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Properties

• It suffices to consider d = n, since θ(G) ≤ n.

• For every G, θ(G) ≥ Θ(G), where Θ(G) = supk
k
√
α(Gk) is the Shan-

non capacity of G (which measures the capacity of a communications

channel defined by the graph).

• (Sandwich theorem - Lovász, 1986) α(G) = ω(G) ≤ θ(G) ≤ χ(G),

where α(G) is the independence number of G, ω(G) is the clique number

of G and χ(G) is the vertex-chromatic number of G.

• θ(G) is polynomial time computable, while ω(G) and χ(G) are NP-

complete, and the computational complexity of Θ(G) is unknown.
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• We study some algebraic properties of the ideals LG for any graph

G and over an arbitrary field K .

• For d = 1, the ideal LG is the well-known edge ideal of G.

• We consider the case d = 2. For simplicity we rename the variables

xi1, xi2 as xi , yi and consider

LG = (xixj + yiyj : {i, j} ∈ E(G))

as an ideal in the polynomial ring T = K [x1, . . . , xn, y1, . . . , yn].
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The primary decomposition of binomial edge ideals has been recently

studied. It is also known that they are radical ideals.

Achtung! This identification does not hold for K = R.
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Theorem (-)

1 If char(K ) 6= 2, then LG is a radical ideal.

2 Let char(K ) = 2. Then LG is a radical ideal if and only if G is

bipartite.

Idea of the proof. For the first part, we assume that
√
−1 ∈ K . Apply-

ing the linear change of coordinates f such that for all i

f (xi) = xi − yi and f (yi) =
√
−1(xi + yi),

we transform LG into the ideal

ΠG = (xiyj + xj yi : {i, j} ∈ E(G)).

The generators of ΠG are those 2-permanents of the matrix
[

x1 ··· xn
y1 ··· yn

]

whose column indices correspond to edges of G. Therefore, we call

ΠG the permanental edge ideal of G.
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Question If char(K ) = 0 and d ≥ 3, Conca found a graph G for

which LG is not a radical ideal.

• Can we characterize the ideals LG that are radical in terms of G?



• We prove that, if char(K ) 6= 2, ΠG has a squarefree Gröbner basis

with respect to the lexicographic order induced by x1 > · · · > xn >

y1 > · · · > yn.

• Hence in<(ΠG) is a radical ideal. This implies that ΠG is a radical

ideal.

• This proves that LG is a radical ideal if char(K ) 6= 2 and
√
−1 ∈ K .

• Using a deformation argument, we prove the claim removing the

assumption
√
−1 ∈ K . �

Question If char(K ) = 0 and d ≥ 3, Conca found a graph G for

which LG is not a radical ideal.

• Can we characterize the ideals LG that are radical in terms of G?

• Is there at least a good class of graphs such that LG is radical (or

prime)?



1.1 A Gröbner basis of ΠG

Let G be a graph with vertices [n] and i, j be two distinct vertices of G.

A path of length r in G from i to j is a sequence πij : i = i0, i1, . . . , ir = j

of pairwise distinct vertices such that {ik , ik+1} ∈ E(G) for all k. We

say that πij is admissible if i < j and for each k = 1, . . . , r − 1, one has

either ik < i or ik > j.
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1.1 A Gröbner basis of ΠG

Let G be a graph with vertices [n] and i, j be two distinct vertices of G.

A path of length r in G from i to j is a sequence πij : i = i0, i1, . . . , ir = j

of pairwise distinct vertices such that {ik , ik+1} ∈ E(G) for all k. We

say that πij is admissible if i < j and for each k = 1, . . . , r − 1, one has

either ik < i or ik > j.
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i = 3
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If πij is admissible, we attach to it the monomial

uπij
=

∏

ik>j

xik

∏

ik<i

yik
.



Theorem (-) Let G be a graph on [n] and assume that char(K ) 6= 2.

Then, with respect to the lexicographic order on T = K [xi, yi] induced

by x1 > · · · > xn > y1 > · · · > yn, the following elements form a

Gröbner basis of the ideal ΠG :

1 uπij
bij , where πij is an odd admissible path and bij = xiyj + xjyi,

2 uπij
gij , where πij is an even admissible path and gij = xiyj − xjyi,

3 lcm(uπij
,uσij

)yixj , where πij is an odd and σij is an even admissible

path,

4

{
yb

∏
h∈W xh if b < h for every h ∈ W

xb

∏
h∈W yh if b > h for every h ∈ W

,

where W = V (πij) ∪ V (σij)∪ V (τab) \ {b}, πij is an odd and σij is an

even admissible path from i to j, τab is a path with endpoints a and

b, such that a is the only vertex of τab that belongs to V (πij)∪V (σij).
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Let H be an arbitrary connected graph on [n].

• If H is not bipartite, then we denote by H̃ the complete graph Kn
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• If H is bipartite on V1 ∪ V2, |V1| = m, |V2| = n − m, then we denote
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From now on we assume
√
−1 /∈ K . This is the case for K = R.

Let H be an arbitrary connected graph on [n].

• If H is not bipartite, then we denote by H̃ the complete graph Kn

on [n].

• If H is bipartite on V1 ∪ V2, |V1| = m, |V2| = n − m, then we denote

by H̃ the complete bipartite graph Km,n−m on [n] with respect to

the same bipartition.

K5 K2,3
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)
if G̃k =Kℓ

(
xixj+yiyj , xr ys−xsyr :

1≤i≤m,m+1≤j≤n
1≤r<s≤m or m+1≤r<s≤n

)
if G̃k =Km,ℓ−m

Proposition (-) Let
√
−1 /∈ K . Then QS(G) is a prime ideal for all

S ⊂ [n] and ht QS(G) = |S| + n − b(S), where b(S) is the number of

bipartite connected components of G[n]\S.

Theorem (-) Let G be a graph on [n] and
√
−1 /∈ K . Then

LG =
⋂

S⊂[n]

QS(G)

is a redundant primary decomposition of LG .
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Let G be a graph on [n]. Then a vertex i ∈ [n] is said to be a cut point

of G if G[n]\{i} has more connected components than G.
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We call a vertex i ∈ [n] a bipartition point of G if G[n]\{i} has more

bipartite connected components than G.

Let M(G) be the set of all sets S ⊂ [n] such that each i ∈ S is either a

cut point or a bipartition point of the graph G([n]\S)∪{i}. In particular,

∅ ∈ M(G).

Theorem (-) Let G be a graph on [n],
√
−1 ∈ K and S ⊂ [n]. Then

QS(G) is a minimal prime ideal of LG if and only if S ∈ M(G).
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Then a minimal primary decomposition of LG is

LG = Q∅(G) =
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Then a minimal primary decomposition of LG is

LG = Q∅(G) ∩ Q{1}(G) ∩ Q{2}(G) ∩ Q{3}(G) =

(x1x2 + y1y2, x1x3 + y1y3, x1x4 + y1y4, x2x3 + y2y3, x2x4 + y2y4, x3x4 + y3y4,

x1y2 − x2y1, x1y3 − x3y1, x1y4 − x4y1, x2y3 − x3y2, x2y4 − x4y2, x3y4 − x4y3,

x2
1 + y2

1 , x2
2 + y2

2 , x2
3 + y2

3 , x2
4 + y2

4 )

∩ (x1, y1, x2x3 + y2y3, x3x4 + y3y4, x2y4 − x4y2)

∩ (x2, y2, x1x3 + y1y3, x3x4 + y3y4, x1y4 − x4y1)

∩ (x3, y3, x1x2 + y1y2).
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• the ideal LG is prime,

• G is a disjoint union of edges and isolated vertices,

• G is (n − 2)-connected.

In this case, LG is a complete intersection.
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Corollary Let K be a field such that char(K ) 6≡ 1, 2 mod 4 or

char(K ) = 0. Then the following are equivalent:

• the ideal LG is prime,

• G is a disjoint union of edges and isolated vertices,

• G is (n − 2)-connected.

In this case, LG is a complete intersection.

Corollary Let G be a graph with b bipartite connected components,

and let
√
−1 /∈ K . Then LG is unmixed if and only if b(S) = |S|+ b for

every ∅ 6= S ∈ M(G).

Future works

• Which ideals LG are Cohen-Macaulay (or Gorenstein, or complete

intersection)? (jointly with Davide Bolognini)

• Can we say something about the resolution of LG?

• Can we compute pdT (T/LG) and reg(LG)?



Thank you for listening!
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