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Introduction

Energy functional

min

∫
Ω

1

p(x)
|∇u(x)|p(x) dx .

The Euler-Lagrange equation for the above energy functional is

p(·)-harmonic equations

∆p(·)(u) := div(|∇u|p(x)−2∇u) = 0,

where u ∈W
1,p(·)
loc (Ω,R) and function p : Ω→ [1,∞] is measurable.

Remarks
(1) For p ≡ const we retrieve the p-harmonic equation:

div( |∇u|p−2∇u) = 0.

(2) The p(·)-harmonic operator is the prototypical equation for more
general class of PDEs with non-standard growth:

divA(x , u,∇u) = B(x , u,∇u).
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(My) motivations for studying variable exponent PDEs

(1) Generalization of the classical results for p-Laplace type equations
with p = const.

(2) Applications in image processing (Chen, Levine, Rao), fluid
dynamics (Diening, Růžička), electrorheological fluids (Acerbi,
Mingione).

(3) studies of the geometric properties of variable exponent equations,

e.g. the structure of the set of critical points, connections to

quasiregular mappings, (boundary) Harnack inequalities,

Liouville-type theorems, maximum principles on unbounded domains

(Phragmén–Lindelöf theorems).
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4 / 26



The strong p(·)-Laplacian, critical points
and the homogeneous Harnack inequality

Joint works with P. Hästö
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Problem:

Describe the set of critical points for the p(·)-harmonic function in the
plane.

The importance of p-harmonic functions in geometry of planar mappings
comes from their relation to the so-called quasiregular mappings.

Suppose that an orientation preserving mapping f : Ω→ Rn in
W 1,n

loc (Ω,Rn) satisfies

‖Df (x)‖n 6 K (x , f )|J(x , f )| a.e. Ω.

If 1 ≤ K (x , f ) <∞ a.e. then we call map f a mapping of finite
distortion.

If 1 ≤ K (x , f ) ≡ K <∞, then we call map f quasiregular.

An homeomorphic quasiregular map is called quasiconformal.

1-quasiregular mappings in the plane are holomorphic functions (in
general, conformal).

C 1 mappings with non-zero Jacobian are quasiregular.
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comes from their relation to the so-called quasiregular mappings.

Bojarski-Iwaniec,’87 (p ≥ 2); Manfredi,’88 (1 < p <∞)

If u is a nonconstant p-harmonic function in the planar domain, then its
complex gradient

f =
1

2
(ux − iuy )

is a quasiregular mapping.

In a consequence the set of critical points of u is discrete; that is zeros of
∇u are isolated.
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Drawbacks of the p(·)-Laplace equation

Examples exist showing that the p(·)-Laplace equation (and its
known modification) fails to have ∇u as a quasiregular map.

Further drawbacks of div(|∇u|p(x)−2∇u) = 0:

1 lack of scalability: λu is not necessary p(·)-harmonic if u is

2 nonhomogeneous Harnack inequality:

sup
B

u ≤ C (u)(inf
B

u + |B|)
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The strong p(·)-Laplacian

A.–Hästö (2010)

div(|∇u|p(x)−2∇u) = |∇u|p(x)−2 log(|∇u|)∇u · ∇p

defined for u ∈W
1,p(·)
loc (Ω).

8 / 26



Let u ∈ C 2(Ω) and p ∈ C 1(Ω). Then the logarithmic modification

cancels out with the corresponding term on the left hand side:

div(|∇u|p(x)−2∇u) =

a uxx + 2b uxy + c uyy + |∇u|p(x)−2 log(|∇u|)∇u · ∇p
= |∇u|p(x)−2 log(|∇u|)∇u · ∇p,

a = a(p,∇u), b = b(p,∇u), c = c(p,∇u).

Strong methods can now be applied (see e.g. Gilbarg-Trudinger
book).
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Theorem

Let Ω ⊂ R2 be a bounded C 2 domain and let g ∈ C 1,γ(∂Ω). Suppose
that p is:
(1) Lipschitz continuous
(2) 1 < p− ≤ p(x) ≤ p+ <∞

Then:
(A) there exists a weak solution u ∈ C 1,γ(Ω) of{

div(|∇u|p(x)−2∇u) = |∇u|p(x)−2 log(|∇u|)∇u · ∇p in Ω

u = g on ∂Ω
(?)

(B) Moreover, the complex gradient 1
2 (ux − iuy ) of u is K -quasiregular

with

Kp(·) =
1

2

(
p(x)− 1 +

1

p(x)− 1

)
<∞.
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In fact, the more general result holds.

Theorem

Let Ω ⊂ R2 be a bounded C 2 domain and let g ∈ C 1,γ(∂Ω). Suppose
that p is bounded such that

1 the set Y := {p = 1} has Hausdorff 1-measure equal to zero

2 p is locally Lipschitz in Ω \ Y .

Then:
(A) there exists a weak solution of (?).

(B) If
Kp(·) ∈ Exp L(Ω),

with Kp(·) as before, then the complex gradient 1
2 (ux − iuy ) of u is a

mapping of finite distortion with unbounded distortion.
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Further advantages of new equation

Homogeneity (on the contrary to the ”prototype”
p(·)-Laplacian)

The connection between the strong p(·)-Laplacian and
∆∞-Laplacian:

div(|∇u|p(x)−2∇u)− |∇u|p(x)−2 log(|∇u|)∇u · ∇p
= |∇u|p(x)−4

(
|∇u|2∆u + (p(·)− 2)∆∞u

)
.

See e.g. Juutinen–Lukkari-Parviainen (2011).

The tug-of-war game, see Pérez-Llanos (2013).
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Further advantages of new equation: Harnack inequality

Strong methods apply resulting in e.g.

Theorem (homogeneous Harnack inequality, 2011)

Let Ω ⊂ Rn be a bounded domain; let exponent p satisfy the either

1 1 < p− ≤ p+ < n and ∇p ∈ Ln log Ln(Ω)
or

2 1 < p− ≤ p+ <∞ and ∇p ∈ Lq(·)(Ω), where q ≥ max{p, n}+ δ
for some δ > 0.

If u is a positive solution of the equation (?), then

ess sup
x∈B

u(x) ≤ c(n,p−,p+) ess inf
x∈B

u(x),

for balls B with 2B b Ω.
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Further advantages of new equation: Global integrability of
supersolutions on Hölder domains

Hölder domain

A Hölder domain Ω is a proper subdomain of Rn in which

kΩ(x , x0) ≤ c log
dist(x0, ∂Ω)

dist(x , ∂Ω)
+ c

for some c , x0 ∈ D and every x ∈ D. Here kΩ denotes the
quasihyperbolic metric,

kΩ(x , y) := inf

∫
γ

ds(z)

dist(z , ∂Ω)
,

John domains are Hölder domains.

In the plane a simply connected domain is a Hölder domain if
and only if its Riemann mapping is Hölder continuous.
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A Hölder domain Ω is a proper subdomain of Rn in which

kΩ(x , x0) ≤ c log
dist(x0, ∂Ω)

dist(x , ∂Ω)
+ c

for some c , x0 ∈ D and every x ∈ D. Here kΩ denotes the
quasihyperbolic metric,

kΩ(x , y) := inf

∫
γ

ds(z)

dist(z , ∂Ω)
,

John domains are Hölder domains.
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Global integrability of supersolutions: history

(1) Counterexample by Armitage for p-integrability of
harmonic functions on balls.
p-Integrability of positive superharmonic functions on
balls with 0 < p < n

n−1
.

(2) Lindqvist proved global integrability of positive
p-supersolutions for Hölder domains in Rn.

(3) Maasalo proved global integrability of positive
p-superharmonic functions for Hölder domains on metric
spaces.
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Global integrability of supersolutions: a result

The following theorem corresponds to the results by Lindqvist
and Maasalo.

Theorem (global integrability of p(·)-supersolutions for the strong
p(·)-Laplacian)

Let Ω be a Hölder domain in Rn and let

∇p ∈ Ln log Ln(Ω)

1 < p− ≤ p+ <∞.

If u is a positive p(·)-supersolution of the equation (?), then there
exists q > 0, depending only on p−, p+ and ‖∇p‖Ln log Ln(Ω), such
that ∫

Ω
uq dx <∞.

16 / 26



Global integrability of supersolutions: a result

The following theorem corresponds to the results by Lindqvist
and Maasalo.

Theorem (global integrability of p(·)-supersolutions for the strong
p(·)-Laplacian)
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Boundary regularity for p(·)-harmonic functions
Joint work with A. Björn and J. Björn, Linköping University

Assumptions

div(p(x)|∇u|p(x)−2∇u) = 0.
1 < p− ≤ p(x) ≤ p+ <∞, p(·) is log-Hölder
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Regular and irregular points

Let x0 ∈ ∂Ω. Then x0 is regular if

lim
Ω3y→x0

u(y) = f (x0) for all f ∈ C (∂Ω)

and all p(·)-harmonic solutions u to the Dirichlet problem with
boundary data f .

We also say that x0 is irregular if it is not regular.

Theorem (The Kellogg property, A.–Björn–Björn)

The set of irregular points in ∂Ω has zero Sobolev p(·)-capacity.
Moreover, such a set is an Fσ set.
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Irregular points

A point x0 ∈ ∂Ω is regular if the following two conditions hold:

(a) for all f ∈ C (∂Ω) the limit

lim
Ω3y→x0

u(y) exists;

(b) for all f ∈ C (∂Ω) there is a sequence {yj}∞j=1 such that

Ω 3 yj → x0 and u(yj)→ f (x0), as j →∞.

Semiregular and strongly irregular points

We say that x0 ∈ ∂Ω is semiregular if (a) holds but not (b); and
strongly irregular if (b) holds but not (a).
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Examples of irregular points

Zaremba’s punctured ball
Let p = 2 and

Ω = B((0, 0), 1) \ {(0, 0)}.

Then x0 = (0, 0) is a semiregular point.

The Lebesgue spine
Let p = 2 and

E = {(x , t) ∈ R2 × R : t > 0, |x | < e−
1
t }, Ω = B((0, 0, 0), 1) \ E .

Then x0 = (0, 0, 0) is a strongly irregular point.

For any compact set K with zero Sobolev p-capacity we can find a
set Ω, such that K consists of semiregular points in ∂Ω. Similar
construction can be done for strongly irregular points.
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Trichotomy

It turns out that for irregular boundary points exactly one of the
above two properties (a) or (b) fails. A priori one would assume
that it is possible that both fail but this cannot happen.

Theorem (Trichotomy, A.–Björn–Björn)

Let x0 ∈ ∂Ω. Then x0 is either regular, semiregular or strongly
irregular.

The proof uses removability of sets with zero Sobolev p(·)-capacity
and the Kellogg property.
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Boundary Harnack inequality for p(·)-harmonic equation
Joint works with N. L. P. Lundström

Assumptions

div(|∇u|p(x)−2∇u) = 0.
1 < p− ≤ p(x) ≤ p+ <∞, p(·) is log-Hölder
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Boundary Harnack inequalities

The classical boundary Harnack inequality for two positive harmonic
functions u and v in Ω asserts the following: if u and v continuously
vanish at every regular point of a set U ∩ ∂Ω and are bounded near every
irregular point of U ∩ ∂Ω, then

u(x)

u(y)

v(y)

v(x)
≤ A,

for all points x , y ∈ K ∩ Ω, where K ⊂ U is compact. A constant A
depends only on Ω,K and U.

Similarly inequalities have been studied for nonlinear PDEs, in the
context of manifolds or metric spaces:

Caffarelli-Fabes-Mortola–Salsa, Jerison-Kenig,

Bañuelos-Bass-Burdzy,

Aikawa,

Lewis-Nyström.
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Boundary Harnack inequality: the p(·)-Laplacian

Theorem (A.-Lundström (2014))

(a) Let Ω ⊂ Rn be a domain satisfying the ball condition with radius rb.

(b) Let w ∈ ∂Ω, 0 < r < rb.

(c) Let p be a bounded Lipschitz continuous variable exponent.

Assume that u and v are positive p(·)-harmonic functions in Ω∩B(w , r),
satisfying u = 0 = v on ∂Ω ∩ B(w , r).
Then there exist constants C and c̃ such that

1

C
≤ u(x)

v(x)
≤ C for x ∈ Ω ∩ B(w , r/c̃).

(a) Constant c̃ depends on rb and p−, ||∇p||L∞ ,

(b) Constant C depends on n, p+, p−, ||∇p||L∞ , rb, and constants from
the Carleson estimate.
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Boundary Harnack inequality: main ingredients of the proof

(1) The Harnack inequality for p(·)-harmonic functions.

(2) Variable exponent Carleson-type estimate for NTA-domains (in
particular satisfying the ball condition)

sup
Ω∩B(w ,r)

u ≤ c (u(ar (w)) + r) ,

where ar (w) ∈ Ω is the point depends on geometric parameters of
the domain and w ∈ ∂Ω.

(3) Barrier functions.
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Thank you for your attention!
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