Decidability vs Undecidability of the word problem in HNN-extensions of inverse semigroups.

Emanuele Rodaro

Centro de Matemática, Universidade do Porto
CMUP

คロ~~—

Yamamura's HNN-extension

- $\left[S ; A_{1}, A_{2} ; \varphi\right]$ where $S=\operatorname{Inv}\langle X \mid R\rangle \simeq\left(X \cup X^{-1}\right)^{+} / \omega, \varphi: A_{1} \rightarrow A_{2}$, A_{1}, A_{2} inverse subsemigroups of S;
- e, $f \in E(S)$ s.t. $e \in A_{1} \subseteq e S e$ and $f \in A_{2} \subseteq f S f$; the HNN-extension of S associated with $\varphi: A_{1} \rightarrow A_{2}$.
- There is another approach that extends the notion of HNN-extension from groups to inverse semigroups given by Gilbert. This HNN-extension in the sense of Gilbert embeds into the HNN-extension in the sense of Yamamura (proved by A. Yamamura in 2007).

Yamamura's HNN-extension

- $\left[S ; A_{1}, A_{2} ; \varphi\right]$ where $S=\operatorname{Inv}\langle X \mid R\rangle \simeq\left(X \cup X^{-1}\right)^{+} / \omega, \varphi: A_{1} \rightarrow A_{2}$, A_{1}, A_{2} inverse subsemigroups of S;
- $e, f \in E(S)$ s.t. $e \in A_{1} \subseteq e S e$ and $f \in A_{2} \subseteq f S f$;
- $S^{*}=\operatorname{Inv}\langle S, t| t^{-1}$ at $\left.=\varphi(a), t^{-1} t=f, t t^{-1}=e, \forall a \in A_{1}\right\rangle$ is called the HNN-extension of S associated with $\varphi: A_{1} \rightarrow A_{2}$.
- There is another approach that extends the notion of HNN-extension from groups to inverse semigroups given by Gilbert. This HNN-extension in the sense of Gilbert embeds into the HNN-extension in the sense of Yamamura (proved by A. Yamamura in 2007).

Yamamura's HNN-extension

- $\left[S ; A_{1}, A_{2} ; \varphi\right]$ where $S=\operatorname{Inv}\langle X \mid R\rangle \simeq\left(X \cup X^{-1}\right)^{+} / \omega, \varphi: A_{1} \rightarrow A_{2}$, A_{1}, A_{2} inverse subsemigroups of S;
- e, $f \in E(S)$ s.t. $e \in A_{1} \subseteq e S e$ and $f \in A_{2} \subseteq f S f$;
- $S^{*}=\operatorname{lnv}\left\langle S, t \mid t^{-1} a t=\varphi(a), t^{-1} t=f, t^{-1}=e, \forall a \in A_{1}\right\rangle$ is called the HNN-extension of S associated with $\varphi: A_{1} \rightarrow A_{2}$.
- There is another approach that extends the notion of HNN-extension from groups to inverse semigroups given by Gilbert. This HNN-extension in the sense of Gilbert embeds into the HNN-extension in the sense of Yamamura (proved by A. Yamamura in 2007).

The word problem under "nice" conditions

- In the group case thanks to Britton's Lemma:

Abstract

Theorem Let $G^{*}=\langle t, G| t^{-1}$ at $\left.=\varphi(a), a \in A_{1}\right\rangle$ be an HNN-extension of a group G. If G has solvable word problem and the membership problem for A_{1}, A_{2} is solvable, and φ, φ^{-1} are effectively calculable, then G^{*} has solvable word problem.

The word problem under "nice" conditions

- In the inverse semigroup case under the same conditions.

```
Theorem
The word' problem for Yamamura's HNN-extensions S* of inverse
semigroups [S; A, , A2; \varphi] is undecidable even if
    - S has finite R}\mathcal{R}\mathrm{ -classes (therefore solvable word problem);
    - the membership problem for }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{}\mathrm{ in S is decidable, and }\mp@subsup{A}{1}{}\simeq\mp@subsup{A}{2}{
    is a free inverse semigroup with zero and finite rank;
    - \varphi and }\mp@subsup{\varphi}{}{-1}\mathrm{ are effectively calculable.
```

Let us sketch the proof

The word problem under "nice" conditions

- In the inverse semigroup case under the same conditions.

Theorem

The word problem for Yamamura's HNN-extensions S^{*} of inverse semigroups $\left[S ; A_{1}, A_{2} ; \varphi\right]$ is undecidable even if

- S has finite \mathcal{R}-classes (therefore solvable word problem);
- the membership problem for A_{1}, A_{2} in S is decidable, and $A_{1} \simeq A_{2}$ is a free inverse semigroup with zero and finite rank;
- φ and φ^{-1} are effectively calculable.

> Let us sketch the proof

The word problem under "nice" conditions

- In the inverse semigroup case under the same conditions.

Theorem

The word problem for Yamamura's HNN-extensions S^{*} of inverse semigroups $\left[S ; A_{1}, A_{2} ; \varphi\right]$ is undecidable even if

- S has finite \mathcal{R}-classes (therefore solvable word problem);
- the membership problem for A_{1}, A_{2} in S is decidable, and $A_{1} \simeq A_{2}$ is a free inverse semigroup with zero and finite rank;
- φ and φ^{-1} are effectively calculable.

Let us sketch the proof

Schützenberger automata

Definition (Schützenberger graphs, Stephen)

Let $S=\operatorname{Inv}\langle X \mid R\rangle=\left(X \cup X^{-1}\right)^{+} / \rho$ and $w \in\left(X \cup X^{-1}\right)^{+}$the
Schützenberger graph $S \Gamma(X, R ; w)$ is an inverse word graph whose vertices are the elements of the \mathcal{R}-class of $w \rho$ and whose edge set is $\left\{(\nu, x, \mu) \mid x \in X \cup X^{-1}, \nu(x \rho)=\mu\right\}$.

In other words it is the connected component of the Cayley graph of S containing $w \rho$.

- $\mathcal{A}(X, R, w)=\left(w w^{-1} \rho, S \Gamma(X, R ; w), w \rho\right)$ is the Schützenberger automaton of w with respect to $\langle X \mid R\rangle$.
- it is a deterministic automaton
- $L[\mathcal{A}(X, R ; w)]=\left\{v \in\left(X \cup X^{-1}\right)^{+} \mid w \rho \leq v \rho\right\}$
- $w \rho=w^{\prime} \rho$ iff $L[\mathcal{A}(X, R ; w)]=L\left[\mathcal{A}\left(X, R ; w^{\prime}\right)\right]$.

How to build a Schützenberger automaton

- From the linear automaton of w via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ.
- Iteratively applying these operations a directed system of inverse automata is obtained

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R ; w)$.

How to build a Schützenberger automaton

- From the linear automaton of w via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ.
- Iteratively applying these operations a directed system of inverse automata is obtained
whose directed limit is the Schützenberger automata $\mathcal{A}(X, R ; w)$.

How to build a Schützenberger automaton

- From the linear automaton of w via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and
$(s, t) \in R$ add a path labelled by t from ν to μ.
- Iteratively applying these operations a directed system of inverse
automata is obtained

$$
\mathcal{A}_{1} \rightarrow \mathcal{A}_{2} \rightarrow \ldots \rightarrow \mathcal{A}_{i} \rightarrow
$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R ; w)$.

How to build a Schützenberger automaton

- From the linear automaton of w via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ.
whose directed limit is the Schützenberger automata $\mathcal{A}(X, R ; w)$.

How to build a Schützenberger automaton

- From the linear automaton of w via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ.
whose directed limit is the Schützenberger automata $\mathcal{A}(X, R ; w)$.

How to build a Schützenberger automaton

- From the linear automaton of w via two fundamental operations.
- Folding/determinization: fold a pair of edges labelled by the same element starting from the same vertex.
- Expansion: if v labels a path from a vertex ν to a vertex μ and $(s, t) \in R$ add a path labelled by t from ν to μ.
- Iteratively applying these operations a directed system of inverse automata is obtained

$$
\mathcal{A}_{1} \rightarrow \mathcal{A}_{2} \rightarrow \ldots \rightarrow \mathcal{A}_{i} \rightarrow \ldots
$$

whose directed limit is the Schützenberger automata $\mathcal{A}(X, R ; w)$.

The Shape of the Schützenberger automata for an HNN-extension

- Inverse graph 「 on $X \cup t$;
- A lobe of Γ is a maximal connected component labelled by elements of X;
- Lobe graph $G(\Gamma)$: vertices the set of lobes and two lobes are adjacent if there is a edge $p \xrightarrow{t} q$ connecting them;
- Γ is a weak t-opuntoid if it is deterministic and the lobe graph is a tree.

The Shape of the Schützenberger automata for an HNN-extension

- Inverse graph 「 on $X \cup t$;
- A lobe of Γ is a maximal connected component labelled by elements of X;
- Lobe graph $G(\Gamma)$: vertices the set of lobes and two lobes are adjacent if there is a edge $p \xrightarrow{t} q$ connecting them;
- Γ is a weak t-opuntoid if it is deterministic and the lobe graph is a tree.

The Shape of the Schützenberger automata for an HNN-extension

Proposition (Jajcayova)

The Schützenberger automaton of the HNN-extension S* with respect to the presentation $\langle S, t| t^{-1}$ at $\left.=\varphi(a), t^{-1} t=f, t t^{-1}=e, \forall a \in A_{1}\right\rangle$ is a weak t-opuntoid.

Passing from the amalgamated free product

- The proof relies on a analogous undecidability result for amalgamated free products of inverse semigroups.
- Amalgam $\left[S_{1}, S_{2} ; U, \omega_{1}, \omega_{2}\right]$ with $S_{1}=\operatorname{Inv}\left\langle X_{1} \mid R_{1}\right\rangle S_{2}=\operatorname{Inv}\left\langle X_{2} \mid R_{2}\right\rangle$ with $X_{1} \cap X_{2}=\emptyset, \omega_{i}: U \hookrightarrow S_{i}, i=1,2$.
- The amalgamated free product
$S_{1} * \cup S_{2}=\operatorname{Inv}\left\langle X_{1} \cup X_{2} \mid R_{1} \cup R_{2} \cup W\right\rangle$ where $W=\left\{\left(u \omega_{1}, u \omega_{2}\right) \mid u \in U\right\}$

Theorem (R., Silva)

The word problem for $S_{1} * U S_{2}$ of inverse semigroups may be undecidable even if we assume the following conditions.
S_{1} and S_{2} have finite \mathcal{R}-classes
U is a free inverse semigroup with zero of finite rank the membership problem of $\omega_{i}(U)$ is decidable in S_{i} for $i=1,2$
ω_{1}, ω_{2} and their inverses are computable functions.

Associate an HNN-extension to an amalgam

Theorem (Cherubini, R.)
Let $\left[S_{1}^{e_{1}}, S_{2}^{e_{2}} ; U^{1}, \omega_{1}^{1}, \omega_{2}^{1}\right]$ be the free product with amalgamation with adjoint identities, associate the HNN-extension $\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]$ and $S^{*}=\operatorname{Inv}\left\langle\bar{X} \mid \bar{R} \cup R_{H N N}\right\rangle$, then

$$
S^{*} / \rho \simeq\left(S_{1}^{e_{1}} * U^{1} S_{2}^{e_{2}}\right) \simeq\left(S_{1} * U S_{2}\right)^{1}
$$

where $\left(S_{1} * U S_{2}\right)^{1}$ denotes $S_{1} * U S_{2}$ with adjoint identity 1 and ρ is the congruence on S^{*} generated by the relation $t=e_{1}, t=e_{2}$.

From the point of view of Schützenberger automata

- Schützenberger automaton $\mathcal{A}\left(X_{1} \cup X_{2}, R_{1} \cup R_{2} \cup W, w\right)$ of the word w with respect to $S_{1} *_{U} S_{2}$ from the Schützenberger $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w^{\prime}\right)$ of the associated HNN-extension;
- Factorize $w=w_{1} w_{2} \ldots w_{2 n-1} w_{2 n}, w_{1} \in\left(X_{1} \cup X_{1}^{-1}\right)^{*}$, $w_{2 i} \in\left(X_{2} \cup X_{2}^{-1}\right)^{+}, w_{2 i+1} \in\left(X_{1} \cup X_{1}^{-1}\right)^{+}, 1 \leq i \leq n-1$;
- Considered the associate separated normal form

$$
w^{\prime}=w_{1} e_{1} t e_{2} w_{2} e_{2} t^{-1} e_{1} \ldots e_{2} t^{-1} e_{1} w_{2 n-1} e_{1} t e_{2} w_{2 n}
$$

From the point of view of Schützenberger automata

Proposition (Cherubini, R.)

$\mathcal{A}\left(X_{1} \cup X_{2}, R_{1} \cup R_{2} \cup W, w\right)$ can be obtained from $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w^{\prime}\right)$ of the separated normal form w^{\prime} of w by identifying the initial and terminal vertices of each t-edge and then deleting all the obtained loops labelled by t.

From the point of view of Schützenberger automata

Proposition (Cherubini, R.)

$\mathcal{A}\left(X_{1} \cup X_{2}, R_{1} \cup R_{2} \cup W, w\right)$ can be obtained from $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w^{\prime}\right)$ of the separated normal form w^{\prime} of w by identifying the initial and terminal vertices of each t-edge and then deleting all the obtained loops labelled by t.

From the point of view of Schützenberger automata

Proposition (Cherubini, R.)

$\mathcal{A}\left(X_{1} \cup X_{2}, R_{1} \cup R_{2} \cup W, w\right)$ can be obtained from $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w^{\prime}\right)$ of the separated normal form w^{\prime} of w by identifying the initial and terminal vertices of each t-edge and then deleting all the obtained loops labelled by t.

From the point of view of Schützenberger automata

Proposition (Cherubini, R.)

$\mathcal{A}\left(X_{1} \cup X_{2}, R_{1} \cup R_{2} \cup W, w\right)$ can be obtained from $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w^{\prime}\right)$ of the separated normal form w ' of w by identifying the initial and terminal vertices of each t-edge and then deleting all the obtained loops labelled by t.

From the point of view of Schützenberger automata

- More precisely the lobes are quotients of Schützenberger automata of either S_{1} or S_{2} with a tree-like structure (weak opuntoid class of inverse graphs denoted by \mathcal{C}).
\square
This means that the Schützenberger automaton of the separated normal form has a particular shape (class of separated weak t-opuntoid inverse graphs denoted by \mathcal{C}_{t})

From the point of view of Schützenberger automata

- More precisely the lobes are quotients of Schützenberger automata of either S_{1} or S_{2} with a tree-like structure (weak opuntoid class of inverse graphs denoted by \mathcal{C}).
- This means that the Schützenberger automaton of the separated normal form has a particular shape (class of separated weak t-opuntoid inverse graphs denoted by \mathcal{C}_{t})

From the point of view of Schützenberger automata

Proposition

The map $\psi: \mathcal{C}_{t} \rightarrow \mathcal{C}$, which is defined by identifying the initial vertex with the terminal vertex of each t-edge and then erasing the formed loops, is a bijection.

However, it is not a bijection if we extend ψ to the class of inverse automata since we may identify initial and final states

From the point of view of Schützenberger automata

Proposition

The map $\psi: \mathcal{C}_{t} \rightarrow \mathcal{C}$, which is defined by identifying the initial vertex with the terminal vertex of each t-edge and then erasing the formed loops, is a bijection.

However, it is not a bijection if we extend ψ to the class of inverse automata since we may identify initial and final states

From the point of view of Schützenberger automata

Proposition

Let $w_{1}, w_{2} \in\left(X_{1} \cup X_{2} \cup X_{1}^{-1} \cup X_{2}^{-1}\right)^{+}$, and let w_{1}^{\prime} and w_{2}^{\prime} be their corresponding separated normal forms.
Let $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w_{1}^{\prime}\right)=\left(\alpha, \Gamma_{1}, \beta\right), \mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w_{2}^{\prime}\right)=\left(\alpha^{\prime}, \Gamma_{2}, \beta^{\prime}\right)$ be the corresponding Schützenberger automata which are separated weak t-opuntoid automata with the property that:

$$
\psi\left(\left(\alpha, \Gamma_{1}, \beta\right)\right)=\psi\left(\left(\alpha^{\prime}, \Gamma_{2}, \beta^{\prime}\right)\right)
$$

then there are $\epsilon_{1}, \epsilon_{2} \in\{0,1,-1\}$ such that

$$
t^{\epsilon_{1}} w_{1}^{\prime} t^{\epsilon_{2}}=w_{2}^{\prime} \text { in } S^{*}
$$

Sketch of the proof (I)

- Consider the amalgam $\left[S_{1} ; S_{2}, U ; \omega_{1}, \omega_{2}\right]$ associated to this theorem.

Theorem (R., Silva)

The word problem for $S_{1} * U S_{2}$ of inverse semigroups may be undecidable even if we assume the following conditions.

- S_{1} and S_{2} have finite \mathcal{R}-classes
- U is a free inverse semigroup with zero of finite rank
- the membership problem of $\omega_{i}(U)$ is decidable in S_{i} for $i=1,2$
- ω_{1}, ω_{2} and their inverses are computable functions.

Sketch of the proof (I)

- Consider the amalgam $\left[S_{1} ; S_{2}, U ; \omega_{1}, \omega_{2}\right]$ associated to this theorem.
- Associate the corresponding HNN-extension as before:

$$
\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]
$$

- The conditions on $\left[S_{1} ; S_{2}, U_{i}, \omega_{1}, \omega_{2}\right]$ implies that $S_{1}^{e_{1}} * S_{2}^{e_{2}}$ has
finite \mathcal{R}-classes, $U_{1}^{e_{1}} \simeq U_{2}^{\theta_{2}^{2}}$ is a free inverse semigroup with zero
of finite rank, and both $\left(\omega_{1}^{1}\right)^{-1}$ o ω_{2}^{1} and $\left(\omega_{2}^{1}\right)^{-1} \circ \omega_{1}^{1}$ are computable
functions. Since the membership problem of $\omega_{i}(U)$ is decidable in
S_{i} for $i=1,2$, then the same occurs for $U_{1}^{e_{1}}, U_{2}^{U_{2}^{2}}$ in $S_{1}^{e_{1}} * S_{2}^{\theta_{2}}$.
- Hence the associated HNN-extensions satisfies the conditions of the statement!

Sketch of the proof (I)

- Consider the amalgam $\left[S_{1} ; S_{2}, U ; \omega_{1}, \omega_{2}\right]$ associated to this theorem.
- Associate the corresponding HNN-extension as before:

$$
\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]
$$

- The conditions on $\left[S_{1} ; S_{2}, U ; \omega_{1}, \omega_{2}\right]$ implies that $S_{1}^{e_{1}} * S_{2}^{e_{2}}$ has finite \mathcal{R}-classes, $U_{1}^{e_{1}} \simeq U_{2}^{e_{2}}$ is a free inverse semigroup with zero of finite rank, and both $\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}$ and $\left(\omega_{2}^{1}\right)^{-1} \circ \omega_{1}^{1}$ are computable functions. Since the membership problem of $\omega_{i}(U)$ is decidable in S_{i} for $i=1,2$, then the same occurs for $U_{1}^{e_{1}}, U_{2}^{e_{2}}$ in $S_{1}^{e_{1}} * S_{2}^{e_{2}}$.
the statement!

Sketch of the proof (I)

- Consider the amalgam $\left[S_{1} ; S_{2}, U ; \omega_{1}, \omega_{2}\right]$ associated to this theorem.
- Associate the corresponding HNN-extension as before:

$$
\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]
$$

- The conditions on $\left[S_{1} ; S_{2}, U ; \omega_{1}, \omega_{2}\right]$ implies that $S_{1}^{e_{1}} * S_{2}^{e_{2}}$ has finite \mathcal{R}-classes, $U_{1}^{e_{1}} \simeq U_{2}^{e_{2}}$ is a free inverse semigroup with zero of finite rank, and both $\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}$ and $\left(\omega_{2}^{1}\right)^{-1} \circ \omega_{1}^{1}$ are computable functions. Since the membership problem of $\omega_{i}(U)$ is decidable in S_{i} for $i=1,2$, then the same occurs for $U_{1}^{e_{1}}, U_{2}^{e_{2}}$ in $S_{1}^{e_{1}} * S_{2}^{e_{2}}$.
- Hence the associated HNN-extensions satisfies the conditions of the statement!

Sketch of the proof (II)

- Using the previous Proposition;
- We get the following lemma;
- Hence, if the word problem for $\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]$
would be solvable, then the word problem for $S_{1} * u S_{2}$ would be solvable, a contradiction.

Proposition

Let $w_{1}, w_{2} \in\left(X_{1} \cup X_{2} \cup X^{-1} \cup X_{2}^{-1}\right)^{+}$, and let w_{1}^{\prime} and w_{2}^{\prime} be their corresponding separated normal forms.
Let $\mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w_{1}^{\prime}\right)=\left(\alpha, \Gamma_{1}, \beta\right), \mathcal{A}\left(\bar{X}, R_{H N N} \cup \bar{R}, w_{2}^{\prime}\right)=\left(\alpha^{\prime}, \Gamma_{2}, \beta^{\prime}\right)$ be the corresponding Schützenberger automata which are separated weak t-opuntoid automata with the property that:

$$
\psi\left(\left(\alpha, \Gamma_{1}, \beta\right)\right)=\psi\left(\left(\alpha^{\prime}, \Gamma_{2}, \beta^{\prime}\right)\right)
$$

then there are $\epsilon_{1}, \epsilon_{2} \in\{0,1,-1\}$ such that $t^{\epsilon_{1}} w_{1}^{\prime} t^{\epsilon_{2}}=w_{2}^{\prime}$ in S^{*}.

Sketch of the proof (II)

- Using the previous Proposition;
- We get the following lemma;
- Hence, if the word problem for $\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]$
would be solvable, then the word problem for $S_{1} * \cup S_{2}$ would be solvable, a contradiction.

Lemma

Let $w_{1}, w_{2} \in\left(X_{1} \cup X_{2} \cup X^{-1} \cup X_{2}^{-1}\right)^{+}$with w_{1}^{\prime} and w_{2}^{\prime} their corresponding separated normal forms, respectively. Then $w_{1}=w_{2}$ in $S_{1} *_{U} S_{2}$ if and only if there are $\epsilon_{1}, \epsilon_{2} \in\{0,1,-1\}$ such that

$$
t^{\epsilon_{1}} w_{1}^{\prime} t^{\epsilon_{2}}=w_{2}^{\prime} \text { in } S^{*}
$$

Sketch of the proof (II)

- Using the previous Proposition;
- We get the following lemma;
- Hence, if the word problem for $\left[S_{1}^{e_{1}} * S_{2}^{e_{2}} ; U_{1}^{e_{1}}, U_{2}^{e_{2}} ;\left(\omega_{1}^{1}\right)^{-1} \circ \omega_{2}^{1}\right]$ would be solvable, then the word problem for $S_{1} *_{U} S_{2}$ would be solvable, a contradiction.

Lemma

Let $w_{1}, w_{2} \in\left(X_{1} \cup X_{2} \cup X^{-1} \cup X_{2}^{-1}\right)^{+}$with w_{1}^{\prime} and w_{2}^{\prime} their corresponding separated normal forms, respectively. Then $w_{1}=w_{2}$ in $S_{1} *_{U} S_{2}$ if and only if there are $\epsilon_{1}, \epsilon_{2} \in\{0,1,-1\}$ such that

$$
t^{\epsilon_{1}} w_{1}^{\prime} t^{\epsilon_{2}}=w_{2}^{\prime} \text { in } S^{*}
$$

The "boundaries" decidability/undecidability

- Future work: sketch the boundary between decidability/undecidability both for HNN-extensions and free product with amalgamations.
- By the previous results, we may assume that the starting semigroups has finite \mathcal{R}-classes.
- We have some partial results.

Building the Schützenberger automaton

- Starting from the linear automaton of $w_{1} t w_{2} t^{-1} w_{3} t w_{4}$

Building the Schützenberger automaton

- Close the lobes, i.e. apply all the expansions and foldings relative to S

Building the Schützenberger automaton

- a $\in E\left(A_{1}\right)$ labels a loop, but $\varphi(a)$ does not labels a loop. Make an expansion, then close the lobe.

Building the Schützenberger automaton

- a $\in E\left(A_{1}\right)$ labels a loop, but $\varphi(a)$ does not labels a loop. Make an expansion, then close the lobe.

Building the Schützenberger automaton

- a $\in E\left(A_{1}\right)$ labels a loop, but $\varphi(a)$ does not labels a loop. Make an expansion, then close the lobe.

Building the Schützenberger automaton

- A loop labeled by $\varphi(a)$ for which a in not a loop in the corresponding vertex. Make an expansion: equivalent to quotient the path into a loop, then close the lobe.

Building the Schützenberger automaton

- A loop labeled by $\varphi(a)$ for which a in not a loop in the corresponding vertex. Make an expansion: equivalent to quotient the path into a loop, then close the lobe.

Building the Schützenberger automaton

- In the "limit" the lobe graph is finite, however, each lobe may not be finite.

Building the Schützenberger automaton

- One to one correspondence: add " t ".

Building the Schützenberger automaton

- One to one correspondence: add " t ".

Building the Schützenberger automaton

- Finally one obtains a "graphical normal form"

The Graphical Normal Form

- It is possible to prove that there is a way to build in the limit a new lobe, let us call it an "external lobe".

The Graphical Normal Form

- We can glue to the previous automaton and iterate this process we get at the limit the Schützenberger automaton.

The Graphical Normal Form

- We can glue to the previous automaton and iterate this process we get at the limit the Schützenberger automaton.

The Graphical Normal Form

- We can glue to the previous automaton and iterate this process we get at the limit the Schützenberger automaton.

The Graphical Normal Form

- We can glue to the previous automaton and iterate this process we get at the limit the Schützenberger automaton.

Decidability conditions

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite \Rightarrow the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the m-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the m-property is finite (not true the converse). Furthermore, the closure of a lobe with the m-property has the m-property.

Decidability conditions

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite \Rightarrow the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the m-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the m-property is finite (not true the converse). Furthermore, the closure of a lobe with the m-property has the m-property.

Decidability conditions

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite \Rightarrow the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the m-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the m-property is finite (not true the converse). Furthermore, the closure of a lobe with the m-property has the m-property.

Decidability conditions

- If the lobes in the graphical normal form are finite, and the lobes that we add are finite \Rightarrow the word problem is solvable!
- Main problem: the closure of a lobe (even if it is finite) is not finite.
- Minimality property: a lobe is said to satisfy the m-property, if it has a minimum idempotent labelling a loop at some vertex.
- A lobe having the m-property is finite (not true the converse). Furthermore, the closure of a lobe with the m-property has the m-property.

Decidability conditions

- If all the lobes of the "graphical normal form" have the m-property, what about the added external lobes?
- This is similar to the lower-bounded condition considered by Jajkayova/Bennet conditions. It actually includes both the lower-bounded and the finite case.
- Outside the m-property things become "wild" and very difficult to control. Therefore, it seems that this chain condition is almost "necessarily".

Decidability conditions

- If all the lobes of the "graphical normal form" have the m-property, what about the added external lobes?
- This is similar to the lower-bounded condition considered by Jajkayova/Bennet conditions. It actually includes both the lower-bounded and the finite case.
- Outside the m-property things become "wild" and very difficult to control. Therefore, it seems that this chain condition is almost "necessarily"

Theorem

The external lobes have the m-property if and only if for any e $\in E(S)$ we get

$$
U_{i}(e)=\left\{g \in E\left(A_{i}\right): g \geq e\right\} \neq \emptyset \Rightarrow U_{i}(e) \text { has a minimum. }
$$

for $i=1,2$.

Decidability conditions

- If all the lobes of the "graphical normal form" have the m-property, what about the added external lobes?
- This is similar to the lower-bounded condition considered by Jajkayova/Bennet conditions. It actually includes both the lower-bounded and the finite case.
- Outside the m-property things become "wild" and very difficult to control. Therefore, it seems that this chain condition is almost "necessarily".

Theorem

The external lobes have the m-property if and only if for any e $\in E(S)$ we get

$$
U_{i}(e)=\left\{g \in E\left(A_{i}\right): g \geq e\right\} \neq \emptyset \Rightarrow U_{i}(e) \text { has a minimum. }
$$

for $i=1,2$.

THANK YOU!

