AMS-EMS-SPM International Meeting

Special Session on Homological and Combinatorial Commutative Algebra

Porto - June 11, 2015

On the ideal of orthogonal representations of a graph in $\ensuremath{R^2}$

Antonio Macchia

joint work with J. Herzog, S. Saeedi Madani, V. Welker

Let *G* be a graph with vertices $[n] = \{1, ..., n\}$, $d \ge 1$ be an integer and \overline{G} the complement of *G*.

Let *G* be a graph with vertices $[n] = \{1, ..., n\}$, $d \ge 1$ be an integer and \overline{G} the complement of *G*.

Definition (Lovász, 1979) A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \ldots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

 $\varphi(i)^T\varphi(j)=x_{i1}x_{j1}+\cdots+x_{id}x_{jd}=0.$

Let *G* be a graph with vertices $[n] = \{1, ..., n\}$, $d \ge 1$ be an integer and \overline{G} the complement of *G*.

Definition (Lovász, 1979) A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \ldots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T \varphi(j) = x_{i1} x_{j1} + \cdots + x_{id} x_{jd} = 0.$$

The easiest and the most expensive way to define an orthogonal representation for a graph *G* on the vertices [n] is choosing d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.

Let *G* be a graph with vertices $[n] = \{1, ..., n\}$, $d \ge 1$ be an integer and \overline{G} the complement of *G*.

Definition (Lovász, 1979) A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \ldots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T \varphi(j) = x_{i1} x_{j1} + \cdots + x_{id} x_{jd} = 0.$$

The easiest and the most expensive way to define an orthogonal representation for a graph *G* on the vertices [n] is choosing d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$. e_4

Let *G* be a graph with vertices $[n] = \{1, ..., n\}$, $d \ge 1$ be an integer and \overline{G} the complement of *G*.

Definition (Lovász, 1979) A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \ldots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T \varphi(j) = x_{i1} x_{j1} + \cdots + x_{id} x_{jd} = 0.$$

The easiest and the most expensive way to define an orthogonal representation for a graph *G* on the vertices [n] is choosing d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.

A cheaper way is starting from a vertex coloring of \overline{G} with $\chi(\overline{G})$ colors and associating to all vertices with the same color *i* the vector $e_i \in \mathbb{R}^{\chi(\overline{G})}$.

Let *G* be a graph with vertices $[n] = \{1, ..., n\}$, $d \ge 1$ be an integer and \overline{G} the complement of *G*.

Definition (Lovász, 1979) A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \ldots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T \varphi(j) = x_{i1} x_{j1} + \cdots + x_{id} x_{jd} = 0.$$

The easiest and the most expensive way to define an orthogonal representation for a graph *G* on the vertices [n] is choosing d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.

A cheaper way is starting from a vertex coloring of \overline{G} with $\chi(\overline{G})$ colors and associating to all vertices with the same color *i* the vector $e_i \in \mathbb{R}^{\chi(\overline{G})}$.

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i),c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

Properties

• It suffices to consider d = n, since $\theta(G) \le n$.

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i),c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

- It suffices to consider d = n, since $\theta(G) \le n$.
- For every G, $\theta(G) \ge \Theta(G)$,

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i),c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

- It suffices to consider d = n, since $\theta(G) \le n$.
- For every $G, \theta(G) \ge \Theta(G)$, where $\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)}$ is the *Shannon capacity* of *G* (which measures the capacity of a communications channel defined by the graph).

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i),c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

- It suffices to consider d = n, since $\theta(G) \le n$.
- For every $G, \theta(G) \ge \Theta(G)$, where $\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)}$ is the *Shannon capacity* of *G* (which measures the capacity of a communications channel defined by the graph).
- (Sandwich theorem Lovász, 1986) $\alpha(G) = \omega(\overline{G}) \le \theta(G) \le \chi(\overline{G})$,

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i),c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

- It suffices to consider d = n, since $\theta(G) \le n$.
- For every $G, \theta(G) \ge \Theta(G)$, where $\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)}$ is the *Shannon capacity* of *G* (which measures the capacity of a communications channel defined by the graph).
- (Sandwich theorem Lovász, 1986) α(G) = ω(G) ≤ θ(G) ≤ χ(G), where α(G) is the independence number of G, ω(G) is the clique number of G and χ(G) is the vertex-chromatic number of G.

The *theta function* (Lovász, 1979) of a graph *G* with vertices [*n*] is

$$\theta(G) = \min_{(u_i),c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all orthonormal representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

- It suffices to consider d = n, since $\theta(G) \le n$.
- For every $G, \theta(G) \ge \Theta(G)$, where $\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)}$ is the *Shannon capacity* of *G* (which measures the capacity of a communications channel defined by the graph).
- (Sandwich theorem Lovász, 1986) α(G) = ω(G) ≤ θ(G) ≤ χ(G), where α(G) is the independence number of G, ω(G) is the clique number of G and χ(G) is the vertex-chromatic number of G.
- $\theta(G)$ is polynomial time computable, while $\omega(\overline{G})$ and $\chi(\overline{G})$ are *NP*-complete, and the computational complexity of $\Theta(G)$ is unknown.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in \mathbb{R}^d (any d vectors are linearly independent) if and only if G is (n - d)-connected.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in \mathbb{R}^d (any d vectors are linearly independent) if and only if G is (n - d)-connected.

• We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in \mathbb{R}^d (any d vectors are linearly independent) if and only if G is (n - d)-connected.

- We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.
- For d = 1, the ideal L_G is the well-known *edge ideal* of *G*.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in \mathbb{R}^d (any d vectors are linearly independent) if and only if G is (n - d)-connected.

- We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.
- For d = 1, the ideal L_G is the well-known *edge ideal* of *G*.
- We consider the case d = 2. For simplicity we rename the variables x_{i1}, x_{i2} as x_i, y_i

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in \mathbb{R}^d (any d vectors are linearly independent) if and only if G is (n - d)-connected.

- We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.
- For d = 1, the ideal L_G is the well-known *edge ideal* of G.
- We consider the case d = 2. For simplicity we rename the variables x_{i1}, x_{i2} as x_i, y_i and consider

$$L_{\overline{G}} = (x_i x_j + y_i y_j : \{i, j\} \in E(\overline{G}))$$

as an ideal in the polynomial ring $T = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$.

$$\begin{array}{cccc} G \\ 1 & 2 & 3 & 4 \\ \bullet & \bullet & \bullet \end{array} \qquad \qquad L_G = \begin{pmatrix} x_1 x_2 + y_1 y_2, \\ x_2 x_3 + y_2 y_3, \\ x_3 x_4 + y_3 y_4 \end{pmatrix}$$

Let d = 2, $\sqrt{-1} \in K$ and *G* be a bipartite graph. Then L_G may be identified with the *binomial edge ideal* J_G of *G*.

The primary decomposition of binomial edge ideals has been recently studied. It is also known that they are radical ideals.

Let d = 2, $\sqrt{-1} \in K$ and *G* be a bipartite graph. Then L_G may be identified with the *binomial edge ideal* J_G of *G*.

The primary decomposition of binomial edge ideals has been recently studied. It is also known that they are radical ideals.

Achtung! This identification does not hold for $K = \mathbb{R}$.

1. Radicality of *L*_{*G*}

Theorem (-)

1 If char(K) \neq 2, then L_G is a radical ideal.

1. Radicality of L_G

Theorem (-)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- **2** Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

1. Radicality of L_G

Theorem (-)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- **2** Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$.

1. Radicality of *L*_{*G*}

Theorem (-)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- 2 Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates *f* such that for all *i*

$$f(x_i) = x_i - y_i$$
 and $f(y_i) = \sqrt{-1}(x_i + y_i)$,

we transform L_G into the ideal

$$\Pi_G = (x_i y_j + x_j y_i : \{i, j\} \in E(G)).$$

1. Radicality of *L*_{*G*}

Theorem (-)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- 2 Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates *f* such that for all *i*

$$f(x_i) = x_i - y_i$$
 and $f(y_i) = \sqrt{-1}(x_i + y_i)$,

we transform L_G into the ideal

$$\Pi_G = (x_i y_j + x_j y_i : \{i, j\} \in E(G)).$$

The generators of Π_G are those 2-permanents of the matrix $\begin{bmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{bmatrix}$ whose column indices correspond to edges of *G*. Therefore, we call Π_G the *permanental edge ideal* of *G*.

The linear change of coordinates is needed since in many cases L_G does not admit any squarefree Gröbner basis.

The linear change of coordinates is needed since in many cases L_G does not admit any squarefree Gröbner basis. For example, if $G = C_3$, then all the possible initial ideals of L_G are:

The linear change of coordinates is needed since in many cases L_G does not admit any squarefree Gröbner basis. For example, if $G = C_3$, then all the possible initial ideals of L_G are:

 $(x_3^2 y_1 y_2, x_2 y_1 y_3, x_2 x_3, x_1 y_2 y_3, x_1 x_3, x_1 x_2)$ $(x_3y_1y_2, x_2y_1y_3, x_2x_3, x_1x_3, x_1x_2, x_1^2y_2y_3)$ $(y_1^2 y_2 y_3, x_3 y_1 y_2, x_2 y_1 y_3, x_2 x_3, x_1 x_3, x_1 x_2)$ $(y_1y_2, x_2y_1y_3, x_2x_3, x_1x_3, x_1x_2^2y_3)$ $(y_1y_3, y_1y_2, x_2x_3, x_1x_3y_2, x_1x_2^2y_3)$ $(y_1y_3, x_3y_1y_2, x_2x_3, x_1x_3^2y_2, x_1x_2)$ $(y_1y_3, y_1y_2, x_2x_3, x_1x_3^2y_2, x_1x_2y_3)$ $(y_1y_2y_3^2, x_2y_1y_3, x_2x_3, x_1y_2y_3, x_1x_3, x_1x_2)$ $(y_2y_3, x_2y_1y_3, x_2^2x_3y_1, x_1x_3, x_1x_2)$ $(y_2y_3, x_3y_1y_2^2, x_2y_1y_3, x_1x_3, x_1x_2)$ $(y_2 y_3, x_3 y_1 y_2, x_2 y_1 y_3^2, x_1 x_3, x_1 x_2)$ $(y_2y_3, y_1y_2, x_2y_1y_3^2, x_1x_3, x_1x_2y_3)$ $(y_2y_3, y_1y_3, x_3y_1y_2^2, x_1x_3y_2, x_1x_2)$ $(y_2y_3, y_1y_3, y_1y_2, x_1x_3y_2, x_1x_2y_3, x_1^2x_2x_3)$ $(y_2y_3, y_1y_3, y_1y_2, x_2x_3y_1^2, x_1x_3y_2, x_1x_2y_3)$ $(y_2y_3, y_1y_3, y_1y_2, x_2x_3y_1, x_1x_3y_2, x_1x_2y_3^2)$ $(y_2y_3, y_1y_3, y_1y_2, x_2x_3y_1, x_1x_3y_2^2, x_1x_2y_3)$ $(y_2y_3, y_1y_3, x_2^2x_3y_1, x_1x_3y_2, x_1x_2)$

 $(y_2y_3, y_1y_3, x_2x_3y_1, x_1x_2, x_1^2x_3y_2)$ $(y_2y_3, y_1y_3, x_3y_1^2y_2, x_2x_3y_1, x_1x_2)$ $(y_2y_3, y_1y_3, y_1y_2, x_2x_3y_1, x_1x_2y_3, x_1x_2^2x_3)$ $(y_1y_3, x_2x_3, x_1y_2y_3, x_1x_2, x_1^2x_3y_2)$ $(y_1y_3, x_3y_1^2y_2, x_2x_3, x_1y_2y_3, x_1x_2)$ $(y_1y_3, x_3y_1y_2, x_2x_3, x_1y_2y_3^2, x_1x_2)$ $(y_1y_3, y_1y_2, x_2x_3, x_1y_2y_3^2, x_1x_2y_3)$ $(x_3y_1y_2, x_2x_3, x_2^2y_1y_3, x_1y_2y_3, x_1x_3, x_1x_2)$ $(y_1 y_2^2 y_3, x_3 y_1 y_2, x_2 x_3, x_1 y_2 y_3, x_1 x_3, x_1 x_2)$ $(y_2y_3, x_3y_1y_2, x_2x_3^2y_1, x_1x_3, x_1x_2)$ $(y_2y_3, y_1y_2, x_2x_3^2y_1, x_1x_3, x_1x_2y_3)$ $(y_2y_3, y_1y_2, x_2x_3y_1, x_1x_3, x_1^2x_2y_3)$ $(y_2y_3, y_1y_2, x_2y_1^2y_3, x_2x_3y_1, x_1x_3)$ $(y_2y_3, y_1y_3, y_1y_2, x_2x_3y_1, x_1x_3y_2, x_1x_2x_3^2)$ $(y_1y_2, x_2x_3, x_1y_2y_3, x_1x_3, x_1^2x_2y_3)$ $(y_1y_2, x_2y_1^2y_3, x_2x_3, x_1y_2y_3, x_1x_3)$ $(y_1y_2, x_2y_1y_3, x_2x_3, x_1y_2^2y_3, x_1x_3)$ $(y_1y_3, y_1y_2, x_2x_3, x_1y_2^2y_3, x_1x_3y_2)$

• We prove that, if char(K) $\neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- We prove that, if char(K) $\neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- Hence $in_{<}(\Pi_{G})$ is a radical ideal. This implies that Π_{G} is a radical ideal.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- Hence $in_{<}(\Pi_{G})$ is a radical ideal. This implies that Π_{G} is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- Hence $in_{<}(\Pi_{G})$ is a radical ideal. This implies that Π_{G} is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- Hence $in_{<}(\Pi_{G})$ is a radical ideal. This implies that Π_{G} is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

Question If char(K) = 0 and $d \ge 3$, Conca found a graph G for which L_G is not a radical ideal.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- Hence $in_{<}(\Pi_{G})$ is a radical ideal. This implies that Π_{G} is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

Question If char(K) = 0 and $d \ge 3$, Conca found a graph G for which L_G is not a radical ideal.

• Can we characterize the ideals L_G that are radical in terms of G?

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$.
- Hence $in_{<}(\Pi_{G})$ is a radical ideal. This implies that Π_{G} is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

Question If char(K) = 0 and $d \ge 3$, Conca found a graph G for which L_G is not a radical ideal.

- Can we characterize the ideals L_G that are radical in terms of G?
- Is there at least a good class of graphs such that L_G is radical (or prime)?

Let *G* be a graph with vertices [n] and i, j be two distinct vertices of *G*. A *path* of length *r* in *G* from *i* to *j* is a sequence $\pi_{ij} : i = i_0, i_1, \ldots, i_r = j$ of pairwise distinct vertices such that $\{i_k, i_{k+1}\} \in E(G)$ for all *k*. We say that π_{ij} is *admissible* if i < j and for each $k = 1, \ldots, r - 1$, one has either $i_k < i$ or $i_k > j$.

If π_{ij} is admissible, we attach to it the monomial

$$u_{\pi_{ij}} = \prod_{i_k > j} x_{i_k} \prod_{i_k < i} y_{i_k}.$$

Theorem (-) Let *G* be a graph on [*n*] and assume that $char(K) \neq 2$. Then, with respect to the lexicographic order on $T = K[x_i, y_i]$ induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$, the following elements form a Gröbner basis of the ideal Π_G :

- **1** $u_{\pi_{ij}}b_{ij}$, where π_{ij} is an odd admissible path and $b_{ij} = x_i y_j + x_j y_i$,
- **2** $u_{\pi_{ij}}g_{ij}$, where π_{ij} is an even admissible path and $g_{ij} = x_i y_j x_j y_i$,
- lcm(u_{πij}, u_{σij})y_ix_j, where π_{ij} is an odd and σ_{ij} is an even admissible path,

$$\begin{cases} y_b \prod_{h \in W} x_h & \text{if } b < h \text{ for every } h \in W \\ x_b \prod_{h \in W} y_h & \text{if } b > h \text{ for every } h \in W \end{cases}$$

where $W = V(\pi_{ij}) \cup V(\sigma_{ij}) \cup V(\tau_{ab}) \setminus \{b\}, \pi_{ij}$ is an odd and σ_{ij} is an even admissible path from *i* to *j*, τ_{ab} is a path with endpoints *a* and *b*, such that *a* is the only vertex of τ_{ab} that belongs to $V(\pi_{ij}) \cup V(\sigma_{ij})$.

From now on we assume $\sqrt{-1} \notin K$.

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$.

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

• If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

• If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

- If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].
- If *H* is bipartite on $V_1 \cup V_2$, $|V_1| = m$, $|V_2| = n m$, then we denote by \tilde{H} the complete bipartite graph $K_{m,n-m}$ on [n] with respect to the same bipartition.

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

- If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].
- If *H* is bipartite on $V_1 \cup V_2$, $|V_1| = m$, $|V_2| = n m$, then we denote by \tilde{H} the complete bipartite graph $K_{m,n-m}$ on [n] with respect to the same bipartition.

Let *G* be a finite graph on [n].

Let *G* be a finite graph on [*n*]. For any $S \subset [n]$ we set $Q_S(G) = \left(\{x_i, y_i\}_{i \in S}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}} \right),$

$$Q_S(G) = \left(\{x_i, y_i\}_{i \in S}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(\mathcal{S})}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_k} = \begin{cases} \left(x_i x_j + y_i y_j, x_i y_j - x_j y_i, x_h^2 + y_h^2 : \frac{1 \le i < j \le \ell}{1 \le h \le \ell} \right) & \text{if } \widetilde{G}_k = K_\ell \end{cases}$$

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_{k}} = \begin{cases} \left(x_{i}x_{j} + y_{i}y_{j}, x_{i}y_{j} - x_{j}y_{i}, x_{h}^{2} + y_{h}^{2} : \frac{1 \le i < j \le \ell}{1 \le h \le \ell}\right) & \text{if } \widetilde{G}_{k} = K_{\ell} \\ \left(x_{i}x_{j} + y_{i}y_{j}, x_{r}y_{s} - x_{s}y_{r} : \frac{1 \le i \le m, m+1 \le j \le n}{1 \le r < s \le m \text{ or } m+1 \le r < s \le n}\right) & \text{if } \widetilde{G}_{k} = K_{m,\ell-m} \end{cases}$$

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(\mathcal{S})}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_{k}} = \begin{cases} \left(x_{i}x_{j} + y_{i}y_{j}, x_{i}y_{j} - x_{j}y_{i}, x_{h}^{2} + y_{h}^{2} : \frac{1 \le i < j \le \ell}{1 \le h \le \ell}\right) & \text{if } \widetilde{G}_{k} = K_{\ell} \\ \left(x_{i}x_{j} + y_{i}y_{j}, x_{r}y_{s} - x_{s}y_{r} : \frac{1 \le i \le m, m+1 \le j \le n}{1 \le r < s \le m \text{ or } m+1 \le r < s \le n}\right) & \text{if } \widetilde{G}_{k} = K_{m,\ell-m} \end{cases}$$

Proposition (-) Let $\sqrt{-1} \notin K$. Then $Q_S(G)$ is a prime ideal for all $S \subset [n]$ and ht $Q_S(G) = |S| + n - b(S)$, where b(S) is the number of bipartite connected components of $G_{[n]\setminus S}$.

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_{k}} = \begin{cases} \left(x_{i}x_{j} + y_{i}y_{j}, x_{i}y_{j} - x_{j}y_{i}, x_{h}^{2} + y_{h}^{2} : \frac{1 \le i < j \le \ell}{1 \le h \le \ell}\right) & \text{if } \widetilde{G}_{k} = K_{\ell} \\ \left(x_{i}x_{j} + y_{i}y_{j}, x_{r}y_{s} - x_{s}y_{r} : \frac{1 \le i \le m, m+1 \le j \le n}{1 \le r < s \le m \text{ or } m+1 \le r < s \le n}\right) & \text{if } \widetilde{G}_{k} = K_{m,\ell-m} \end{cases}$$

Proposition (-) Let $\sqrt{-1} \notin K$. Then $Q_S(G)$ is a prime ideal for all $S \subset [n]$ and ht $Q_S(G) = |S| + n - b(S)$, where b(S) is the number of bipartite connected components of $G_{[n]\setminus S}$.

Theorem (-) Let G be a graph on [n] and $\sqrt{-1} \notin K$. Then $L_G = \bigcap_{S \subset [n]} Q_S(G)$

is a redundant primary decomposition of L_G .

Let G be a graph on [n].

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

Let $\mathcal{M}(G)$ be the set of all sets $S \subset [n]$ such that each $i \in S$ is either a cut point or a bipartition point of the graph $G_{([n]\setminus S)\cup\{i\}}$. In particular, $\emptyset \in \mathcal{M}(G)$.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

Let $\mathcal{M}(G)$ be the set of all sets $S \subset [n]$ such that each $i \in S$ is either a cut point or a bipartition point of the graph $G_{([n]\setminus S)\cup\{i\}}$. In particular, $\emptyset \in \mathcal{M}(G)$.

Theorem (-) Let G be a graph on [n], $\sqrt{-1} \in K$ and $S \subset [n]$. Then $Q_S(G)$ is a minimal prime ideal of L_G if and only if $S \in \mathcal{M}(G)$.

Corollary Let *K* be a field such that $char(K) \neq 1, 2 \mod 4$ or char(K) = 0. Then the following are equivalent:

- the ideal $L_{\overline{G}}$ is prime,
- \overline{G} is a disjoint union of edges and isolated vertices,
- G is (n-2)-connected.

In this case, $L_{\overline{G}}$ is a complete intersection.

Corollary Let *K* be a field such that $char(K) \neq 1, 2 \mod 4$ or char(K) = 0. Then the following are equivalent:

- the ideal $L_{\overline{G}}$ is prime,
- \overline{G} is a disjoint union of edges and isolated vertices,
- G is (n-2)-connected.

In this case, $L_{\overline{G}}$ is a complete intersection.

Corollary Let *G* be a graph with *b* bipartite connected components, and let $\sqrt{-1} \notin K$. Then L_G is unmixed if and only if b(S) = |S| + b for every $\emptyset \neq S \in \mathcal{M}(G)$. **Corollary** Let *K* be a field such that $char(K) \neq 1, 2 \mod 4$ or char(K) = 0. Then the following are equivalent:

- the ideal $L_{\overline{G}}$ is prime,
- \overline{G} is a disjoint union of edges and isolated vertices,
- G is (n-2)-connected.

In this case, $L_{\overline{G}}$ is a complete intersection.

Corollary Let *G* be a graph with *b* bipartite connected components, and let $\sqrt{-1} \notin K$. Then L_G is unmixed if and only if b(S) = |S| + b for every $\emptyset \neq S \in \mathcal{M}(G)$.

Future works

- Which ideals L_G are Cohen-Macaulay (or Gorenstein, or complete intersection)? (jointly with Davide Bolognini)
- Can we say something about the resolution of L_G?
- Can we compute $pd_T(T/L_G)$ and $reg(L_G)$?

Thank you for listening!