One-sided operators in grand variable exponent Lebesgue spaces

ALEXANDER MESKHI

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Georgia

Porto, June 10, 2015

Our aim is to present the bounddeness results of one-sided maximal, singular and potential operators in grand variable exponent Lebesgue spaces (GVLS briefly). The same problem for commutators of one-sided Calderón–Zygmund and potential operators is also investigated. These spaces introduced in [Ko-Me-GMJ] (see also the forthcoming monograph [Ko-Me-Ra-Sa], Chapter 14) unify two non-standard function spaces: variable exponent Lebesgue space and grand Lebesgue space. In [Ko-Me-GMJ] the authors established the boundedness of maximal, Calderón–Zygmund and potential operators defined on quasimetric spaces with doubling measure in GVELS. Let I = (a, b) be an interval and let p be a measurable function on I satisfying the condition

$$1 < p_{-} \le p_{+} < \infty, \tag{1}$$

where

$$p_- := \inf_l p; \quad p_+ := \sup_l p.$$

Let us denote by P(I) the class of all exponents on I satisfying (1).

We denote by $L^{p(\cdot)}(I)$ the variable exponent Lebesgue space defined on I. Further, let $\theta > 0$. We denote by $L^{p(\cdot),\theta}(I)$ the grand variable exponent Lebesgue space on I. This is the class of all measurable functions $f: I \mapsto \mathbb{R}$ for which the norm

$$\|f\|_{L^{p(\cdot),\theta}(I)} := \sup_{0 < \varepsilon < p_{-}-1} \varepsilon^{\frac{\theta}{p_{-}-\varepsilon}} \|f\|_{L^{p(x)-\varepsilon}(I)}$$

is finite.

Together with the space $L^{p(\cdot),\theta}$ it is interesting to consider the space $\mathcal{L}^{p(\cdot),\theta}$ which is defined with respect to the norm

$$\|f\|_{\mathcal{L}^{p(\cdot),\theta}} := \sup_{0 < \varepsilon < p_{-}-1} \|\varepsilon^{\frac{\theta}{p(\varepsilon)-\varepsilon}}f\|_{L^{p(\varepsilon)-\varepsilon}(I)}.$$

It is obvious that the following continuous embedding holds:

$$\mathcal{L}^{p(\cdot),\theta}(I) \hookrightarrow L^{p(\cdot),\theta}(I).$$

It is known (see [KoMe-GMJ]) that there is a function f such that $f \in L^{p(\cdot),\theta}(I)$ but $f \notin \mathcal{L}^{p(\cdot),\theta}(I)$.

5 / 30

If $p = p_c$ is constant, then $L^{p(\cdot),\theta} = \mathcal{L}^{p(\cdot),\theta}$ and it is the grand Lebesgue space L^{p_c} , $^{\theta}$ introduced in [Greco, Iwaniec and Sbordone]. In the case $p = p_c = \text{const}$ and $\theta = 1$, we have the Iwaniec–Sbordone space L^{p_c} . The space L^{p_c} naturally arises, for example, when studying integrability problems of the Jacobian under minimal hypothesis (see Iwaniec and Sbordone]), while L^{p_c} , $^{\theta}$ is related to the investigation of the nonhomogeneous *n*- harmonic equation div $A(x, \nabla u) = \mu$ (see [Greco, Iwaniec and Sbordone]). **Proposition.** [Ko-Me-GMJ] (a) The spaces $L^{p(\cdot),\theta}(I)$ and $\mathcal{L}^{p(\cdot),\theta}(I)$ are complete.

(b) The closure of $L^{p(\cdot)}(I)$ in $L^{p(\cdot),\theta}(I)$ (resp. in $\mathcal{L}^{p(\cdot),\theta}(I)$) consists of those $f \in L^{p(\cdot),\theta}(I)$ (resp. $f \in \mathcal{L}^{p(\cdot),\theta}(I)$) for which $\lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p_{-}-\varepsilon}} \|f(\cdot)\|_{L^{p(\cdot)-\varepsilon}(I)} = 0 \text{ (resp. } \lim_{\varepsilon \to 0} \|\varepsilon^{\frac{\theta}{p(\cdot)-\varepsilon}} f(\cdot)\|_{L^{p(\cdot)-\varepsilon}(I)} = 0).$ The following properties hold: Let $p \in P(I)$. Then the following embeddings hold:

$$L^{p(\cdot)}(I) \hookrightarrow L^{p(\cdot), \theta}(I) \hookrightarrow L^{p(\cdot) - \varepsilon}(I), \ \ 0 < \varepsilon < p_{-} - 1;$$

$$L^{p(\cdot)}(I) \hookrightarrow \mathcal{L}^{p(\cdot),\theta}(I) \hookrightarrow L^{p(\cdot)-\varepsilon}(I), \ 0 < \varepsilon < p_{-} - 1.$$

It can be checked that the associate space of $L^{p(\cdot),\theta}(I)$ denoted by $SL^{p(\cdot),\theta}(I)$ is the small variable exponent Lebesgue space which is a Banach function space consisting of those measurable $g: I \mapsto \mathbb{R}$ for which

$$\|g\|_{SL^{p(\cdot),\theta}(I)} = \sup_{0 \le \psi \le |g|} \|\psi\|_{L^{(p'(\cdot),\theta}(I)} < \infty,$$

where

$$\|\psi\|_{L^{(p'(\cdot),\theta}(I)} = \inf_{g=\sum_{k=1}^{\infty}g_k} \left\{ \inf_{0<\varepsilon<\rho_--1} \varepsilon^{\frac{-\theta}{\rho_--\varepsilon}} \|g_k\|_{L^{p(\cdot)-\varepsilon}(I)} \right\}.$$

We say that an exponent p belongs to the class $\mathcal{P}_{-}(I)$ if there exists a non-negative constant c_1 such that for a.e. $x \in I$ and a.e. $y \in I$ with $0 < x - y \le 1/2$, the inequality

$$p(x) \le p(y) + \frac{c_1}{\ln(1/(x-y))}$$
 (2)

Holds. Further, we say that p belongs to $\mathcal{P}_+(I)$ if there exists a non-negative constant c_2 such that for a.e. $x \in I$ and a.e. $y \in I$ with $0 < y - x \le 1/2$, the inequality

$$p(x) \le p(y) + \frac{c_2}{\ln(1/(y-x))}$$
 (3)

holds.

The class $\mathcal{P}_{-}(I)$ (resp. $\mathcal{P}_{+}(I)$) is strictly larger than the class of exponents satisfying the log-Hölder continuity condition: there is a positive constant A such that for all $x, y \in I$, |x - y| < 1/2,

$$|p(x) - p(y)| \le \frac{A}{-\log|x - y|}.$$
(4)

If we denote the class of exponents satisfying the latter condition by $\mathcal{P}(I)$, then

$$\mathcal{P}(I) = \mathcal{P}_+(I) \cap \mathcal{P}_-(I).$$

It is easy to see that if p is a non-increasing function on I, then condition $p \in \mathcal{P}_+(I)$ is satisfied, while for non-decreasing p condition $p \in \mathcal{P}_-(I)$ holds.

We say that p satisfies the decay condition at infinity if there is a positive constant A_∞ such that

$$|p(x) - p(y)| \leq \frac{A_\infty}{\log(e + |x|)}$$

for all $x, y \in I$, |y| > |x|.

One-sided maximal operators

Let I be an open set in \mathbb{R} .

$$(\mathcal{M}f)(x) = \sup_{h>0} \frac{1}{2h} \int_{I(x,h)} |f(t)| dt,$$
$$(\mathcal{M}_{-}f)(x) = \sup_{h>0} \frac{1}{h} \int_{I_{-}(x,h)} |f(t)| dt,$$
$$(\mathcal{M}_{+}f)(x) = \sup_{h>0} \frac{1}{h} \int_{I_{+}(x,h)} |f(t)| dt,$$

where $x \in I$ and

 $I_{+}(x,h) := [x,x+h] \cap I; \ I_{-}(x,h) := [x-h,x] \cap I; \ I(x,h) := [x-h,x+h] \cap I.$

In [Edmunds, Kokilashvili and Meskhi, Math. Nachr, 2008] it was shown there exists a discontinuous function $p \in P(I)$ such that \mathcal{M}_- (resp. \mathcal{M}_+) is bounded in $L^{p(\cdot)}(I)$ but \mathcal{M} is not bounded in $L^{p(\cdot)}(I)$. The boundedness of one-sided maximal, singular and potential operators in variable exponent Lebesgue spaces under the "the one-sided" local log-Hölder continuity condition and decay condition at infinity was established in [Edmunds, Kokilashvili and Meskhi, Math.Nachr, 2008]. For example, for the left maximal operator the following statement holds: **Theorem.** Let I be an interval in \mathbb{R} and let $p \in P(I)$. (a) If I be a bounded interval and $p \in \mathcal{P}_{-}(I)$, then \mathcal{M}_{-} is bounded in $L^{p(\cdot)}(I)$. (b) If I be \mathbb{R} or \mathbb{R}_{+} , and $p \in \mathcal{P}_{-}(I) \cap \mathcal{P}_{\infty}(I)$, then \mathcal{M}_{-} is bounded in $L^{p(\cdot)}(\mathbb{R}_{+})$. **Theorem.** Let I := (0, a), $0 < a < \infty$ be a bounded interval and let $\theta > 0$. Suppose that $p \in P(I)$. (i) If $p \in \mathcal{P}_{-}(I)$, then the one-sided Hardy–Littlewood maximal operator \mathcal{M}_{-} is bounded in $L^{p(\cdot),\theta}(I)$; (ii) If $p \in \mathcal{P}_{+}(I)$, then the one-sided Hardy–Littlewood maximal operator \mathcal{M}_{+} is bounded in $L^{p(\cdot),\theta}(I)$. Regarding the space $\mathcal{L}^{p(\cdot),\theta}(I)$ we have the following statement. **Theorem.** Let I be a bounded interval and let $\theta > 0$. (i) If $p \in P(I) \cap \mathcal{P}_{-}(I)$, then the one-sided Hardy-Littlewood maximal operator \mathcal{M}_{-} is bounded in $\mathcal{L}^{p(\cdot),\theta}(I)$; (ii) If $p \in P(I) \cap \mathcal{P}_{+}(I)$, then the one-sided Hardy-Littlewood maximal operator \mathcal{M}_{+} is bounded in $\mathcal{L}^{p(\cdot),\theta}(I)$.

(For the two-sided Hardy-Littlewood maximal operator see [Diening], [Cruz-Urive, Fiorenza, Neugebauer]; [Nekvinda]).

Calderón-Zygmund Kernel

Let I := (-a, a), $0 < a \le \infty$. We say that a function k in $L^1_{loc}(I \setminus \{0\})$ is a Calderón–Zygmund kernel if the following properties are satisfied: (a) there exists a finite constant B_1 such that

$$\left|\int\limits_{\varepsilon<|x|$$

for all ε and all N, with $0 < \varepsilon < N < 2a$, and furthermore, $\lim_{\varepsilon \to 0} \int_{\varepsilon < |x| < N} k(x) dx \text{ exists;}$ (b) there exists a positive constant B_2 such that $|k(x)| \le \frac{B_2}{|x|}, \qquad x \in I \setminus \{0\};$ (c) there exists a positive constant B_3 such that for all $x, y \in I$ with |x| > 2|y| > 0 the inequality

$$|k(x-y) - k(x)| \le B_3 \frac{|y|}{|x|_{-1}^2}$$

It is known (see [Aimar, Forzani and Martin-Reyes]) that if $a = \infty$, (a)-(c) are satisfied for the kernel k defined on \mathbb{R} , then the operators

$$K^*f(x) = \sup_{\varepsilon>0} |K_{\varepsilon}f(x)|;$$

$$Kf(x) = \lim_{\varepsilon \to 0} K_{\varepsilon}f(x),$$

where

$$\mathcal{K}_{\varepsilon}f(x) = \int\limits_{|x-y|>\varepsilon} k(x-y)f(y)dy,$$

have weak (1, 1) type and are bounded in $L^{r}(\mathbb{R})$, $1 < r < \infty$ It is clear that $Kf(x) \leq K^{*}f(x)$. The following example shows the existence of a non-trivial Calderón-Zygmund kernel with a support contained in (0, a) (see [Aimar, Firzani-Martin-Reyes] for $a = \infty$).

Example

The function

$$k(x) = \frac{1}{x} \frac{\sin(\ln x)}{\ln x} \chi_{(0,a)}(x)$$

is a Calderón-Zygmund kernel.

There exists also a non-trivial Calderón–Zygmund kernel supported in the interval (-a, 0).

Theorem. Let I := (0, a) be a bounded interval and let $\theta > 0$. Suppose that $p \in P(I)$. (i) If $p \in \mathcal{P}_+(I)$, then for the Calderón-Zygmund operator K with kernel supported on (-2a, 0), there is a positive constant c such that for all bounded f defined on I the inequality

$$\|K^*f\|_{L^{p(\cdot),\theta}(I)} \leq c\|f\|_{L^{p(\cdot),\theta}(I)};$$

holds;

(ii) If $p \in \mathcal{P}_{-}(I)$, then the Calderón-Zygmund operator K with kernel supported on (0, 2a), there is a positive constant c such that for all bounded f defined on I the inequality

$$\|K^*f\|_{L^{p(\cdot),\theta}(I)} \leq c\|f\|_{L^{p(\cdot),\theta}(I)};$$

holds.

We also studied the boundedness of one-sided fractional integral operators \mathcal{W}_{α} and \mathcal{R}_{α} in grand variable exponent Lebesgue space $\widetilde{L}^{p(\cdot),\theta}(I)$ which is narrower than the space $L^{p(\cdot),\theta}(I)$.

To formulate the main result in this direction we introduce new classes of exponents related to the classes $\mathcal{P}_{-}(I)$ and $\mathcal{P}_{+}(I)$. The class $\widetilde{\mathcal{P}}_{-}^{\ell_{-}}(I)$ (resp. $\widetilde{\mathcal{P}}_{+}^{\ell_{+}}(I)$) is the class of all non-negative $p \in \mathcal{P}_{-}(I)$ (resp. $p \in \mathcal{P}_{+}(I)$) such that $0 \leq \ell_{-} := \sup c_{1}(p) < \infty$ (resp. $0 \leq \ell_{+} := \sup c_{2}(p) < \infty$), where $c_{1}(p)$ (resp. $c_{2}(p)$) is the best possible constant in (2) (resp. in (3)).

One-sided potentials in GVELS

Let $p \in P(I)$ and let $\theta > 0$. We introduce new spaces $\widetilde{L}^{p(\cdot),\theta,\ell_+}_+(I)$ and $\widetilde{L}^{p(\cdot),\theta,\ell_-}_-(I)$ defined with respect to the norms

$$\|f\|_{\widetilde{L}^{p(\cdot),\theta,\ell_{+}}_{+}(I)} := \sup \left\{ \eta^{\frac{\theta}{p_{-}-\eta_{+}}}_{+} \|f\|_{L^{p(x)-\eta(x)}(I)} : \\ 0 < \eta_{-} \le \eta_{+} < p_{-}-1, \ p(\cdot) - \eta(\cdot) \in \mathcal{P}^{\ell_{+}}_{+}(I) \right\} < \infty;$$

$$\|f\|_{\widetilde{L}^{p(\cdot),\theta,\ell_-}_{-}(I)} := \sup\left\{\eta_+^{\frac{\theta}{p_--\eta_-}} \|f\|_{L^{p(x)-\eta(x)}(I)} :\right.$$

$$0<\eta_-\leq\eta_+< p_--1,\; p(\cdot)-\eta(\cdot)\in \mathcal{P}_-^{\ell_-}(I) iggl\}<\infty.$$

It can be checked that the spaces $\widetilde{L}^{p(\cdot),\theta,\ell_+}_+(I)$ and $\widetilde{L}^{p(\cdot),\theta,\ell_-}_-(I)$ are Banach spaces.

Let $\theta > 0$ and $p \in P(I)$. We denote by $\widetilde{\mathcal{P}}^{\ell}(I)$ the collection of those exponents $\eta \in \mathcal{P}(I)$ for which

$$0 \leq \ell := \sup A(\eta) < \infty,$$

where $A(\eta)$ is the best possible constant in (4). The class denoted by $\widetilde{L}^{p(\cdot),\theta,\ell}(I)$ consists of measurable functions $f: I \to \mathbb{R}$ for which

$$\|f\|_{\widetilde{L}^{p(\cdot),\theta,\ell}(I)} := \sup\left\{\varepsilon_{+}^{\frac{\theta}{p_{-}-\varepsilon_{+}}} \|f\|_{L^{p(x)-\varepsilon(x)}(I)} : \\ 0 < \varepsilon_{-} \le \varepsilon_{+} < p_{-}-1, \ p(\cdot)-\varepsilon(\cdot) \in \widetilde{\mathcal{P}}^{\ell}(I)\right\} < \infty.$$

One-sided potentials in GVELS

Like the spaces $\widetilde{L}^{p(\cdot),\theta,\ell_+}_+(I)$ and $\widetilde{L}^{p(\cdot),\theta,\ell_-}_-(I)$, the space $\widetilde{L}^{p(\cdot),\theta,\ell}(I)$ is a Banach space.

If p = const and $\ell_{\pm} = 0$, then the space $\widetilde{L}^{p(\cdot),\theta,\ell}(I)$ is constant exponent grand Lebesgue spaces.

Let I = (a, b) be a bounded interval in \mathbb{R} . We define the following potential operators on I:

$$\mathcal{W}^{\alpha}f(x) = \int_{x}^{b} f(t)(t-x)^{\alpha-1}dt, \quad x \in I,$$
$$\mathcal{R}^{\alpha}f(x) = \int_{a}^{x} f(t)(x-t)^{\alpha-1}dt, \quad x \in I;$$
$$\mathcal{I}^{\alpha}f(x) = \int_{a}^{b} f(t)|x-t|^{\alpha-1}dt, \quad x \in I.$$

Boundedness of one-sided potentials in VELS

Theorem. Let $p \in P(I)$ and let $\theta > 0$. Suppose that α is a constant such that $0 < \alpha < 1/p_+$. We set $q(x) = \frac{p(x)}{1-\alpha p(x)}$. Then (i) The operator \mathcal{W}^{α} is bounded from $\widetilde{L}_{+}^{p(\cdot),\theta,\ell_+}(I)$ to $\widetilde{L}_{+}^{q(\cdot),\frac{\theta q_-}{p_-},\widetilde{\ell}_+}(I)$; (ii) The operator \mathcal{R}^{α} is bounded from $\widetilde{L}_{-}^{p(\cdot),\theta,\ell_-}(I)$ to $\widetilde{L}_{-}^{q(\cdot),\frac{\theta q_-}{p_-},\widetilde{\ell}_-}(I)$. (iii) The operator \mathcal{I}^{α} is bounded from $\widetilde{L}_{-}^{p(\cdot),\theta,\ell_-}(I)$ to $\widetilde{L}_{-}^{q(\cdot),\frac{\theta q_-}{p_-},\widetilde{\ell}_-}(I)$, where

$$\widetilde{\ell}_{\pm}=rac{\ell_{\pm}}{(1-lpha p_+)^2}; \ \ \widetilde{\ell}=rac{\ell}{(1-lpha p_+)^2}.$$

Remark. If $p = p_c = const$ and $\ell = 0$, then the second parameter in the target space $\theta q_c/p_c$ is sharp in the sense that we can not replace it by smaller parameter (see [Me] for details).

One-sided Maximal and Calderón–Zygmund operators in $\widetilde{\mathcal{L}}_{-}p(\cdot), \theta, \ell_{-}(I)$ and $\widetilde{\mathcal{L}}_{+}p(\cdot), \theta, \ell_{+}(I)$

Theorem. Let $p \in P(I)$ and let $\theta > 0$. Then (i) The operator \mathcal{M}_+ is bounded in $\widetilde{L}_+^{p(\cdot),\theta,\ell_+}(I)$; (ii) The operator \mathcal{M}_- is bounded in $\widetilde{L}_-^{p(\cdot),\theta,\ell_-}(I)$; (iii) For the Calderón-Zygmund operator K with kernel supported on (-2a, 0), there is a positive constant c such that for all bounded fdefined on I the inequality

$$\|\mathcal{K}^*f\|_{\widetilde{L}^{p(\cdot),\theta,\ell_+}_+(I)} \leq c\|f\|_{\widetilde{L}^{p(\cdot),\theta,\ell_+}_+(I)};$$

holds;

(iv) For the Calderón-Zygmund operator K with kernel supported on (0, 2a), there is a positive constant c such that for all bounded f defined on I the inequality

$$\|K^*f\|_{\widetilde{L}^{p(\cdot),\theta,\ell_-}_{-}(I)} \leq c\|f\|_{\widetilde{L}^{p(\cdot),\theta,\ell_-}_{-}(I)};$$

holds.

27 / 30

The techniques and methods used in the proofs of the main statements enable us to derive the boundedness of commutators of Calderón-Zygmund singular integrals on *I*:

$$(K_b^{+,k}f)(x) = p.v. \int_{I} (b(x) - b(y))^k k(x - y)f(y)dy; supp \ k \subset (-2a, 0);$$

$$(K_b^{-,k}f)(x) = p.v. \int_{I} (b(x) - b(y))^k k(x-y)f(y)dy; \text{ supp } k \subset (0,2a),$$

where $b \in BMO(I)$, $k = 0, 1, 2, \cdots$. See [Lorente-Riveros].

Commutators of Calderón-Zygmund Singular Integrals

Theorem. Let I := (0, a) be a bounded interval and let $\theta > 0$. Suppose that $p \in P(I)$ and $b \in BMO(I)$.

(i) If $p \in \mathcal{P}_+(I)$ and k be the Calderón-Zygmund kernel supported on (-2a, 0), then there is a positive constant c such that for all bounded f the inequality

$$\|K_b^{+,k}f\|_{L^{p(\cdot),\theta}(I)} \leq c\|b\|_{BMO}^k\|f\|_{L^{p(\cdot),\theta}(I)};$$

holds;

(ii) If $p \in \mathcal{P}_{-}(I)$ and k be the Calderón-Zygmund kernel supported on (0, 2a), then there is a positive constant c such that for all bounded f the inequality

$$\|K_b^{-,k}f\|_{L^{p(\cdot),\theta}(I)} \leq c\|b\|_{BMO}^k \|f\|_{L^{p(\cdot),\theta}(I)};$$

holds.

(iii) If k is the Calderón-Zygmund kernel supported on (-2a, 0), then there is a positive constant c such that for all bounded f the inequality

 $\|\mathcal{K}_{b}^{+,k}f\|_{\widetilde{\mathcal{L}}^{p(\cdot),\theta,\ell_{+}}(\Gamma)} \leq c\|b\|_{BMO}^{k}\|f\|_{\widetilde{\mathcal{L}}^{p(\cdot),\theta,\ell_{+}}(\Gamma)}; \quad \forall \in \mathbb{R} \quad \forall \in \mathbb{R}$ KHI (1) One-sided operators in grand variable exponer Porto, June 10, 2015 29 / 30

(iv) If k is the Calderón-Zygmund kernel supported on (0, 2a), then there is a positive constant c such that for all bounded f the inequality

$$\|\mathcal{K}_{b}^{-,k}f\|_{\tilde{\mathcal{L}}_{-}^{p(\cdot),\theta,\ell_{-}}(I)} \leq c\|b\|_{BMO}^{k}\|f\|_{\tilde{\mathcal{L}}_{-}^{p(\cdot),\theta,\ell_{-}}(I)}.$$

holds.

The boundedness of commutators of one-sided fractional integrals is also studied.