Decidability vs Undecidability of the word problem in HNN-extensions of inverse semigroups.

Emanuele Rodaro

Centro de Matemática, Universidade do Porto CMUP

< 🗇 > < 🖻 > <

Yamamura's HNN-extension

- $[S; A_1, A_2; \varphi]$ where $S = Inv\langle X|R \rangle \simeq (X \cup X^{-1})^+ / \omega, \varphi : A_1 \rightarrow A_2, A_1, A_2$ inverse subsemigroups of S;
- $e, f \in E(S)$ s.t. $e \in A_1 \subseteq eSe$ and $f \in A_2 \subseteq fSf$;
- S^{*} = Inv⟨S, t | t⁻¹at = φ(a), t⁻¹t = f, tt⁻¹ = e, ∀a ∈ A₁⟩ is called the HNN-extension of S associated with φ : A₁ → A₂.
- There is another approach that extends the notion of HNN-extension from groups to inverse semigroups given by Gilbert. This HNN-extension in the sense of Gilbert embeds into the HNN-extension in the sense of Yamamura (proved by A. Yamamura in 2007).

< 回 > < 三 > < 三 >

Yamamura's HNN-extension

- $[S; A_1, A_2; \varphi]$ where $S = Inv\langle X|R \rangle \simeq (X \cup X^{-1})^+ / \omega, \varphi : A_1 \rightarrow A_2, A_1, A_2$ inverse subsemigroups of S;
- $e, f \in E(S)$ s.t. $e \in A_1 \subseteq eSe$ and $f \in A_2 \subseteq fSf$;
- S^{*} = Inv⟨S, t | t⁻¹at = φ(a), t⁻¹t = f, tt⁻¹ = e, ∀a ∈ A₁⟩ is called the *HNN-extension* of S associated with φ : A₁ → A₂.
- There is another approach that extends the notion of HNN-extension from groups to inverse semigroups given by Gilbert. This HNN-extension in the sense of Gilbert embeds into the HNN-extension in the sense of Yamamura (proved by A. Yamamura in 2007).

< 同 > < 三 > < 三 > -

Yamamura's HNN-extension

- $[S; A_1, A_2; \varphi]$ where $S = Inv\langle X|R \rangle \simeq (X \cup X^{-1})^+ / \omega, \varphi : A_1 \rightarrow A_2, A_1, A_2$ inverse subsemigroups of S;
- $e, f \in E(S)$ s.t. $e \in A_1 \subseteq eSe$ and $f \in A_2 \subseteq fSf$;
- S^{*} = Inv⟨S, t | t⁻¹at = φ(a), t⁻¹t = f, tt⁻¹ = e, ∀a ∈ A₁⟩ is called the *HNN-extension* of S associated with φ : A₁ → A₂.
- There is another approach that extends the notion of HNN-extension from groups to inverse semigroups given by Gilbert. This HNN-extension in the sense of Gilbert embeds into the HNN-extension in the sense of Yamamura (proved by A. Yamamura in 2007).

In the group case thanks to Britton's Lemma:

Theorem

Let $G^* = \langle t, G | t^{-1} at = \varphi(a), a \in A_1 \rangle$ be an HNN-extension of a group *G*. If *G* has solvable word problem and the membership problem for A_1, A_2 is solvable, and φ, φ^{-1} are effectively calculable, then G^* has solvable word problem.

• In the inverse semigroup case under the same conditions.

Theorem

The word problem for Yamamura's HNN-extensions S^* of inverse semigroups $[S; A_1, A_2; \varphi]$ is undecidable even if

- S has finite *R*-classes (therefore solvable word problem);
- the membership problem for A₁, A₂ in S is decidable, and A₁ ≃ A₂ is a free inverse semigroup with zero and finite rank;
- φ and φ^{-1} are effectively calculable.

Let us sketch the proof

• In the inverse semigroup case under the same conditions.

Theorem

The word problem for Yamamura's HNN-extensions S^* of inverse semigroups $[S; A_1, A_2; \varphi]$ is undecidable even if

- S has finite R-classes (therefore solvable word problem);
- the membership problem for A₁, A₂ in S is decidable, and A₁ ~ A₂ is a free inverse semigroup with zero and finite rank;
- φ and φ^{-1} are effectively calculable.

Let us sketch the proof

A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

• In the inverse semigroup case under the same conditions.

Theorem

The word problem for Yamamura's HNN-extensions S^* of inverse semigroups $[S; A_1, A_2; \varphi]$ is undecidable even if

- S has finite R-classes (therefore solvable word problem);
- the membership problem for A₁, A₂ in S is decidable, and A₁ ~ A₂ is a free inverse semigroup with zero and finite rank;
- φ and φ^{-1} are effectively calculable.

Let us sketch the proof

A B + A B +

Schützenberger automata

Definition (Schützenberger graphs, Stephen)

Let $S = Inv\langle X|R \rangle = (X \cup X^{-1})^+ / \rho$ and $w \in (X \cup X^{-1})^+$ the Schützenberger graph $S\Gamma(X, R; w)$ is an inverse word graph whose vertices are the elements of the \mathcal{R} -class of $w\rho$ and whose edge set is $\{(\nu, x, \mu)|x \in X \cup X^{-1}, \nu(x\rho) = \mu\}.$

In other words it is the connected component of the Cayley graph of *S* containing $w\rho$.

- A(X, R, w) = (ww⁻¹ρ, SΓ(X, R; w), wρ) is the Schützenberger automaton of w with respect to (X|R).
- it is a deterministic automaton

•
$$L[\mathcal{A}(X, R; w)] = \{v \in (X \cup X^{-1})^+ | w \rho \le v \rho\}$$

• $w\rho = w'\rho$ iff $L[\mathcal{A}(X, R; w)] = L[\mathcal{A}(X, R; w')].$

- From the linear automaton of *w* via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ .
- Iteratively applying these operations a directed system of inverse automata is obtained

$$\mathcal{A}_1 \to \mathcal{A}_2 \to \ldots \to \mathcal{A}_i \to \ldots$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R; w)$.

・日本 ・日本 ・日本

- From the linear automaton of *w* via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if *v* labels a path from a vertex *ν* to a vertex *μ* and (*s*, *t*) ∈ *R* add a path labelled by *t* from *ν* to *μ*.
- Iteratively applying these operations a directed system of inverse automata is obtained

$$\mathcal{A}_1 \to \mathcal{A}_2 \to \ldots \to \mathcal{A}_i \to \ldots$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R; w)$.

- From the linear automaton of *w* via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if *v* labels a path from a vertex *ν* to a vertex *μ* and (*s*, *t*) ∈ *R* add a path labelled by *t* from *ν* to *μ*.
- Iteratively applying these operations a directed system of inverse automata is obtained

$$\mathcal{A}_1 \to \mathcal{A}_2 \to \ldots \to \mathcal{A}_i \to \ldots$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R; w)$.

< 同 > < 三 > < 三 >

- From the linear automaton of *w* via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ .
- Iteratively applying these operations a directed system of inverse automata is obtained

$$\mathcal{A}_1 \to \mathcal{A}_2 \to \ldots \to \mathcal{A}_i \to \ldots$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R; w)$.

- From the linear automaton of *w* via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ .
- Iteratively applying these operations a directed system of inverse automata is obtained

$$\mathcal{A}_1 \to \mathcal{A}_2 \to \ldots \to \mathcal{A}_i \to \ldots$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R; w)$.

- From the linear automaton of *w* via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ .
- Iteratively applying these operations a directed system of inverse automata is obtained

$$\mathcal{A}_1 \to \mathcal{A}_2 \to \ldots \to \mathcal{A}_i \to \ldots$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R; w)$.

▲□ → ▲ □ → ▲ □ → …

The Shape of the Schützenberger automata for an HNN-extension

- Inverse graph Γ on $X \cup t$;
- A lobe of Γ is a maximal connected component labelled by elements of X;
- Lobe graph G(Γ): vertices the set of lobes and two lobes are adjacent if there is a edge p^{-t}→q connecting them;
- Γ is a weak *t*-opuntoid if it is deterministic and the lobe graph is a tree.

(1) < (1) < (2) < (2) </p>

The Shape of the Schützenberger automata for an HNN-extension

- Inverse graph Γ on $X \cup t$;
- A lobe of Γ is a maximal connected component labelled by elements of X;
- Lobe graph G(Γ): vertices the set of lobes and two lobes are adjacent if there is a edge p^{-t}→q connecting them;
- Γ is a weak *t*-opuntoid if it is deterministic and the lobe graph is a tree.

The Shape of the Schützenberger automata for an HNN-extension

Proposition (Jajcayova)

The Schützenberger automaton of the HNN-extension S^* with respect to the presentation $\langle S, t | t^{-1}at = \varphi(a), t^{-1}t = f, tt^{-1} = e, \forall a \in A_1 \rangle$ is a weak t-opuntoid.

Passing from the amalgamated free product

- The proof relies on a analogous undecidability result for amalgamated free products of inverse semigroups.
- Amalgam $[S_1, S_2; U, \omega_1, \omega_2]$ with $S_1 = Inv \langle X_1 | R_1 \rangle S_2 = Inv \langle X_2 | R_2 \rangle$ with $X_1 \cap X_2 = \emptyset$, $\omega_i : U \hookrightarrow S_i$, i = 1, 2.
- The amalgamated free product $S_1 *_U S_2 = Inv \langle X_1 \cup X_2 | R_1 \cup R_2 \cup W \rangle$ where $W = \{(u\omega_1, u\omega_2) | u \in U\}$

Theorem (R., Silva)

The word problem for $S_1 *_U S_2$ of inverse semigroups may be undecidable even if we assume the following conditions.

- S_1 and S_2 have finite \mathcal{R} -classes
- U is a free inverse semigroup with zero of finite rank
- the membership problem of $\omega_i(U)$ is decidable in S_i for i = 1, 2
- ω_1, ω_2 and their inverses are computable functions.

Associate an HNN-extension to an amalgam

Theorem (Cherubini, R.)

Let $[S_1^{e_1}, S_2^{e_2}; U^1, \omega_1^1, \omega_2^1]$ be the free product with amalgamation with adjoint identities, associate the HNN-extension $[S_1^{e_1} * S_2^{e_2}; U_1^{e_1}, U_2^{e_2}; (\omega_1^1)^{-1} \circ \omega_2^1]$ and $S^* = Inv \langle \overline{X} | \overline{R} \cup R_{HNN} \rangle$, then

$$S^*/
ho \simeq (S_1^{e_1} *_{U^1} S_2^{e_2}) \simeq (S_1 *_U S_2)^1$$

where $(S_1 *_U S_2)^1$ denotes $S_1 *_U S_2$ with adjoint identity 1 and ρ is the congruence on S^* generated by the relation $t = e_1$, $t = e_2$.

▲□ → ▲ □ → ▲ □ → …

- Schützenberger automaton A(X₁ ∪ X₂, R₁ ∪ R₂ ∪ W, w) of the word w with respect to S₁ *_U S₂ from the Schützenberger A(X, R_{HNN} ∪ R, w') of the associated HNN-extension;
- Factorize $w = w_1 w_2 \dots w_{2n-1} w_{2n}$, $w_1 \in (X_1 \cup X_1^{-1})^*$, $w_{2i} \in (X_2 \cup X_2^{-1})^+$, $w_{2i+1} \in (X_1 \cup X_1^{-1})^+$, $1 \le i \le n-1$;
- Considered the associate separated normal form

$$w' = w_1 e_1 t e_2 w_2 e_2 t^{-1} e_1 \dots e_2 t^{-1} e_1 w_{2n-1} e_1 t e_2 w_{2n}$$

< 🗇 > < 🖻 > < 🖻 > -

Proposition (Cherubini, R.)

Proposition (Cherubini, R.)

Proposition (Cherubini, R.)

Proposition (Cherubini, R.)

- More precisely the lobes are quotients of Schützenberger automata of either S₁ or S₂ with a tree-like structure (weak opuntoid class of inverse graphs denoted by C).
- This means that the Schützenberger automaton of the separated normal form has a particular shape (class of separated weak *t*-opuntoid inverse graphs denoted by C_t)

- More precisely the lobes are quotients of Schützenberger automata of either S₁ or S₂ with a tree-like structure (weak opuntoid class of inverse graphs denoted by C).
- This means that the Schützenberger automaton of the separated normal form has a particular shape (class of separated weak *t*-opuntoid inverse graphs denoted by C_t)

Proposition

The map $\psi : C_t \to C$, which is defined by identifying the initial vertex with the terminal vertex of each t-edge and then erasing the formed loops, is a bijection.

However, it is not a bijection if we extend ψ to the class of inverse automata since we may identify initial and final states

< 同 > < 三 > < 三

Proposition

The map $\psi : C_t \to C$, which is defined by identifying the initial vertex with the terminal vertex of each t-edge and then erasing the formed loops, is a bijection.

However, it is not a bijection if we extend ψ to the class of inverse automata since we may identify initial and final states

Proposition

Let $w_1, w_2 \in (X_1 \cup X_2 \cup X_1^{-1} \cup X_2^{-1})^+$, and let w'_1 and w'_2 be their corresponding separated normal forms. Let $\mathcal{A}(\overline{X}, R_{HNN} \cup \overline{R}, w'_1) = (\alpha, \Gamma_1, \beta)$, $\mathcal{A}(\overline{X}, R_{HNN} \cup \overline{R}, w'_2) = (\alpha', \Gamma_2, \beta')$ be the corresponding Schützenberger automata which are separated weak t-opuntoid automata with the property that:

$$\psi\left(\left(\alpha, \Gamma_{1}, \beta\right)\right) = \psi\left(\left(\alpha', \Gamma_{2}, \beta'\right)\right)$$

then there are $\epsilon_1, \epsilon_2 \in \{0, 1, -1\}$ such that

$$t^{\epsilon_1}w_1't^{\epsilon_2}=w_2'$$
 in S^*

< 同 > < 三 > < 三 >

Consider the amalgam [S₁; S₂, U; ω₁, ω₂] associated to this theorem.

Theorem (R., Silva)

The word problem for $S_1 *_U S_2$ of inverse semigroups may be undecidable even if we assume the following conditions.

- S_1 and S_2 have finite \mathcal{R} -classes
- U is a free inverse semigroup with zero of finite rank
- the membership problem of $\omega_i(U)$ is decidable in S_i for i = 1, 2
- ω_1, ω_2 and their inverses are computable functions.

< 同 > < 回 > < 回 > -

- Consider the amalgam [S₁; S₂, U; ω₁, ω₂] associated to this theorem.
- Associate the corresponding HNN-extension as before:

$$[S_1^{e_1} * S_2^{e_2}; U_1^{e_1}, U_2^{e_2}; (\omega_1^1)^{-1} \circ \omega_2^1]$$

- The conditions on $[S_1; S_2, U; \omega_1, \omega_2]$ implies that $S_1^{e_1} * S_2^{e_2}$ has finite \mathcal{R} -classes, $U_1^{e_1} \simeq U_2^{e_2}$ is a free inverse semigroup with zero of finite rank, and both $(\omega_1^1)^{-1} \circ \omega_2^1$ and $(\omega_2^1)^{-1} \circ \omega_1^1$ are computable functions. Since the membership problem of $\omega_i(U)$ is decidable in S_i for i = 1, 2, then the same occurs for $U_1^{e_1}, U_2^{e_2}$ in $S_1^{e_1} * S_2^{e_2}$.
- Hence the associated HNN-extensions satisfies the conditions of the statement!

伺 と く ヨ と く ヨ と

- Consider the amalgam [S₁; S₂, U; ω₁, ω₂] associated to this theorem.
- Associate the corresponding HNN-extension as before:

$$[S_1^{e_1} * S_2^{e_2}; U_1^{e_1}, U_2^{e_2}; (\omega_1^1)^{-1} \circ \omega_2^1]$$

- The conditions on $[S_1; S_2, U; \omega_1, \omega_2]$ implies that $S_1^{e_1} * S_2^{e_2}$ has finite \mathcal{R} -classes, $U_1^{e_1} \simeq U_2^{e_2}$ is a free inverse semigroup with zero of finite rank, and both $(\omega_1^1)^{-1} \circ \omega_2^1$ and $(\omega_2^1)^{-1} \circ \omega_1^1$ are computable functions. Since the membership problem of $\omega_i(U)$ is decidable in S_i for i = 1, 2, then the same occurs for $U_1^{e_1}, U_2^{e_2}$ in $S_1^{e_1} * S_2^{e_2}$.
- Hence the associated HNN-extensions satisfies the conditions of the statement!

向下 イヨト イヨト

- Consider the amalgam [S₁; S₂, U; ω₁, ω₂] associated to this theorem.
- Associate the corresponding HNN-extension as before:

 $[S_1^{e_1} * S_2^{e_2}; U_1^{e_1}, U_2^{e_2}; (\omega_1^1)^{-1} \circ \omega_2^1]$

- The conditions on $[S_1; S_2, U; \omega_1, \omega_2]$ implies that $S_1^{e_1} * S_2^{e_2}$ has finite \mathcal{R} -classes, $U_1^{e_1} \simeq U_2^{e_2}$ is a free inverse semigroup with zero of finite rank, and both $(\omega_1^1)^{-1} \circ \omega_2^1$ and $(\omega_2^1)^{-1} \circ \omega_1^1$ are computable functions. Since the membership problem of $\omega_i(U)$ is decidable in S_i for i = 1, 2, then the same occurs for $U_1^{e_1}, U_2^{e_2}$ in $S_1^{e_1} * S_2^{e_2}$.
- Hence the associated HNN-extensions satisfies the conditions of the statement!

• Using the previous Proposition;

- We get the following lemma;
- Hence, if the word problem for $[S_1^{e_1} * S_2^{e_2}; U_1^{e_1}, U_2^{e_2}; (\omega_1^1)^{-1} \circ \omega_2^1]$ would be solvable, then the word problem for $S_1 *_U S_2$ would be solvable, a contradiction.

Proposition

Let $w_1, w_2 \in (X_1 \cup X_2 \cup X^{-1} \cup X_2^{-1})^+$, and let w'_1 and w'_2 be their corresponding separated normal forms. Let $\mathcal{A}(\overline{X}, R_{HNN} \cup \overline{R}, w'_1) = (\alpha, \Gamma_1, \beta)$, $\mathcal{A}(\overline{X}, R_{HNN} \cup \overline{R}, w'_2) = (\alpha', \Gamma_2, \beta')$ be the corresponding Schützenberger automata which are separated weak t-opuntoid automata with the property that:

$$\psi((\alpha, \Gamma_1, \beta)) = \psi((\alpha', \Gamma_2, \beta'))$$

then there are $\epsilon_1, \epsilon_2 \in \{0, 1, -1\}$ such that $t^{\epsilon_1}w'_1t^{\epsilon_2} = w'_2$ in S^* .

- Using the previous Proposition;
- We get the following lemma;
- Hence, if the word problem for $[S_1^{e_1} * S_2^{e_2}; U_1^{e_1}, U_2^{e_2}; (\omega_1^1)^{-1} \circ \omega_2^1]$ would be solvable, then the word problem for $S_1 *_U S_2$ would be solvable, a contradiction.

Lemma

Let $w_1, w_2 \in (X_1 \cup X_2 \cup X^{-1} \cup X_2^{-1})^+$ with w'_1 and w'_2 their corresponding separated normal forms, respectively. Then $w_1 = w_2$ in $S_1 *_U S_2$ if and only if there are $\epsilon_1, \epsilon_2 \in \{0, 1, -1\}$ such that

$$t^{\epsilon_1}w_1't^{\epsilon_2}=w_2'$$
 in \mathcal{S}^*

< 回 > < 三 > < 三 >

Sketch of the proof (II)

- Using the previous Proposition;
- We get the following lemma;
- Hence, if the word problem for [S₁^{e₁} * S₂^{e₂}; U₁^{e₁}, U₂^{e₂}; (ω₁¹)⁻¹ ∘ ω₂¹] would be solvable, then the word problem for S₁ *_U S₂ would be solvable, a contradiction.

Lemma

Let $w_1, w_2 \in (X_1 \cup X_2 \cup X^{-1} \cup X_2^{-1})^+$ with w'_1 and w'_2 their corresponding separated normal forms, respectively. Then $w_1 = w_2$ in $S_1 *_U S_2$ if and only if there are $\epsilon_1, \epsilon_2 \in \{0, 1, -1\}$ such that

$$t^{\epsilon_1}w_1't^{\epsilon_2}=w_2'$$
 in \mathcal{S}^*

< 回 > < 回 > < 回 > -

The "boundaries" decidability/undecidability

- Future work: sketch the boundary between decidability/undecidability both for HNN-extensions and free product with amalgamations.
- By the previous results, we may assume that the starting semigroups has finite *R*-classes.
- We have some partial results.

• Starting from the linear automaton of $w_1 t w_2 t^{-1} w_3 t w_4$

 Close the lobes, i.e. apply all the expansions and foldings relative to S

a ∈ E(A₁) labels a loop, but φ(a) does not labels a loop. Make an expansion, then close the lobe.

a ∈ E(A₁) labels a loop, but φ(a) does not labels a loop. Make an expansion, then close the lobe.

a ∈ *E*(*A*₁) labels a loop, but φ(*a*) does not labels a loop. Make an expansion, then close the lobe.

 A loop labeled by φ(a) for which a in not a loop in the corresponding vertex. Make an expansion: equivalent to quotient the path into a loop, then close the lobe.

 A loop labeled by φ(a) for which a in not a loop in the corresponding vertex. Make an expansion: equivalent to quotient the path into a loop, then close the lobe.

 In the "limit" the lobe graph is finite, however, each lobe may not be finite.

• One to one correspondence: add "t".

• One to one correspondence: add "t".

• Finally one obtains a "graphical normal form"

 It is possible to prove that there is a way to build in the limit a new lobe, let us call it an "external lobe".

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite ⇒ the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the *m*-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the *m*-property is finite (not true the converse). Furthermore, the closure of a lobe with the *m*-property has the *m*-property.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite ⇒ the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the *m*-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the *m*-property is finite (not true the converse). Furthermore, the closure of a lobe with the *m*-property has the *m*-property.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite ⇒ the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the *m*-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the *m*-property is finite (not true the converse). Furthermore, the closure of a lobe with the *m*-property has the *m*-property.

▲□ → ▲ □ → ▲ □ → □

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite ⇒ the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the *m*-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the *m*-property is finite (not true the converse). Furthermore, the closure of a lobe with the *m*-property has the *m*-property.

э

< 同 > < 回 > < 回 > -

 If all the lobes of the "graphical normal form" have the *m*-property, what about the added external lobes?

- This is similar to the lower-bounded condition considered by Jajkayova/Bennet conditions. It actually includes both the lower-bounded and the finite case.
- Outside the *m*-property things become "wild" and very difficult to control. Therefore, it seems that this chain condition is almost "necessarily".

< 同 > < 三 > < 三 >

- If all the lobes of the "graphical normal form" have the *m*-property, what about the added external lobes?
- This is similar to the lower-bounded condition considered by Jajkayova/Bennet conditions. It actually includes both the lower-bounded and the finite case.
- Outside the *m*-property things become "wild" and very difficult to control. Therefore, it seems that this chain condition is almost "necessarily".

Theorem

The external lobes have the *m*-property if and only if for any $e \in E(S)$ we get

$$U_i(e) = \{g \in E(A_i) : g \ge e\} \neq \emptyset \Rightarrow U_i(e)$$
 has a minimum.

for *i* = 1, 2.

- If all the lobes of the "graphical normal form" have the *m*-property, what about the added external lobes?
- This is similar to the lower-bounded condition considered by Jajkayova/Bennet conditions. It actually includes both the lower-bounded and the finite case.
- Outside the *m*-property things become "wild" and very difficult to control. Therefore, it seems that this chain condition is almost "necessarily".

Theorem

The external lobes have the *m*-property if and only if for any $e \in E(S)$ we get

$$U_i(e) = \{ g \in E(A_i) : g \geq e \}
eq \emptyset \Rightarrow U_i(e)$$
 has a minimum.

for *i* = 1, 2.

THANK YOU!