Wandering Fatou Components in Dimension Two

Jasmin Raissy

Institut de Mathématiques de Toulouse
Université Paul Sabatier - Toulouse III
(Joint work with M. Astorg, X. Buff, R. Dujardin and H. Peters)

AMS-EMS-SPM Meeting - Complex Dynamics and Foliations

Fatou Set

Let X be a complex manifold and $F: X \rightarrow X$ be holomorphic.

Fatou Set

Let X be a complex manifold and $F: X \rightarrow X$ be holomorphic.
Fatou set of $F: \mathcal{F}(F)=$ largest open set where $\left\{F^{n}\right\}_{n \in \mathbb{N}}$ is normal Julia set of $F: \mathcal{J}(F)=X \backslash \mathcal{F}(F)$

Fatou Set

Let X be a complex manifold and $F: X \rightarrow X$ be holomorphic.
Fatou set of $F: \mathcal{F}(F)=$ largest open set where $\left\{F^{n}\right\}_{n \in \mathbb{N}}$ is normal Julia set of $F: \mathcal{J}(F)=X \backslash \mathcal{F}(F)$

Fatou Component: connected component of $\mathcal{F}(F)$

Fatou Set

Let X be a complex manifold and $F: X \rightarrow X$ be holomorphic.
Fatou set of $F: \mathcal{F}(F)=$ largest open set where $\left\{F^{n}\right\}_{n \in \mathbb{N}}$ is normal Julia set of $F: \mathcal{J}(F)=X \backslash \mathcal{F}(F)$
Fatou Component: connected component of $\mathcal{F}(F)$

Example

$X=\mathbb{P}^{1}(\mathbb{C})$, and $F(z)=z^{2}$.

- $\mathcal{F}(F)=\mathbb{P}^{1}(\mathbb{C}) \backslash \mathbb{S}^{1}$
- Fatou components: $D(0,1)$ and $\mathbb{P}^{1}(\mathbb{C}) \backslash \overline{D(0,1)}$

Fatou Components

Let $X=\mathbb{P}^{1}(\mathbb{C})$ and $F: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be a rational function.
Theorem (Fatou, Julia, Siegel, Herman...)
A periodic Fatou component for $F: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is:

- either the basin of a (super)attracting point,
- or a parabolic basin,
- or a rotation domain (a Siegel disk or a Herman ring)

Fatou Components

Let $X=\mathbb{P}^{1}(\mathbb{C})$ and $F: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be a rational function.
Theorem (Fatou, Julia, Siegel, Herman...)
A periodic Fatou component for $F: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is:

- either the basin of a (super)attracting point,
- or a parabolic basin,
- or a rotation domain (a Siegel disk or a Herman ring)

Theorem (Sullivan, 1985)

Every Fatou component of $F: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ a rational map of degree $d \geq 2$ is (pre)periodic.

Fatou Components

Theorem (Sullivan, 1985)
Every Fatou component of $F: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ a rational map of degree $d \geq 2$ is (pre)periodic.

What happens when we drop one of the hypotheses?

X non-compact

Theorem (Baker 1976)
There exists an entire function $F: \mathbb{C} \rightarrow \mathbb{C}$ with a wandering Fatou component.

X non-compact

Theorem (Baker 1976)
There exists an entire function $F: \mathbb{C} \rightarrow \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z-e^{z}+2 \pi \mathrm{i}$ and $z \mapsto z+2 \pi-\sin (z)$ have wandering domains.

$$
z \mapsto z+2 \pi-\sin (z)
$$

X non-compact

Theorem (Baker 1976)
There exists an entire function $F: \mathbb{C} \rightarrow \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z-e^{z}+2 \pi$ i and $z \mapsto z+2 \pi-\sin (z)$ have wandering domains.

Other examples (dim 1): Eremenko, Lyubich, and, recently, Bishop.

X non-compact

Theorem (Baker 1976)

There exists an entire function $F: \mathbb{C} \rightarrow \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)
The functions $z \mapsto z-e^{z}+2 \pi i$ and $z \mapsto z+2 \pi-\sin (z)$ have wandering domains.

Other examples (dim 1): Eremenko, Lyubich, and, recently, Bishop.
Theorem (Fornæss-Sibony 1998)
There exists a biholomorphism $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ having a wandering domain.

X non-compact

Theorem (Baker 1976)
There exists an entire function $F: \mathbb{C} \rightarrow \mathbb{C}$ with a wandering Fatou component.

Example (Herman 1984 - Sullivan 1985)

The functions $z \mapsto z-e^{z}+2 \pi i$ and $z \mapsto z+2 \pi-\sin (z)$ have wandering domains.

Other examples (dim 1): Eremenko, Lyubich, and, recently, Bishop.
Theorem (Fornæss-Sibony 1998)
There exists a biholomorphism $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ having a wandering domain.

In all these examples the wandering domain is not bounded.

Wandering Domains

Does it exist an endomorphism of $\mathbb{P}^{k}(\mathbb{C})(k \geq 2)$ with a wandering Fatou component?

Wandering Domains

Does it exist an endomorphism of $\mathbb{P}^{k}(\mathbb{C})(k \geq 2)$ with a wandering Fatou component?

Lyubich and Peters have found an approach to answer to this question.

Wandering Domains

Does it exist an endomorphism of $\mathbb{P}^{k}(\mathbb{C})(k \geq 2)$ with a wandering Fatou component?

Lyubich and Peters have found an approach to answer to this question.

Idea: to use skew-products, $(z, w) \mapsto(f(z, w), g(w))$.

Wandering Domains

Does it exist an endomorphism of $\mathbb{P}^{k}(\mathbb{C})(k \geq 2)$ with a wandering Fatou component?

Idea: (Lyubich-Peters) to use skew-products, $(z, w) \mapsto(f(z, w), g(w))$.

- Lilov (2004): skew-products cannot have wandering Fatou components near a super-attracting invariant fiber.
- Peters and Vivas (2014): Lilov's argument is not true for attracting invariant fibers.

Wandering Domains

Does it exist an endomorphism of $\mathbb{P}^{k}(\mathbb{C})(k \geq 2)$ with a wandering Fatou component? Yes

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)
There exists $F: \mathbb{P}^{2}(\mathbb{C}) \rightarrow \mathbb{P}^{2}(\mathbb{C})$ a holomorphic endomorphism, induced by a polynomial skew-product $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, with a wandering Fatou component.

Wandering Domains

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

The endomorphism $F: \mathbb{P}^{2}(\mathbb{C}) \rightarrow \mathbb{P}^{2}(\mathbb{C})$ defined by

$$
F(w, z)=\left(w-w^{2}+w^{3}, z+z^{2}+a z^{3}+\frac{\pi^{2}}{4} w\right)
$$

has a wandering Fatou component for $a \sim 1$ (for example $a=0,95$), which accumulates $\{w=0\}$.

Wandering Domains

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

The endomorphism $F: \mathbb{P}^{2}(\mathbb{C}) \rightarrow \mathbb{P}^{2}(\mathbb{C})$ defined by

$$
F(w, z)=\left(w-w^{2}+w^{3}, z+z^{2}+a z^{3}+\frac{\pi^{2}}{4} w\right)
$$

has a wandering Fatou component for $a \sim 1$ (for example $a=0,95$), which accumulates $\{w=0\}$.

Remark

- F is a skew-product with an invariant parabolic fiber containing a parabolic fixed point

Wandering Domains

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

The endomorphism $F: \mathbb{P}^{2}(\mathbb{C}) \rightarrow \mathbb{P}^{2}(\mathbb{C})$ defined by

$$
F(w, z)=\left(w-w^{2}+w^{3}, z+z^{2}+a z^{3}+\frac{\pi^{2}}{4} w\right)
$$

has a wandering Fatou component for $a \sim 1$ (for example $a=0,95$), which accumulates $\{w=0\}$.

Remark

- F is a skew-product with an invariant parabolic fiber containing a parabolic fixed point
- the orbits in the wandering domain are bounded

Wandering Domains

Theorem (Astorg-Buff-Dujardin-Peters-R, 2014)

The endomorphism $F: \mathbb{P}^{2}(\mathbb{C}) \rightarrow \mathbb{P}^{2}(\mathbb{C})$ defined by

$$
F(w, z)=\left(w-w^{2}+w^{3}, z+z^{2}+a z^{3}+\frac{\pi^{2}}{4} w\right)
$$

has a wandering Fatou component for $a \sim 1$ (for example $a=0,95$), which accumulates $\{w=0\}$.

Remark

- F is a skew-product with an invariant parabolic fiber containing a parabolic fixed point
- the orbits in the wandering domain are bounded
- local approach

Key proposition

- $g(w)=w-w^{2}+\mathrm{O}\left(w^{3}\right)$ with parabolic basin \mathcal{B}_{g},
- $f(z)=z+z^{2}+\mathrm{O}\left(z^{3}\right)$ with parabolic basin \mathcal{B}_{f},
- $F(w, z)=\left(g(w), f(z)+\frac{\pi^{2}}{4} w\right)$.

Key proposition

- $g(w)=w-w^{2}+\mathrm{O}\left(w^{3}\right)$ with parabolic basin \mathcal{B}_{g},
- $f(z)=z+z^{2}+\mathrm{O}\left(z^{3}\right)$ with parabolic basin \mathcal{B}_{f},
- $F(w, z)=\left(g(w), f(z)+\frac{\pi^{2}}{4} w\right)$.

Proposition

The sequence of maps

$$
\mathbb{C}^{2} \ni(w, z) \mapsto F^{\circ 2 n+1}\left(g^{\circ n^{2}}(w), z\right) \in \mathbb{C}^{2}
$$

converges locally uniformly on $\mathcal{B}_{g} \times \mathcal{B}_{f}$ to a map

$$
\mathcal{B}_{g} \times \mathcal{B}_{f} \ni(w, z) \mapsto\left(0, \mathcal{L}_{f}(z)\right) \in\{0\} \times \mathbb{C}
$$

Key proposition

Strategy

- $g(w)=w-w^{2}+\mathrm{O}\left(w^{3}\right)$ with parabolic basin \mathcal{B}_{g},
- $f(z)=z+z^{2}+\mathrm{O}\left(z^{3}\right)$ with parabolic basin \mathcal{B}_{f},
- $F(w, z)=\left(g(w), f(z)+\frac{\pi^{2}}{4} w\right)$.
(1) If $\mathcal{L}_{f}: \mathcal{B}_{f} \rightarrow \mathbb{C}$ has an attracting fixed point ξ, then F has a wandering domain.

Strategy

- $g(w)=w-w^{2}+\mathrm{O}\left(w^{3}\right)$ with parabolic basin \mathcal{B}_{g},
- $f(z)=z+z^{2}+\mathrm{O}\left(z^{3}\right)$ with parabolic basin \mathcal{B}_{f},
- $F(w, z)=\left(g(w), f(z)+\frac{\pi^{2}}{4} w\right)$.
(1) If $\mathcal{L}_{f}: \mathcal{B}_{f} \rightarrow \mathbb{C}$ has an attracting fixed point ξ, then F has a wandering domain.
(2) We can choose f so that $\mathcal{L}_{f}: \mathcal{B}_{f} \rightarrow \mathbb{C}$ has an attracting fixed point.

Sketch of the proof

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.
- Let $W \Subset \mathcal{B}_{g}$.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.
- Let $W \Subset \mathcal{B}_{g}$.
- If $n \geq n_{0}, F^{\circ 2 n+1}\left(g^{\circ n^{2}}(W) \times V\right) \subset g^{\circ(n+1)^{2}}(W) \times V$.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.
- Let $W \Subset \mathcal{B}_{g}$.
- If $n \geq n_{0}, F^{\circ 2 n+1}\left(g^{\circ n^{2}}(W) \times V\right) \subset g^{\circ(n+1)^{2}}(W) \times V$.
- Let U be a connected component of $F^{-n_{0}}\left(g^{\circ n_{0}^{2}}(W) \times V\right)$.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.
- Let $W \Subset \mathcal{B}_{g}$.
- If $n \geq n_{0}, F^{\circ 2 n+1}\left(g^{\circ n^{2}}(W) \times V\right) \subset g^{\circ(n+1)^{2}}(W) \times V$.
- Let U be a connected component of $F^{-n_{0}}\left(g^{\circ n_{0}^{2}}(W) \times V\right)$.
- The sequence $\left(F^{\circ n^{2}}\right)$ converges to
- $(0, \xi)$ on U.
- $(0, \xi)$ on the Fatou component Ω containing U.
- $F^{\circ j}(0, \xi)=\left(0, f^{\circ j}(\xi)\right)$ on $F^{\circ j}(\Omega)$.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.
- Let $W \Subset \mathcal{B}_{g}$.
- If $n \geq n_{0}, F^{\circ 2 n+1}\left(g^{\circ n^{2}}(W) \times V\right) \subset g^{\circ(n+1)^{2}}(W) \times V$.
- Let U be a connected component of $F^{-n_{0}}\left(g^{\circ n_{0}^{2}}(W) \times V\right)$.
- The sequence $\left(F^{\circ n^{2}}\right)$ converges to
- $(0, \xi)$ on U.
- $(0, \xi)$ on the Fatou component Ω containing U.
- $F^{\circ j}(0, \xi)=\left(0, f^{\circ j}(\xi)\right)$ on $F^{\circ j}(\Omega)$.
- The point ξ is not (pre)periodic for f.

Sketch of the proof

- Let ξ be an attracting fixed point of \mathcal{L}_{f}.
- Let $V \Subset \mathcal{B}_{f}$ so that $\mathcal{L}_{f}(V) \Subset V$.
- Let $W \Subset \mathcal{B}_{g}$.
- If $n \geq n_{0}, F^{\circ 2 n+1}\left(g^{\circ n^{2}}(W) \times V\right) \subset g^{\circ(n+1)^{2}}(W) \times V$.
- Let U be a connected component of $F^{-n_{0}}\left(g^{\circ n_{0}^{2}}(W) \times V\right)$.
- The sequence $\left(F^{\circ n^{2}}\right)$ converges to
- $(0, \xi)$ on U.
- $(0, \xi)$ on the Fatou component Ω containing U.
- $F^{\circ j}(0, \xi)=\left(0, f^{\circ j}(\xi)\right)$ on $F^{\circ j}(\Omega)$.
- The point ξ is not (pre)periodic for f.
- The component Ω is not (pre)periodic for F.

Lavaurs map

$f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right)$ and $T_{1}(Z):=Z+1$.

Theorem (Fatou coordinates)

- There exists $\phi_{f}: \mathcal{B}_{f} \rightarrow \mathbb{C}$ such that $\phi_{f} \circ f=T_{1} \circ \phi_{f}$ and

$$
\phi_{f}(z)=-\frac{1}{z}-(1-a) \log \left(-\frac{1}{z}\right)+o(1) \text { if } \operatorname{Re}\left(-\frac{1}{z}\right) \rightarrow+\infty
$$

- There exists $\psi_{f}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\psi_{f} \circ T_{1}=f \circ \psi_{f}$ and

$$
-\frac{1}{\psi_{f}(Z)}=Z+(1-a) \log (-Z)+\mathrm{o}(1) \text { if } \operatorname{Re}(Z) \rightarrow-\infty
$$

Lavaurs map

$f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right)$ and $T_{1}(Z):=Z+1$.
Theorem (Fatou coordinates)

- There exists $\phi_{f}: \mathcal{B}_{f} \rightarrow \mathbb{C}$ such that $\phi_{f} \circ f=T_{1} \circ \phi_{f}$ and

$$
\phi_{f}(z)=-\frac{1}{z}-(1-a) \log \left(-\frac{1}{z}\right)+o(1) \text { if } \operatorname{Re}\left(-\frac{1}{z}\right) \rightarrow+\infty .
$$

- There exists $\psi_{f}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\psi_{f} \circ T_{1}=f \circ \psi_{f}$ and

$$
-\frac{1}{\psi_{f}(Z)}=Z+(1-a) \log (-Z)+\mathrm{o}(1) \text { if } \operatorname{Re}(Z) \rightarrow-\infty
$$

Proposition

Our limit map \mathcal{L}_{f} is the Lavaurs $\operatorname{map} \mathcal{L}_{f}:=\psi_{f} \circ \phi_{f}$.

Parabolic Implosion

$f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right)$ and $f_{\varepsilon}(z):=f(z)+\varepsilon^{2}$.
Theorem (Lavaurs)
If $\frac{\pi}{\varepsilon_{n}}-2 n \rightarrow 0$ as $n \rightarrow+\infty$, then $f_{\varepsilon_{n}}^{\circ 2 n} \rightarrow \mathcal{L}_{f}$ locally uniformly on \mathcal{B}_{f}.

Parabolic Implosion

$f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right)$ and $f_{\varepsilon}(z):=f(z)+\varepsilon^{2}$.
Theorem (Lavaurs)
If $\frac{\pi}{\varepsilon_{n}}-2 n \rightarrow 0$ as $n \rightarrow+\infty$, then $f_{\varepsilon_{n}}^{\circ 2 n} \rightarrow \mathcal{L}_{f}$ locally uniformly on \mathcal{B}_{f}.
In our case:

$$
F^{\circ 2 n+1}\left(g^{\circ n^{2}}(w), z\right)=\left(g^{\circ n^{2}}(w), f_{w_{(n+1)}^{2}-1} \circ \cdots \circ f_{w_{n^{2}}}(z)\right)
$$

where

- $f_{w_{k}}(z)=f(z)+\frac{\pi^{2}}{4} w_{k}$
- $w_{k}:=g^{\circ k}(w)$

Parabolic Implosion

$f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right)$ and $f_{\varepsilon}(z):=f(z)+\varepsilon^{2}$.
Theorem (Lavaurs)
If $\frac{\pi}{\varepsilon_{n}}-2 n \rightarrow 0$ as $n \rightarrow+\infty$, then $f_{\varepsilon_{n}}^{\circ 2 n} \rightarrow \mathcal{L}_{f}$ locally uniformly on \mathcal{B}_{f}.
In our case:

$$
F^{\circ 2 n+1}\left(g^{\circ n^{2}}(w), z\right)=\left(g^{\circ n^{2}}(w), f_{\left.w_{(n+1)}\right)^{2}-1} \circ \cdots \circ f_{w_{n^{2}}}(z)\right)
$$

where

- $f_{w_{k}}(z)=f(z)+\frac{\pi^{2}}{4} w_{k}$
- $w_{k}:=g^{\circ k}(w) \Rightarrow \frac{\pi}{\varepsilon_{k}} \sim 2 n+\frac{k}{n}, 1 \leq k \leq 2 n+1$

Parabolic Implosion

$f(z):=z+z^{2}+\mathrm{az} z^{3}+\mathrm{O}\left(z^{4}\right)$ and $f_{\varepsilon}(z):=f(z)+\varepsilon^{2}$.
Theorem (Lavaurs)
If $\frac{\pi}{\varepsilon_{n}}-2 n \rightarrow 0$ as $n \rightarrow+\infty$, then $f_{\varepsilon_{n}}^{\circ 2 n} \rightarrow \mathcal{L}_{f}$ locally uniformly on \mathcal{B}_{f}.
In our case:

$$
F^{\circ 2 n+1}\left(g^{\circ n^{2}}(w), z\right)=\left(g^{\circ n^{2}}(w), f_{\left.w_{(n+1)}\right)^{2}-1} \circ \cdots \circ f_{w_{n^{2}}}(z)\right)
$$

where

- $f_{w_{k}}(z)=f(z)+\frac{\pi^{2}}{4} w_{k}$
- $w_{k}:=g^{\circ k}(w) \Rightarrow \frac{\pi}{\varepsilon_{k}} \sim 2 n+\frac{k}{n}, 1 \leq k \leq 2 n+1$

Key Proposition

For all $w \in \mathcal{B}_{g}$, the sequence $f_{w_{(n+1)^{2}-1}} \circ \cdots \circ f_{w_{n^{2}}}$ converges locally uniformly on $\mathcal{B}_{g} \times \mathcal{B}_{f}$ to the Lavaurs map \mathcal{L}_{f}.

Proposition 1

Let $f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right), a \in \mathbb{C}$. If $r>0$ is sufficiently small and $a \in D(1-r, r)$ then \mathcal{L}_{f} has an attracting fixed point.

Proposition 1

Let $f(z):=z+z^{2}+a z^{3}+\mathrm{O}\left(z^{4}\right), a \in \mathbb{C}$. If $r>0$ is sufficiently small and $a \in D(1-r, r)$ then \mathcal{L}_{f} has an attracting fixed point.

Proposition 2

Let $f(z):=z+z^{2}+b z^{4}++O\left(z^{5}\right), b \in \mathbb{R}$. There exists $b \in\left(-\frac{8}{27}, 0\right)$ such that \mathcal{L}_{f} has superattracting fixed point in $\mathcal{B}_{f} \cap \mathbb{R}$.

Thanks!

