Wandering Fatou Components in Dimension Two

Jasmin Raissy

Institut de Mathématiques de Toulouse Université Paul Sabatier – Toulouse III

(Joint work with M. Astorg, X. Buff, R. Dujardin and H. Peters)

AMS-EMS-SPM Meeting – Complex Dynamics and Foliations

Jasmin Raissy (IMT)

Wandering Fatou Components

June 11, 2015 1 / 13

< ロ > < 同 > < 回 > < 回 >

Let X be a complex manifold and $F: X \to X$ be holomorphic.

イロト イヨト イヨト イヨト

Let *X* be a complex manifold and $F : X \to X$ be holomorphic. Fatou set of $F : \mathcal{F}(F) =$ largest open set where $\{F^n\}_{n \in \mathbb{N}}$ is normal Julia set of $F : \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

Let *X* be a complex manifold and $F : X \to X$ be holomorphic. Fatou set of $F : \mathcal{F}(F) =$ largest open set where $\{F^n\}_{n \in \mathbb{N}}$ is normal Julia set of $F : \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

Fatou Component: connected component of $\mathcal{F}(F)$

Let X be a complex manifold and $F: X \rightarrow X$ be holomorphic.

Fatou set of $F: \mathcal{F}(F) =$ largest open set where $\{F^n\}_{n \in \mathbb{N}}$ is normal Julia set of $F: \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

Fatou Component: connected component of $\mathcal{F}(F)$

Example

$$X = \mathbb{P}^1(\mathbb{C})$$
, and $F(z) = z^2$.

•
$$\mathcal{F}(F) = \mathbb{P}^1(\mathbb{C}) \setminus \mathbb{S}^1$$

• Fatou components: D(0,1) and $\mathbb{P}^1(\mathbb{C}) \setminus \overline{D(0,1)}$

Fatou Components

Let $X = \mathbb{P}^1(\mathbb{C})$ and $F \colon \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ be a rational function.

Theorem (Fatou, Julia, Siegel, Herman...)

A periodic Fatou component for $F \colon \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is:

- either the basin of a (super)attracting point,
- or a parabolic basin,
- or a rotation domain (a Siegel disk or a Herman ring)

Fatou Components

Let $X = \mathbb{P}^1(\mathbb{C})$ and $F \colon \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ be a rational function.

Theorem (Fatou, Julia, Siegel, Herman...)

A periodic Fatou component for $F \colon \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is:

- either the basin of a (super)attracting point,
- or a parabolic basin,
- or a rotation domain (a Siegel disk or a Herman ring)

Theorem (Sullivan, 1985)

Every Fatou component of $F : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ a rational map of degree $d \ge 2$ is (pre)periodic.

Fatou Components

Theorem (Sullivan, 1985)

Every Fatou component of $F : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ a rational map of degree $d \ge 2$ is (pre)periodic.

What happens when we drop one of the hypotheses?

Theorem (Baker 1976)

There exists an entire function $F : \mathbb{C} \to \mathbb{C}$ with a wandering Fatou component.

Theorem (Baker 1976)

There exists an entire function $F : \mathbb{C} \to \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z - e^z + 2\pi i$ and $z \mapsto z + 2\pi - \sin(z)$ have wandering domains.

 $z \mapsto z + 2\pi - \sin(z)$

Jasmin Raissy (IMT)

Wandering Fatou Components

(4) (5) (4) (5)

Theorem (Baker 1976)

There exists an entire function $F : \mathbb{C} \to \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z - e^z + 2\pi i$ and $z \mapsto z + 2\pi - \sin(z)$ have wandering domains.

Other examples (dim 1): Eremenko, Lyubich, and, recently, Bishop.

イロト 不得 トイヨト イヨト 二日

Theorem (Baker 1976)

There exists an entire function $F : \mathbb{C} \to \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z - e^z + 2\pi i$ and $z \mapsto z + 2\pi - \sin(z)$ have wandering domains.

Other examples (dim 1): Eremenko, Lyubich, and, recently, Bishop.

Theorem (Fornæss-Sibony 1998)

There exists a biholomorphism $F\colon \mathbb{C}^2\to \mathbb{C}^2$ having a wandering domain.

Theorem (Baker 1976)

There exists an entire function $F : \mathbb{C} \to \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z - e^z + 2\pi i$ and $z \mapsto z + 2\pi - \sin(z)$ have wandering domains.

Other examples (dim 1): Eremenko, Lyubich, and, recently, Bishop.

Theorem (Fornæss-Sibony 1998)

There exists a biholomorphism $F\colon \mathbb{C}^2\to \mathbb{C}^2$ having a wandering domain.

In all these examples the wandering domain is not bounded.

Jasmin Raissy (IMT)

Wandering Fatou Components

■ ▶ ◀ ■ ▶ ■ つへで June 11, 2015 4 / 13

Does it exist an endomorphism of $\mathbb{P}^k(\mathbb{C})$ ($k \ge 2$) with a wandering Fatou component?

< ロ > < 同 > < 回 > < 回 >

Does it exist an endomorphism of $\mathbb{P}^{k}(\mathbb{C})$ ($k \geq 2$) with a wandering Fatou component?

Lyubich and Peters have found an approach to answer to this question.

Does it exist an endomorphism of $\mathbb{P}^k(\mathbb{C})$ ($k \ge 2$) with a wandering Fatou component?

Lyubich and Peters have found an approach to answer to this question.

Idea: to use skew-products, $(z, w) \mapsto (f(z, w), g(w))$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Does it exist an endomorphism of $\mathbb{P}^k(\mathbb{C})$ $(k \ge 2)$ with a wandering Fatou component?

Idea: (Lyubich-Peters) to use skew-products, $(z, w) \mapsto (f(z, w), g(w))$.

- Lilov (2004): skew-products cannot have wandering Fatou components near a *super-attracting* invariant fiber.
- Peters and Vivas (2014): Lilov's argument is not true for *attracting* invariant fibers.

< 回 > < 三 > < 三 >

Does it exist an endomorphism of $\mathbb{P}^k(\mathbb{C})$ $(k \ge 2)$ with a wandering Fatou component? Yes

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

There exists $F : \mathbb{P}^2(\mathbb{C}) \to \mathbb{P}^2(\mathbb{C})$ a holomorphic endomorphism, induced by a polynomial skew-product $F : \mathbb{C}^2 \to \mathbb{C}^2$, with a wandering Fatou component.

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

The endomorphism $F\colon \mathbb{P}^2(\mathbb{C})\to \mathbb{P}^2(\mathbb{C})$ defined by

$$F(w,z) = \left(w - w^2 + w^3, z + z^2 + az^3 + \frac{\pi^2}{4}w\right)$$

has a wandering Fatou component for $a \sim 1$ (for example a = 0,95), which accumulates $\{w = 0\}$.

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014) The endomorphism $F : \mathbb{P}^2(\mathbb{C}) \to \mathbb{P}^2(\mathbb{C})$ defined by

$$F(w,z) = \left(w - w^2 + w^3, z + z^2 + az^3 + \frac{\pi^2}{4}w\right)$$

has a wandering Fatou component for $a \sim 1$ (for example a = 0,95), which accumulates $\{w = 0\}$.

Remark

• *F* is a skew-product with an invariant parabolic fiber containing a parabolic fixed point

イロト イ団ト イヨト イヨト

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014) The endomorphism $F \colon \mathbb{P}^2(\mathbb{C}) \to \mathbb{P}^2(\mathbb{C})$ defined by

$$F(w,z) = \left(w - w^2 + w^3, z + z^2 + az^3 + \frac{\pi^2}{4}w\right)$$

has a wandering Fatou component for a \sim 1 (for example a = 0,95), which accumulates $\{w=0\}.$

Remark

- *F* is a skew-product with an invariant parabolic fiber containing a parabolic fixed point
- the orbits in the wandering domain are bounded

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

The endomorphism $F\colon \mathbb{P}^2(\mathbb{C})\to \mathbb{P}^2(\mathbb{C})$ defined by

$$F(w,z) = \left(w - w^2 + w^3, z + z^2 + az^3 + \frac{\pi^2}{4}w\right)$$

has a wandering Fatou component for a \sim 1 (for example a = 0,95), which accumulates $\{w=0\}.$

Remark

- *F* is a skew-product with an invariant parabolic fiber containing a parabolic fixed point
- the orbits in the wandering domain are bounded
- Iocal approach

< ロ > < 同 > < 回 > < 回 >

Key proposition

•
$$g(w) = w - w^2 + O(w^3)$$
 with parabolic basin \mathcal{B}_g ,
• $f(z) = z + z^2 + O(z^3)$ with parabolic basin \mathcal{B}_f ,
• $F(w, z) = \left(g(w), f(z) + \frac{\pi^2}{4}w\right)$.

イロト イヨト イヨト イヨト

Key proposition

Proposition

The sequence of maps

$$\mathbb{C}^2
i (w, z) \mapsto F^{\circ 2n+1} (g^{\circ n^2}(w), z) \in \mathbb{C}^2$$

converges locally uniformly on $\mathcal{B}_g \times \mathcal{B}_f$ to a map

$$\mathcal{B}_g imes \mathcal{B}_f
i (w, z) \mapsto (0, \mathcal{L}_f(z)) \in \{0\} \times \mathbb{C}.$$

Key proposition

イロト イヨト イヨト イヨト

Strategy

• If $\mathcal{L}_f : \mathcal{B}_f \to \mathbb{C}$ has an attracting fixed point ξ , then F has a wandering domain.

• • • • • • • • • • • • •

Strategy

- If $\mathcal{L}_f : \mathcal{B}_f \to \mathbb{C}$ has an attracting fixed point ξ , then F has a wandering domain.
- **2** We can choose *f* so that $\mathcal{L}_f : \mathcal{B}_f \to \mathbb{C}$ has an attracting fixed point.

< ロ > < 同 > < 回 > < 回 >

• Let ξ be an attracting fixed point of \mathcal{L}_f .

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.

イロト イポト イヨト イヨト

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.
- Let $W \subseteq \mathcal{B}_g$.

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.
- Let $W \subseteq \mathcal{B}_g$.

• If
$$n \ge n_0$$
, $F^{\circ 2n+1}\left(g^{\circ n^2}(W) \times V\right) \subset g^{\circ (n+1)^2}(W) \times V$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.
- Let $W \Subset \mathcal{B}_g$.

• If
$$n \ge n_0$$
, $\mathcal{F}^{\circ 2n+1}\left(g^{\circ n^2}(W) \times V\right) \subset g^{\circ (n+1)^2}(W) \times V$.

• Let *U* be a connected component of $F^{-n_0}(g^{\circ n_0^2}(W) \times V)$.

• • • • • • • • • • • •

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.
- Let $W \Subset \mathcal{B}_g$.

• If
$$n \ge n_0$$
, $\mathcal{F}^{\circ 2n+1}\left(g^{\circ n^2}(W) \times V\right) \subset g^{\circ (n+1)^2}(W) \times V$.

- Let *U* be a connected component of $F^{-n_0}(g^{\circ n_0^2}(W) \times V)$.
- The sequence $(F^{\circ n^2})$ converges to
 - (0, ξ) on U.
 - $(0,\xi)$ on the Fatou component Ω containing *U*.
 - $F^{\circ j}(0,\xi) = (0, f^{\circ j}(\xi))$ on $F^{\circ j}(\Omega)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.
- Let $W \subseteq \mathcal{B}_g$.
- If $n \ge n_0$, $F^{\circ 2n+1}\left(g^{\circ n^2}(W) \times V\right) \subset g^{\circ (n+1)^2}(W) \times V$.
- Let *U* be a connected component of $\mathcal{F}^{-n_0}(g^{\circ n_0^2}(W) \times V)$.
- The sequence $(F^{\circ n^2})$ converges to
 - (0, ξ) on U.
 - $(0,\xi)$ on the Fatou component Ω containing *U*.
 - $F^{\circ j}(0,\xi) = (0, f^{\circ j}(\xi))$ on $F^{\circ j}(\Omega)$.
- The point ξ is not (pre)periodic for *f*.

- Let ξ be an attracting fixed point of \mathcal{L}_f .
- Let $V \subseteq \mathcal{B}_f$ so that $\mathcal{L}_f(V) \subseteq V$.
- Let $W \Subset \mathcal{B}_g$.

• If
$$n \ge n_0$$
, $F^{\circ 2n+1}\left(g^{\circ n^2}(W) \times V\right) \subset g^{\circ (n+1)^2}(W) \times V$.

- Let *U* be a connected component of $F^{-n_0}(g^{\circ n_0^2}(W) \times V)$.
- The sequence $(F^{\circ n^2})$ converges to
 - (0, ξ) on U.
 - $(0,\xi)$ on the Fatou component Ω containing *U*.
 - $F^{\circ j}(0,\xi) = (0, f^{\circ j}(\xi))$ on $F^{\circ j}(\Omega)$.
- The point ξ is not (pre)periodic for *f*.
- The component Ω is not (pre)periodic for F.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lavaurs map

$$f(z) := z + z^2 + az^3 + O(z^4)$$
 and $T_1(Z) := Z + 1$.

Theorem (Fatou coordinates)

• There exists $\phi_f \colon \mathcal{B}_f \to \mathbb{C}$ such that $\phi_f \circ f = T_1 \circ \phi_f$ and

$$\phi_f(z) = -\frac{1}{z} - (1-a)\log\left(-\frac{1}{z}\right) + o(1) \text{ if } \operatorname{Re}\left(-\frac{1}{z}\right) \to +\infty.$$

• There exists $\psi_f : \mathbb{C} \to \mathbb{C}$ such that $\psi_f \circ T_1 = f \circ \psi_f$ and

$$-\frac{1}{\psi_f(Z)} = Z + (1-a)\log(-Z) + o(1) \text{ if } \operatorname{Re}(Z) \to -\infty.$$

Lavaurs map

$$f(z) := z + z^2 + az^3 + O(z^4)$$
 and $T_1(Z) := Z + 1$.

Theorem (Fatou coordinates)

• There exists $\phi_f \colon \mathcal{B}_f \to \mathbb{C}$ such that $\phi_f \circ f = T_1 \circ \phi_f$ and

$$\phi_f(z) = -\frac{1}{z} - (1-a)\log\left(-\frac{1}{z}\right) + o(1) \text{ if } \operatorname{Re}\left(-\frac{1}{z}\right) \to +\infty.$$

• There exists $\psi_f \colon \mathbb{C} \to \mathbb{C}$ such that $\psi_f \circ T_1 = f \circ \psi_f$ and

$$-\frac{1}{\psi_f(Z)} = Z + (1-a)\log(-Z) + o(1) \text{ if } \operatorname{Re}(Z) \to -\infty.$$

Proposition

Our limit map \mathcal{L}_f is the Lavaurs map $\mathcal{L}_f := \psi_f \circ \phi_f$.

Parabolic Implosion

0

0

$$\begin{split} f(z) &:= z + z^2 + az^3 + \mathrm{O}(z^4) \text{ and } f_{\varepsilon}(z) := f(z) + \varepsilon^2. \\ \text{Theorem (Lavaurs)} \\ & \text{If } \frac{\pi}{\varepsilon_n} - 2n \to 0 \text{ as } n \to +\infty, \text{ then } f_{\varepsilon_n}^{\circ 2n} \to \mathcal{L}_f \text{ locally uniformly on } \mathcal{B}_f. \end{split}$$

イロト イヨト イヨト イヨト

Parabolic Implosion

$$f(z) := z + z^{2} + az^{3} + O(z^{4}) \text{ and } f_{\varepsilon}(z) := f(z) + \varepsilon^{2}.$$
Theorem (Lavaurs)
$$If \frac{\pi}{\varepsilon_{n}} - 2n \to 0 \text{ as } n \to +\infty, \text{ then } f_{\varepsilon_{n}}^{\circ 2n} \to \mathcal{L}_{f} \text{ locally uniformly on } \mathcal{B}_{f}.$$

-

In our case:

$$F^{\circ 2n+1}(g^{\circ n^2}(w),z) = (g^{\circ n^2}(w), f_{W_{(n+1)^2-1}} \circ \cdots \circ f_{W_{n^2}}(z))$$

where

•
$$f_{w_k}(z) = f(z) + \frac{\pi^2}{4} w_k$$

• $w_k := g^{\circ k}(w)$

æ

Parabolic Implosion

$$f(z) := z + z^{2} + az^{3} + O(z^{4}) \text{ and } f_{\varepsilon}(z) := f(z) + \varepsilon^{2}.$$
Theorem (Lavaurs)
$$If \frac{\pi}{\varepsilon_{n}} - 2n \to 0 \text{ as } n \to +\infty, \text{ then } f_{\varepsilon_{n}}^{\circ 2n} \to \mathcal{L}_{f} \text{ locally uniformly on } \mathcal{B}_{f}.$$

-

In our case:

$$F^{\circ 2n+1}(g^{\circ n^2}(w),z) = (g^{\circ n^2}(w), f_{w_{(n+1)^2-1}} \circ \cdots \circ f_{w_{n^2}}(z))$$

where

•
$$f_{W_k}(z) = f(z) + \frac{\pi^2}{4} W_k$$

• $W_k := g^{\circ k}(W) \Rightarrow \frac{\pi}{\varepsilon_k} \sim 2n + \frac{k}{n}, 1 \le k \le 2n + 1$

æ

Parabolic Implosion $f(z) := z + z^2 + az^3 + O(z^4)$ and $f_{\varepsilon}(z) := f(z) + \varepsilon^2$.

Theorem (Lavaurs)

If $\frac{\pi}{\varepsilon_n} - 2n \to 0$ as $n \to +\infty$, then $f_{\varepsilon_n}^{\circ 2n} \to \mathcal{L}_f$ locally uniformly on \mathcal{B}_f .

In our case:

$$F^{\circ 2n+1}(g^{\circ n^2}(w),z) = (g^{\circ n^2}(w), f_{W_{(n+1)^2-1}} \circ \cdots \circ f_{W_{n^2}}(z))$$

where

•
$$f_{w_k}(z) = f(z) + \frac{\pi^2}{4}w_k$$

• $w_k := g^{\circ k}(w) \Rightarrow \frac{\pi}{\varepsilon_k} \sim 2n + \frac{k}{n}, 1 \le k \le 2n + 1$

Key Proposition

For all $w \in \mathcal{B}_g$, the sequence $f_{W_{(n+1)^2-1}} \circ \cdots \circ f_{W_{n^2}}$ converges locally uniformly on $\mathcal{B}_g \times \mathcal{B}_f$ to the Lavaurs map \mathcal{L}_f .

Jasmin Raissy (IMT)

Proposition 1

Let $f(z) := z + z^2 + az^3 + O(z^4)$, $a \in \mathbb{C}$. If r > 0 is sufficiently small and $a \in D(1 - r, r)$ then \mathcal{L}_f has an attracting fixed point.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition 1

Let $f(z) := z + z^2 + az^3 + O(z^4)$, $a \in \mathbb{C}$. If r > 0 is sufficiently small and $a \in D(1 - r, r)$ then \mathcal{L}_f has an attracting fixed point.

Proposition 2

Let $f(z) := z + z^2 + bz^4 + O(z^5)$, $b \in \mathbb{R}$. There exists $b \in (-\frac{8}{27}, 0)$ such that \mathcal{L}_f has superattracting fixed point in $\mathcal{B}_f \cap \mathbb{R}$.

Thanks!

2

イロト イヨト イヨト イヨト