graph, then TC(X) = cat(C∆X )

If X = F(Rm, n) is the space of configurations of n distinct points in Rm

F(Rm, n) = {(x1, ..., xn) ∈ (Rm)n : xi 6= xj for i 6= j}

with n,m ≥ 2, then TC(X) = cat(C∆X )
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The case of real projective spaces

In this case we need more sophisticated techniques. The key point is the
non-existence of elements of Hopf invariant one (Adams, F.J.).

Theorem (L.Vandembroucq, G.-C.)

Let n ≥ 0 be any integer. Then TC(RPn) = cat(C∆RPn ).

Corollary

If n 6= 1, 3, 7, then cat(C∆RPn ) is the least integer k such that RPn can be
immersed in Rk

Open problem

Is it true that TC(X) = cat(C∆X ) for any space X?

So far we haven’t found any counterexamples!
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Third approach: Monoidal topological complexity

The following situation is not desirable for a local continuous motion
planning algorithm s : U → XI :

We want s to be optimal by requiring s(A,A) to be the static path at A (i.e.,
no movement from A to A!!!)
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Definition (Iwase-Sakai)

The monoidal topological complexity of a space X, TCM(X), is the least
non-negative integer k such that X × X admits an open cover

X × X = U0 ∪ U1 ∪ ... ∪ Uk

such that for any i, ∆X(X) ⊂ Ui and π : XI → X × X admits a local
continuous section si satisfying si(A,A) = cA (i.e., the constant path at A).

Theorem (Iwase, Sakai)

If X is a CW complex, then TC(X) ≤ TCM(X) ≤ TC(X) + 1

Iwase-Sakai’s conjecture

For any CW-complex X, TC(X) = TCM(X)

Theorem (Dranishnikov)

If X is a (q− 1)-connected CW-complex and dim(X) ≤ q(TC(X) + 1)− 2,
then TC(X) = TCM(X).
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Let p : E ↪→ B be a cofibration. Recall the n-th sectional fat wedge:

Tn(p) = {(b0, b1, ..., bn) ∈ Bn+1 : bi ∈ E for some i}

Definition (Doeraene, El Haouari)

Let p : E ↪→ B be a cofibration. The relative category of p, relcat(p) is the
least non-negative integer n such that there is a map φ : B→ Tn(p) such that
φp = τn and knφ ' ∆n+1 rel. E

E
τn //� _

p

��

Tn(p)� _

kn

��
B

φ
77

∆n+1

// Bn+1

If p is any map, then relcat(p) := relcat(p′) where p′ is the cofibration
associated to p.
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Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

For any l.e. space X we have the equality TCM(X) = relcat(∆X)

Doeraene-El Haouari’s conjecture

If p admits a homotopy retraction, then secat(p) = relcat(p)

For p = ∆X we have Iwase-Sakai’s conjecture TC(X) = TCM(X)
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Weak relative category

Definition (Weak relative category)

Let p : E ↪→ B be a cofibration. The weak relative category of p,
wrelcat(p), is the least integer n such that the composition ln∆n+1 ' ∗ rel. E:

B
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Theorem (J. Carrasquel, L. Vandembroucq, G.C.)

Let p : E ↪→ B be a cofibration and Cp = B/E its homotopy cofibre. Then
the following chain of inequalities holds:

cuplength(Cp) ≤ wcat(Cp) = wrelcat(p) ≤ relcat(p)

Moreover, if p admits a homotopy retraction, then wrelcat(p) = wsecat(p).

Definition (Weak monoidal topological complexity)

Let X be a locally equiconnected space (i.e., ∆X is a cofibration). Then we
define the weak monoidal topological complexity of X as

wTCM(X) := wrelcat(∆X)

Corollary

If X is a CW-complex, then wTC(X) = wTCM(X). Moreover, this number
agrees with wcat(C∆X ).
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Thanks for listening!
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