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Outline of the talk

Two-weighted Bernstein-Zygmund-Nikol’skii type inequalities
in classical Lebesgue spaces, applications

Weighted inequalities for trigonometric polynomials in
Iwaniec-Sbordone and grand variable exponent Lebesgue
spaces, applications

Weighted inequalities in variable exponent Lebesgue spaces
and approximation problems

The conjugate functions in Lp(·) spaces when p− =
inf p(x) = 1. Invariant classes



Two-weighted estimates in Lebesgue Spaces
For the further use, we need to make the following definitions:

T = [−π, π], Lp(T,w) := {f : ‖fw‖p < +∞}, ‖f ‖p,w := ‖fw‖p,

Wp,r
w = {f : ‖f ‖p,w + ‖f (r)‖p,w <∞}, r > 0.

For f ∈ Lp(T,w) the structural characteristic is defined via the

Steklov means: Ω(f , δ)p,w = sup
0<h≤δ

∥∥∥∥ 1
2h

x+h∫
x−h

f (t)dt − f (x)
∥∥∥∥

p,w

We need also the notion of best approximations by
trigonometric polynomials En(f )p,w = inf

Tn
‖f − Tn‖p,w ,

where Tn are trigonometric polynomials of degree ≤ n.

Pair of weights (v ,w) ∈ Ap,q, 1 < p ≤ q <∞ if

sup
I

 1
|I|

∫
I

vq(x)dx

1/q  1
|I|

∫
I

w−p′(x)dx

1/p′

< +∞.

We set Ap := Ap,p.



Theorem 1.1. Let 1 < p ≤ q <∞, (v ,w) ∈ Ap,q. Then for
arbitrary trigonometric polynomial Tn we have

‖T ′n‖q,v ≤ cn1+1/p−1/q‖Tn‖p,w

with a constant independent of n and Tn.
Theorem 1.2. Let 1 < p ≤ q <∞, (v ,w) ∈ Ap,q and, let
γ = min(2, q). Let

∞∑
j=1

νγ(1+1/p−1/q)−1Eν(f )p,w <∞,

then f ∈Wq,1
w and the following inequality holds

Ω
(

f ′, 1
n

)
q,v
≤ c

( 1
n2

( n∑
ν=1

νγ(3+1/p−1/q)−1Eγ
ν−1(f )p,w

)1/γ

+c

 ∞∑
ν=n+1

νγ(1+1/p−1/q)−1Eν(f )p,w

1/γ )
.



The last inequality gives more precise estimate than the one
due to M. Timan in the case v ≡ w ≡ 1 (see e. g. R. A.
Devore, G. G. Lorentz, Constructive Approximation, Springer
1993, p. 210)

Corollary. Let

Eν(f )p,w = O
( 1
ν3+1/p−1/q

)
then f ∈Wq,1

w and

Ω(f ′, δ)q,w = O
(
δ2
(

ln 1
δ

) 1
γ

)
.



For a Borel set e we set ve =
∫
e

v(x)dx . Let

I(x , r) = (x − r , x + r) ∩ T, x ∈ T.
Theorem 1.3. Let 1 < p < q <∞, 0 < α < 1. Let

sup
I(x ,r)

(vI(x , r))1/q

 ∫
T\I(x ,r)

w1−p′(y)dx
|x − y |(1−α)p′


1/p′

< +∞

and w ∈ Ap. Then for arbitrary trigonometric polynomial of degree
n and λ > 0 the following inequality holds

λqv{x : |Tn(x)| > λ} ≤ cnα‖Tn‖Lp(T,w)

Theorem 1.4. Let 1 < p < q <∞, 0 < α < 1. Let together with
the conditions of Theorem 1.3 the condition

sup
I(x ,r)

(w1−p′ I(x , r))1/p′

 ∫
T\I(x ,r)

vq(y)dx
|x − y |(1−α)q


1/q

<∞

is fulfilled. Then
‖Tn‖Lq(T,v) ≤ cnα‖Tn‖Lp(T,w)



Weighted grand Lebesgue spaces and variable grand
Lebesgue spaces

Weighted Iwaniec-Sbordone spaces. Let 1 < p <∞, θ > 0 and let
w be a weight function.

Lp),θ
w (T) = {f : ‖f ‖Lp),θ

w
= sup

0<ε<p−1
ε

θ
p−1

∫
T

|f (x)|p−εw(x)dx

 1
p−ε

<∞

Lp),θ(T,w) = {f : ‖f ‖p),θ,w = sup
0<ε<p−1

ε
θ

p−1

∫
T

|f (x)w(x)|p−εdx

 1
p−ε

<∞

It is known (see A. Fiorenza, B. Gupta and P. Jain. Studia
Math. 188(2008), No 2, 123-133.), that the equivalence
f ∈ Lp

w ⇔ fw
1
p ∈ Lp fails in grand Lebesgue spaces.

We get the difference spaces when taking a weight as measure
or as a factor.



In the sequel Ap denotes the class of Muckenhoupt weights defined
as

sup
I

 1
|I|

∫
I

w(x)dx

 1
|I|

∫
I

w1−p′(x)dx

p−1

< +∞.

For the space Lp),θ
w (T) an one-weighted version of

Bernstein-Zygmund-Nikol’skii inequality holds

Theorem 2.1 Let 1 < p ≤ q <∞, θ > 0, θ1 = θq/p. Let
w ∈ A1+q/p′ . Then for arbitrary trigonometric polynomial we have∥∥∥∥T (r)

n w
1
p−

1
q

∥∥∥∥
Lq),θ1

w

≤ cnr+1/p−1/q‖Tn‖Lp),θ
w

r = 0, 1, 2, . . .

with a positive constant c independent of n and Tn.



Theorem 2.2. Let 1 < p < q <∞, θ > 0 and 0 < α < 1. Let for
the Borel measure µ of I(x , r) the condition

µI(x , r) ≤ crq
(

1
p−α

)
is fulfilled with a constant c independent of I(x , r). Then the
inequality

‖Tn‖Lq),θ q
p (T,dµ)

≤ c1nα‖Tn‖Lp),θ(T,dx)

holds where a constant c1 does not depend on Tn and n.



In approximation problems more convenient is the case when
w in the norm participates as a factor. For this case the
following statement is true:

Theorem 2.3 Let 1 < p ≤ q <∞, θ > 0, θ1 = θq/p. Let
w ∈ Ap,q. Then for α-order fractional derivative of trigonometric
polynomials the following estimate holds

‖T (α)
n w‖q),θ1 ≤ cnα+1/p−1/q‖Tnw‖p),θ, α ≥ 0

with a constant c > 0 independent of n and Tn.

The following assertion is a refined form of Bernstein type
inequality.

Theorem 2.4 Let 1 < p <∞, θ > 0 and w ∈ Ap. Then

‖T (α)
n w‖p),θ ≤ cnαΩ

(
Tn,

1
n

)
p),θ,w

α > 0

with a constant c > 0 independent of n and Tn.



The crusial role in the proof of last two theorems plays the
following boundedness theorem for Riesz potentials.

Theorem 2.4 Let 1 < p <∞, θ > 0, θ1 = θq/p and, let
q = p

1−pα > 0. If w ∈ Ap,q, then

‖Iαfw‖q),θ1 ≤ c‖fw‖p),θ

with a constant independent of f .



The weighted grand Lebesgue spaces are non-reflexive,
non-separable and non-rearrangement spaces. The approximable by
trigonometric polynomials subspace of Lp(T,w) is the set of
functions defined by the condition

lim
ε→0

εθ‖fw‖p−ε = 0.

This is the closure of Lp(T,w) by the norm of Lp),θ(T,w). This
subspace is denoted by L̃p),θ(T,w).
For the functions f ∈ L̃p),θ(T,w) we set

Ω(f , δ)p),θ,w = sup
0<h<δ

∥∥∥∥1
h

x+h∫
x−h

f (t)dt − f (x)
∥∥∥∥

p),θ,w
.

It is easy to see that

lim
δ→0

Ω(f , δ)p),θ,w = 0

for every f ∈ L̃p),θ
w .



The following two-sided estimates of moduli of smoothness is
essential in approximation theory.

Theorem 2.5 Let 1 < p <∞, θ > 0 and let w ∈ Ap. Then

Ω
(

f , 1
n

)
p),θ,w

≈ ‖f − Sn‖p),θ,w + n−2‖S ′′n‖p),θ,w .

a ≈ b means that there exist c1 and c2 such that c1b ≤ a ≤ c2b.

On the base of this two-sided estimates we prove the direct
and inverse theorem (in Bernstein’s terminology) of
constructive theory of functions.

Theorem 2.6 Let 1 < p <∞, w ∈ Ap. Them for f ∈ W̃p),θ,r
w ,

r ≥ 0 we have the Jackson type inequality

En(f )p),w ,θ ≤
c

(n + 1)r Ω
(

f (r),
1
n

)
p),θ,w

with a constant independent of n and f .



The inverse statement sounds as

Theorem 2.7 Let 1 < p ≤ q <∞ and w ∈ Ap,q. Let θ > 0 and
θ1 ≥ θ · q

p , and let for f ∈ L̃p),θ(T,w) the series

∞∑
ν=1

να+1/p−1/q−1Eν(f )p),θ,w <∞, α > 0.

Then f ∈ W̃q),θ1,α
w and

Ω
(

f (α),
1
n

)
q),θ1,w

≤ c
( 1

n2

n∑
ν=1

ν
1
p−

1
q +1+αEν−1(f )p),θ,w

+
∞∑

ν=n+1
να+1/p−1/q−1Eν(f )p),θ,w

)
.

with a constant c is independent of f and n.

This estimate on a certain subclass of functions is
unimprovable.



Variable exponent Lebesgue spaces
Let p be a measurable function 2π-periodic and continuous on the
real line with local log-continuity condition

|p(x)− p(y)| ≤ A
− ln |x − y | , |x − y | < 1

2
for which p− := min

T
p(x) > 1.

The class of such exponents is denoted by P log.

Lp(·)(T,w) = inf{λ > 0 :
∫
T

∣∣∣∣ f (x)w(x)
λ

∣∣∣∣p(x)
dx ≤ 1}.

The space Lp(·)(T,w) is a Banach function space.

Class of weights. For given p and q from P log the class of
weights Ap(·),q(·) is defined by the condition

sup
I
‖χIw‖q(·) · ‖χIw−1‖p′(·) < c|I|1−s .

Here p′(x) = p(x)
p(x)−1 , 1

p(x) −
1

q(x) ≡ s ≥ 0, x ∈ T.



Theorem 3.1. Let p ∈ P log, 1
p(x) −

1
q(x) = s ≥ 0 for x ∈ T. Let

p+ := max p(x) < 1
s and w ∈ Ap(·),q(·). Then the following

Bernstein-Zygmund-Nikol’skii type inequality
‖T (α)

n ‖q(·),w ≤ cnα+1/p−1/q‖Tn‖p(·),w α ≥ 0
holds with a constant c independent of Tn and n.

To explore the approximation problems in variable exponent
weighted Lebesgue spaces we introduce the appropriate
K -functional. Let
Wp(·),2

w = {g : ‖g‖p(·),w + ‖g ′′‖p(·),w < +∞}

K2(f , t, Lp(·)(T,w),Wp(·),2
w ) = inf

g∈Wp(·),2
w

{‖f−g‖p(·),w +t2‖g ′′‖p(·),w}.

Theorem 3.2. Let p ∈ P log, w ∈ Ap(·). Then

K2(f , t, Lp(·)(T,w),Wp(·),2
w ) ≈ Ω

(
f , 1

n

)
p(·),w

.

On the base of this theorem we establish the direct and inverse
estimates in variable exponent weighted Lebesgue spaces.



Theorem 3.3 (Refined Jackson’s type ineqaulity) Let p ∈ P log,
w ∈ Ap(·), β = max(2, p+). Then for f ∈ Lp(·)(T,w) the estimate
holds

1
n2

{ n∑
ν=1

ν2β−1Eβ
ν−1(f )p(·),w

} 1
β

≤ cΩ
(

f , 1
n

)
p(·),w

with a constant independent of n and f .
This estimate improves the estimate of I. Sharapudinov (the
case w ≡ 1) En(f )p(·) ≤ cΩ

(
f , 1

n

)
p(·)

The inverse result is contained in the following
Theorem 3.4 Let p ∈ P log, w ∈ Ap(·), γ = min(2, p−). Then for
f ∈ Lp(·)(T,w) the following estimate holds

Ω
(

f , 1
n

)
p(·),w

≤ c
n2

{ n∑
ν=1

ν2γ−1Eγ
ν−1(f )p(·),w

}1/γ

This estimate is essentially better than the estimate (even for
w ≡ 1) (I. Sharapudinov, Chaichenko etc):

Ω
(
f , 1

n

)
p(·)
≤ c

n2 ·
n∑
ν=1

νEν−1(f )p(·).



Conjugate operators in Lp(·) when p− = 1
In this section we study the question: under what conditions the
conjugate function f̃ belongs to Lp(·) and to find in terms of
Ω(f , δ)p(·) an invariant class with respect to conjugate operator, to
give the applications to the boundary problems for analytic and
harmonic functions.
Denote by P log

0 the class of 2π-periodic exponents with local
log-continuity condition and the condition min

T
p(x) = 1.

For this case we have the following results.
Theorem 4.1. Let p ∈ P log

0 and let for f ∈ Lp(·)(T) the integral
δ0∫

0

Ω(f , t)p(·)
t < +∞.

Then f̃ ∈ Lp(·) and the estimate

Ω(f̃ , δ)p(·) ≤ c

 δ∫
0

Ω(f , t)p(·)
t + δ2

δ0∫
δ

Ω(f , t)p(·)
t3 dt

 , 0 < δ < δ0

holds with a constant c independent of f and δ.



Theorem 4.2. Let p ∈ P log
0 and let for f ∈ Lp(·)(T) and r ∈ N the

integral
δ0∫
0

Ω(f ,t)
tr+1 dt < +∞. Then (f̃ )(r) ∈ Lp(·) and we have

Ω((f̃ )(r), δ) ≤ c

 δ∫
0

Ω(f , t)p(·)
tr+1 dt + δ2r

δ0∫
0

Ω(f , t)p(·)
t2r+1 dt

 .
Let for k = 0, 1, . . . define the subclass of Lp(·)

Vk =
{

f ∈ Lp(·) :
δ0∫

0

Ω(f , t)
t

(
ln πt

)k
dt < +∞

}
.

From Theorem 4.1 it is clear that

f ∈ Vk =⇒ f̃ ∈ Vk−1.

Thus we have that the class V =
∞⋂

k=0
Vk is invariant with

respect to the conjugate operator.

f ∈ V =⇒ f̃ ∈ V



Theorem 4.3. The functions from the Dini class i. e.

D := {g ∈ C :
δ0∫

0

ω(g , δ)
δ

dδ < +∞}

are pointwise multipliers for V0 i. e.

f ∈ V0, g ∈ D =⇒ fg ∈ V0.

One of the tool of proofs is an extension of
Bernstein-Nikol’skii-Stechkin result. We prove the following

Theorem 4.4 Let p ∈ P log
0 . Then for arbitrary trigonometric

polynomial Tn the following inequality

‖T ′n‖p(·) ≤ cnΩ
(

Tn,
1
n

)
p(·)

holds with a constant c independent of Tn and n.



On weighted Bernstein type inequality in grand variable
exponent Lebesgue spaces

These spaces unify two nonstandard Banach function spaces:
variable exponent Lebesgue and grand Lebesgue spaces.

Let 2π-periodic continuous on the real line function p ∈ P log,
θ > 0. Then by Lp(·),θ(T) is denoted the set of 2π-periodic
functions for which

‖f ‖Lp(·),θ = sup
0<ε<p−−1

ε
θ

p−−1 ‖f ‖Lp(·)−ε < +∞.

These spaces are non-reflexive, non-separable and
non-rearrangement invariant spaces when p is a constant.

In these spaces the following extension of
Bernstein-Ditzian-Totik inequality is true.

Theorem 5.1 For any r ∈ N and trigonometric polynomial Tn of
degree less than or equal to n, the inequality

‖ sinr tT ′n(t)‖Lp(·),θ ≤ cn‖ sinr tTn(t)‖Lp(·),θ

holds with a constant c independent of Tn.



Theorem 5.1 For any r ∈ N and trigonometric polynomial Tn of
degree less than or equal to n, the inequality

‖ sinr tT ′n(t)‖Lp(·),θ ≤ cn‖ sinr tTn(t)‖Lp(·),θ (1)
holds with a constant c independent of Tn.

It should be emphasized that even for constant p, the special
weights inside of norms in (1) is more general than the
Mackenhoupt weights of the same type.
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