The Ribes-Zalesskiī-Theorem Generalisation News

The Ribes-Zalesskii-Theorem revisited

K. Auinger

aep-math2015, Porto, June 10

Notation throughout:

- A a finite alphabet
- F the free group on A

Theorem (Ribes–Zalesskiĭ 1993)

The set product $H_1 \cdots H_n$ of any finite number of finitely generated subgroups H_i of F is closed in the profinite topology of F.

Original motivation: Rhodes type-II conjecture

Generalization (Ribes-Zalesskii 1993)

For every extension closed pseudovariety **H** of groups, the product $H_1 \cdots H_n$ is closed in the pro-**H** topology of *F* provided that the constituents H_i are pro-**H** closed.

I need two concepts:

- tree-like profinite graph
- **2** H-extendible subgroup of F

ad 1:

- a profinite graph is a projective limit of finite graphs
- a *connected* profinite graph is one all of whose finite quotients are connected as abstract graphs

Definition

A (connected) profinite graph Γ is *tree-like* if any two vertices u, v of Γ admit a smallest (w.r.t. containment) connected subgraph [u, v] of Γ containing u and v — the *geodesic* between u and v.

ad 2:

- every finitely generated subgroup H of F can be encoded by a uniquely determined connected finite directed A-labeled pointed graph *H* (Stallings graph of H)
- the letters of A induce partial injective mappings on the vertex set of \mathscr{H}
- a completion H of H is a connected finite directed
 A-labeled over-graph of H such that all letters of A induce permutations on the vertex set of H
- the permutation group thereby generated by A is the transition group of $\overline{\mathcal{H}}$.

Definition (Margolis-Sapir-Weil 2001)

A finitely generated subgroup H of F is **H**-extendible if the Stallings graph \mathcal{H} admits a completion $\overline{\mathcal{H}}$ whose transition group is in **H**.

Theorem (B. Steinberg, K. A. 2004)

Let **H** be a pseudovariety of groups and let $\widehat{F_{H}}$ be the pro-**H**-completion of *F*. Then the following are equivalent:

- **1** the Cayley-graph of $\widehat{F_{\mathbf{H}}}$ is tree-like
- the set product H₁H₂ of any two H-extendible subgroups H_i of F is pro-H-closed in F
- of revery n ≥ 1, the set product H₁ · · · H_n of any H-extendible subgroups H_i of F is pro-H-closed in F.

For $\mathbf{H} =$ the pseudovariety of all groups this gives immediately the Ribes-Zalesskii-Theorem (similarly for \mathbf{H} extension closed).

Open Problem

Can condition (2) of the Theorem be replaced by

• every **H**-extendible subgroup H of F is pro-**H**-closed in F?

 The Ribes-Zalesskii-Theorem
 Formations

 Generalisation
 New proofs: covering graphs

 News
 Tree-like Cayley graphs

The theorem is true for "pseudovariety" replaced with "formation":

Theorem

Let \mathfrak{F} be a formation of groups and let $F_{\mathfrak{F}}$ be the pro- \mathfrak{F} -completion of F. Then the following are equivalent:

- the Cayley graph of $\widehat{F_{\mathfrak{F}}}$ is tree-like
- the set product H₁H₂ of any two S-extendible subgroups H_i of F is pro-S-closed in F
- for every n ≥ 1, the set product H₁ · · · H_n of any 𝔅-extendible subgroups H_i of F is pro-𝔅-closed in F.

Why formations?

- definition of pro- \mathfrak{X} topology of F is natural for \mathfrak{X} a formation
- Ballester-Bolinches / Pin / Soler-Escrivà
- new examples!!

- original proofs depend on heavy use of inverse monoids
- Cayley graph $\Gamma(\widehat{F_{\mathfrak{F}}})$ being tree-like is equivalent to the profinite inverse monoid $\widehat{M}(\widehat{F_{\mathfrak{F}}})$ being *F*-inverse
- one works with the finite quotients of $\widehat{M}(\widehat{F_{\mathfrak{F}}})$ looks at "point-like pairs" and "liftable tuples" and afterwards translates back to the Cayley graph $\Gamma(\widehat{F_{\mathfrak{F}}})$
- obscures what's really going on: the tight connection between the geometry of the graph Γ(F_s) and the pro-s-topology of F

let H be an \mathfrak{F} -extendible subgroup of F and \mathscr{H} its Stallings graph

let $\overline{\mathscr{H}}$ be a completion of \mathscr{H} with transition group $T\in\mathfrak{F}$

there is a canonical graph morphism $\Gamma(T) \twoheadrightarrow \overline{\mathscr{H}}$

there is a (canonical) subgraph \mathscr{H}^T of the Cayley graph $\Gamma(T)$ such that $\mathscr{H}^T \twoheadrightarrow \mathscr{H}$

there is a (canonical) subgraph $\mathscr{H}^{\widehat{F_{\mathfrak{F}}}}$ of the Cayley graph $\Gamma(\widehat{F_{\mathfrak{F}}})$ such that $\mathscr{H}^{\widehat{F_{\mathfrak{F}}}} \twoheadrightarrow \mathscr{H}$

this leads to more transparent direct proofs

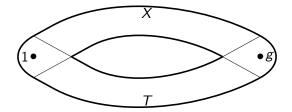
The Ribes-Zalesskiī-Theorem Formations Generalisation New proofs: covering graphs News Tree-like Cayley graphs

What forces a profinite group $\mathfrak{G} = \langle A \rangle$ to have a tree-like Cayley graph?

Definition

Let G be an A-generated (pro)finite group. An annular constellation in G is a triple (X, g, T) where

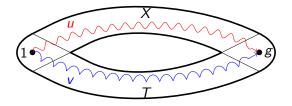
- **()** X, T are connected subgraphs of $\Gamma(G)$
- **2** 1, g are vertices of distinct connected components of $X \cap T$



Definition

Let G be a finite A-generated groups and (X, g, T) be an annular constellation of G. An A-generated co-extension $H \rightarrow G$ dissolves (X, g, T) if, for all $u, v \in F$ for which $[u]_G = g = [v]_G$ and $u: 1 \rightarrow g$ runs in X while $v: 1 \rightarrow g$ runs in T, the inequality $[u]_H \neq [v]_H$ holds.

That is, whenever in G we have:



then, in H we have $[u]_H \neq [v]_H$.

Theorem

An A-generated profinite group \mathcal{G} has a tree-like Cayley graph if and only if each finite quotient G of \mathcal{G} admits a finite quotient H of \mathcal{G} which dissolves all annular constellations of G.

Given a group G, we want a co-extension $\widetilde{G} \twoheadrightarrow G$ which dissolves all annular constellations of G. This will be accomplished by this construction: let S be a finite simple group and R be a finitely generated free group; let R(S) be the intersection of all normal subgroups N of R for which R/N is a direct power of S; R(S) is a characteristic subgroup of R; if $S = C_p$ then $R(C_p) = R^p[R, R]$.

Definition

Let G be an A-generated finite group and let R be the kernel of the canonical morphism $F \twoheadrightarrow G$. The A-universal S-extension $G^{A,S}$ of G is defined by $G^{A,S} := F/R(S)$.

Theorem

 $G^{A,S}$ dissolves all annular constellations of G.

Example

- let S be any finite simple non-abelian group
- let \mathfrak{S} be the formation of all finite groups all of whose principal factors are isomorphic with S

• set
$$R_1 := F(S)$$
 and $R_{n+1} := R_n(S)$

- then $\widehat{F_{\mathfrak{S}}} = \lim_{n \to \infty} F/R_n$ has tree-like Cayley graph
- the set-product H₁ · · · H_n of any finite number n of pro-𝔅-closed finitely generated subgroups H_i of F is pro-𝔅 closed in F

Thanks!