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The theta function (Lovész, 1979) of a graph G with vertices [n] is
0(G) = mi —,
(G) = min max r 7y
where the minimum is taken over all orthonormal representations
(u; : i € V) of G in R4, all unit vectors ¢ € R? and integers d > 1.

It suffices to consider d = n, since 6(G) < n.

For every G, (G) > O(G), where O(G) = sup,. V/a(GF) is the Shan-
non capacity of G (which measures the capacity of a communications
channel defined by the graph).

a(G) = w(G) < 6(G) < x(C),
where o(G) is the independence number of G, w(G) is the clique number

of G and x(G) is the vertex-chromatic number of G.

6(G) is polynomial time computable, while w(G) and x(G) are NP-
complete, and the computational complexity of ©(G) is unknown.
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From an algebraic point of view, the set of all orthogonal representa-
tions of a graph G is the vanishing set in R"*¢ of the ideal

Ls = (xl-lx_,-l + o+ XigXjg {i.j} e E(G))

in the polynomial ring R{xy : i = 1,...,n,k = 1,...,d]. We call L5
Lovdsz-Saks-Schrijver ideal of G.

Theorem (Lovasz, Saks, Schrijver, 1989) A graph G has a
general-position orthogonal representation in R% (any d vectors are
linearly independent) if and only if G is (n — d)-connected.

e We study some algebraic properties of the ideals L for any graph
G and over an arbitrary field K.

e For d =1, the ideal L is the well-known edge ideal of G.
e We consider the case d = 2. For simplicity we rename the variables
Xi1, Xjz as X;, y; and consider
Lg = (xix; + yiy; : {i,j} € E(G))
as an ideal in the polynomial ring T = K[x1,...,Xn, Y1, .-, Vn-
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Letd = 2, v/—1 € K and G be a bipartite graph. Then L; may be
identified with the binomial edge ideal J of G.

G
X1X2 + N1)2,
1 2 3 4 Lg = | x2x3 + 035,
X3X4 + ¥3)Va
)
X1 X2 X3 X4 Yz = ke,
Ny o om < Jo = | Xoys — Vox3,
X3Ys — Y3Xs

The primary decomposition of binomial edge ideals has been recently
studied. It is also known that they are radical ideals.

Achtung! This identification does not hold for K = R.
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1. Radicality of L;

Theorem (-)
@ I[fchar(K) # 2, then Lg is a radical ideal.

® Letchar(K) = 2. Then Lg is a radical ideal if and only if G is
bipartite.

Idea of the proof. For the first part, we assume that v/—1 € K. Apply-
ing the linear change of coordinates f such that for all i
f(xi) =xi—yi and  f(yi) = vV=1(xi + yi),
we transform L into the ideal
g = (xiyj + xyi : {i, ]} € E(G)).
The generators of I1 are those 2-permanents of the matrix [} 0 }7 |

whose column indices correspond to edges of G. Therefore, we call
1 the permanental edge ideal of G.



The linear change of coordinates is needed since in many cases Lg
does not admit any squarefree Grobner basis.



The linear change of coordinates is needed since in many cases Lg
does not admit any squarefree Grobner basis. For example, if G = G,
then all the possible initial ideals of L are:



The linear change of coordinates is needed since in many cases Lg
does not admit any squarefree Grobner basis. For example, if G = G,
then all the possible initial ideals of L are:

(BY1)2, 21 Y3, X2 X3, X1)2Y3, X1 X3, X1 X2)
(X3Y1Y2, X213, Xo X3, X1 X3, X1 X2, X5 V23
(V1 V2)3, X3Y1Y2, Xo 1), Xo X3, X1 X3, X1 Xp)
(V1Y2, Xe 1Y, Xo X3, X1 X3, X153 )'3)

(N1Y3, 1Yz, X2 X3, X1 X3Y2, X1X5)3)

(Y193, X3 )1V, Xo X3, X155 Y2, X1X2)

(Y35 Y132, X2X3, X135 )2, X1 X2Y3)

(V10205 X2)1Y3, Xo X3, X1 Y2)3, X1 X3, X1 Xp)
(V2)3, %201 Y3, X3 X3 )1, X1 X3, X1 %2)

(1213, K31 V5, X2 Y13, X1 X3, X152
(Vo)3, X3Y1Y2, X2J1 V5, X1 X3, X1 X2
(32y3, 11¥2, sz/1y32, X1X3, X1X2)3
(Vo)3, 1Y, X3 Y1 V5, X1 X3 2, X1 X
(3213, 1Y3, V12, X1 X3)2, X1 X273, x%xzxs
(3213, ¥1¥3, ¥1Y2, szsyf, X1X3)2, X1X2)3
(Y213, 1Y35 V1Y2: Xo X3 Y1, X1 X3Y2, X1X2)5
(12)3, 13, N1 Y2, X2 X3 Y1, X1 xsyz27 X1X%2)3
(Y213, 1Y35 X5 X311, X1 X3 Y2, X1 X2)

)
)
)
)

(1213, Y193, X2X3Y1, X122, X5 X33
(1233, Y193, X3V5 V2, X2 X3Y1, X1 X2)
(3213, ¥1Y3, Y1Y2, X2 X311, xlxzys, x1%5%3)
(013, xzxs, X1)2Y3, X1 X2, X5 X3)2)
(Y3, X35V, Xo X3, xlyzys, X1X2)
(013, %3312, X2 X3, x1y2y3 , X1X2)
(Y35 V132, X2X3, X125, X1 %23)
(X3Y1Y2, X2 X3, X5 )1 Y35 X1)2Y3, X1 X3, X12)
(NV2Ys3, X3)1¥2, X2 X3, X1)2Y3, X1 X3, X1 X2)
(1233, X312, X0 X5 )1, X1 X3, X1.%2)
(1233, Y132, X225 1, X1 X3, X1 X2Y3)
(1233, Y132, X2X3)1, X1 X3, X5 X213
(1233, Y132, X2V V3, X2 X3Y1, X1 X3)
(1213, Y173, V1Y2, X2 X3 Y1, X1 X382, X1 20255
(Y2, Xo X3, X125, X1 X3, X5 22)3)
(Y2, X2VE Y3, X2 X3, X1 Y2 Y3, X1%3)
(NY2, X213, X2X3, X115 Y3, X1%3)
(Y35 V132, X2X3, X1V5 Y3, X1 X3)2)



e We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >

N> > Yae



e We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >
Y>> Yo

e Hence in.(Ils) is a radical ideal. This implies that Il is a radical
ideal.



e We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >
Y>> Yo

e Hence in.(Ils) is a radical ideal. This implies that Il is a radical
ideal.

e This proves that L is a radical ideal if char(K) # 2 and -1 € K.



We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >
Y>> Yo

Hence in< (Il;) is a radical ideal. This implies that Il is a radical
ideal.

This proves that L is a radical ideal if char(K) # 2 and v/—1 € K.

Using a deformation argument, we prove the claim removing the
assumption v—1 € K. O



e We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >
Y>> Yo

e Hence in.(Ils) is a radical ideal. This implies that Il is a radical
ideal.

e This proves that Lg is a radical ideal if char(K) # 2 and v/—1 € K.

e Using a deformation argument, we prove the claim removing the
assumption v/—1 € K. O

Question Ifchar(K) = 0 and d > 3, Conca found a graph G for
which Lg is not a radical ideal.




e We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >
Y>> Yo

e Hence in.(Ils) is a radical ideal. This implies that Il is a radical
ideal.

e This proves that Lg is a radical ideal if char(K) # 2 and v/—1 € K.

e Using a deformation argument, we prove the claim removing the
assumption v/—1 € K. O

Question Ifchar(K) = 0 and d > 3, Conca found a graph G for
which Lg is not a radical ideal.

e Can we characterize the ideals L that are radical in terms of G?




e We prove that, if char(K) # 2, II; has a squarefree Grobner basis
with respect to the lexicographic order induced by x; > --- > x;, >
Y>> Yo

e Hence in.(Ils) is a radical ideal. This implies that Il is a radical
ideal.

e This proves that Lg is a radical ideal if char(K) # 2 and v/—1 € K.

e Using a deformation argument, we prove the claim removing the
assumption v/—1 € K. O

Question Ifchar(K) = 0 and d > 3, Conca found a graph G for
which Lg is not a radical ideal.

e Can we characterize the ideals L that are radical in terms of G?

o Is there at least a good class of graphs such that Lg is radical (or
prime)?
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1.1 A Grobner basis of I1;

Let G be a graph with vertices [n] and i, j be two distinct vertices of G.

A pathoflength rin Gfrom ito jisasequencer : i = i, ir,..., I =
of pairwise distinct vertices such that {i, it,1} € E(G) for all k. We
say that 7 is admissibleif i < jand foreach k = 1,...,r —1, one has

either iy < iori; > j.

If 7;; is admissible, we attach to it the monomial

= T T

i >j i<i



Theorem (-) Let G be a graph on [n] and assume that char(K) # 2.
Then, with respect to the lexicographic order on T = K|x;, ;| induced
byx, > -+ > X5 > ) > -+ > Yy, the following elements form a
Grobner basis of the ideal I1g:
® i, by, where;; is an odd admissible path and b;; = x;y; + X;yi,
® u,,gij, wherem;; is an even admissible path and g; = x;y; — X;i,
(3) lcm(umj, Ugy ) YiX;j, where ;; is an odd and o;; is an even admissible
path,
Yo llpew Xn ifb < hforeveryhe W
{xb [Lwewyn ifb> hforeveryhe W’
where W = V(7;;) U V(o) U V(74p) \ {b}, 7 is an odd and o is an
even admissible path from i to j, 7, is a path with endpoints a and
b, such that a is the only vertex of 7, that belongs to V (m;;) U V(o).
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2. Primary decomposition of L; for /—1 ¢ K

From now on we assume /—1 ¢ K. This is the case for K = R.
Let H be an arbitrary connected graph on [n].

o If H is not bipartite, then we denote by H the complete graph K,
on [n].

e If H is bipartite on V; U V,, |V1| = m, | V2| = n — m, then we denote
by H the complete bipartite graph K, ,—, on [n] with respect to
the same bipartition.
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2. Primary decomposition of L; for /—1 ¢ K

From now on we assume /—1 ¢ K. This is the case for K = R.
Let H be an arbitrary connected graph on [n].

o If H is not bipartite, then we denote by H the complete graph K,
on [n].

e If H is bipartite on V; U V,, |V1| = m, | V2| = n — m, then we denote
by H the complete bipartite graph K, ,—, on [n] with respect to
the same bipartition.

K5 I<2,3
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where Gi, ..., Gs) are the connected components of Gy, s and
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Proposition (-) Ler/—1 ¢ K. Then Qs(G) is a prime ideal for all
S C [n] and ht Qs(G) = |S| + n — b(S), where b(S) is the number of
bipartite connected components of Gy s.




Let G be a finite graph on [n]. For any S C [n] we set
QS(G) = ({xid/i}ie&[?;l:---:[” )a

Ge(s)
where Gi, ..., Gs) are the connected components of Gy, s and
(xixj+yiyj, XiYj— XjYi, Xp+ Vi : 1?;254) if Ge=K,
I~ =
Gy

1 . . 1<i<m,m+1<j<n e
(xlx}+yly}7xrys—x5yr : 1§r<s§morm+1§r<s§n) if G =Km,t—m

Proposition (-) Ler/—1 ¢ K. Then Qs(G) is a prime ideal for all
S C [n] and ht Qs(G) = |S| + n — b(S), where b(S) is the number of
bipartite connected components of Gy s.

Theorem (-) Let G beagraph on[n] and/—1 ¢ K. Then
Le= () Qs(G)
Sc[n]
is a redundant primary decomposition of Lg.
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Let G be a graph on [n]. Then a vertex i € [n] is said to be a cut point
of G if G\ ¢4 has more connected components than G.

1 5

2 6

We call a vertex i € [n] a bipartition point of G if G\ (;; has more
bipartite connected components than G.

Let M(G) be the set of all sets S C [n] such that each i € Sis either a
cut point or a bipartition point of the graph G, s)u{;;}- In particular,
@ e M(G).

Theorem (-) Let G be a graph on [n), V-1 € K and S C [n]. Then
Qs(G) is a minimal prime ideal of L¢ if and only if S € M(G).
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1
Then a minimal primary decomposition of L is

Le = Qz(G) =
(X122 + Y1)2, X1X3 + V113, X1Xa + YV1Va, XoX3 + Vo), XoXa + VoY, X3Xa + V3V,
X1Y2 — X2)1, X1Y3 — X3)1, X1Ya — XaY1, X2)3 — X3)2, X2 Y4 — Xa )2, X3Ya — X4)3,

X+ %5+ Yh, X+ Vs, X5 + Vi)




Example Let G be the graph
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N

1.

Then a minimal primary decomposition of Lg is
Le = Qz(G) N Q13(G) =
(X122 + Y1)2, X123 + Y113, X1Xa + YV1Va, X2 X3 + Vo), XoXa + VoY, X3Xa + V3V,
X1Y2 — X2)h, X1Y3 — X3)1, X1Ya — Xa)h, X2)3 — X3)2, XoYa — Xa)2, X3)Ys — X4)3,

B +WG 5,8+ 95,2+ )
N (X1, Y1, X2 X3 + Yo¥s, XaXa + Y3y, XoYa — Xa)2)
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1
Then a minimal primary decomposition of Lg is

L = Qz(G) N Q13 (G) N Q23 (G) =
(X122 + Y1)2, X123 + Y113, X1Xa + YV1Va, X2 X3 + Vo), XoXa + VoY, X3Xa + V3V,
X1)2 — X1, X1Y3 — X311, X1Ya — XaY1, X2)3 — X3)2, X2)a — X4)2, X3Ys — X4)3,
G4V %5+ ¥, +)E, 5+ vE)
N (X1, Y1, X2 X + Y23, X3Xa + YY1, XoYa — XaY2)
N (X2, Y2, X1X3 + V1V3, X3Xs + V3Va, X1)a — Xa)1)




Example Let G be the graph
2

1
Then a minimal primary decomposition of Lg is

Le = Qz(G) N Q13 (G) N Q23 (G) N Q33 (G) =
(X122 + Y1)2, X123 + Y113, X1Xa + YV1Va, X2 X3 + Vo), XoXa + VoY, X3Xa + V3V,
X1)2 — X1, X1Y3 — X311, X1Ya — XaY1, X2)3 — X3)2, X2)a — X4)2, X3Ys — X4)3,
G4V %5+ ¥, +)E, 5+ vE)
N (X1, Y1, X2 X + Y23, X3Xa + YY1, XoYa — XaY2)
N (X2, Y2, X1X3 + Y1Y3, X3Xa + Y31, X1Ya — XaY1)

N (X3, 3, X1X2 + J1)2).




Corollary Let K be a field such that char(K) # 1,2 mod 4 or
char(K) = 0. Then the following are equivalent:

e theideal L is prime,

e G is adisjoint union of edges and isolated vertices,
e Gis(n— 2)-connected.
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In this case, Lg is a complete intersection.
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Corollary Let K be a field such that char(K) # 1,2 mod 4 or
char(K) = 0. Then the following are equivalent:

e theideal L is prime,
e G is adisjoint union of edges and isolated vertices,
e Gis(n— 2)-connected.

In this case, Lg is a complete intersection.

\.

Corollary Let G be a graph with b bipartite connected components,
and let/—1 ¢ K. Then Lg is unmixed if and only if b(S) = |S| + b for
everya #+ S € M(G).

Future works

e Which ideals L; are Cohen-Macaulay (or Gorenstein, or complete
intersection)? (jointly with Davide Bolognini)

o Can we say something about the resolution of L;?

e Can we computepd(T/Lg) andreg(Lg)?




Thank you for listening!
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