## AMS-EMS-SPM International Meeting

Special Session on Homological and Combinatorial Commutative Algebra

$$
\text { Porto - June 11, } 2015
$$



# On the ideal of orthogonal representations of a graph in $\mathbf{R}^{2}$ 

Antonio Macchia
joint work with J. Herzog, S. Saeedi Madani, V. Welker

## Orthogonal representations of a graph

Let $G$ be a graph with vertices $[n]=\{1, \ldots, n\}, d \geq 1$ be an integer and $\bar{G}$ the complement of $G$.

## Orthogonal representations of a graph

Let $G$ be a graph with vertices $[n]=\{1, \ldots, n\}, d \geq 1$ be an integer and $\bar{G}$ the complement of $G$.

Definition (Lovász, 1979) A map $\varphi:[n] \rightarrow \mathbb{R}^{d}, i \mapsto\left(x_{i 1}, \ldots, x_{i d}\right)$ defines an orthogonal representation of $G$ if for every $\{i, j\} \in E(\bar{G})$,

$$
\varphi(i)^{T} \varphi(j)=x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}=0 .
$$

## Orthogonal representations of a graph

Let $G$ be a graph with vertices $[n]=\{1, \ldots, n\}, d \geq 1$ be an integer and $\bar{G}$ the complement of $G$.

Definition (Lovász, 1979) A map $\varphi:[n] \rightarrow \mathbb{R}^{d}, i \mapsto\left(x_{i 1}, \ldots, x_{i d}\right)$ defines an orthogonal representation of $G$ if for every $\{i, j\} \in E(\bar{G})$,

$$
\varphi(i)^{T} \varphi(j)=x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}=0 .
$$

The easiest and the most expensive way to define an orthogonal representation for a graph $G$ on the vertices $[n]$ is choosing $d=n$ and $\varphi: i \mapsto e_{i} \in \mathbb{R}^{n}$.


## Orthogonal representations of a graph

Let $G$ be a graph with vertices $[n]=\{1, \ldots, n\}, d \geq 1$ be an integer and $\bar{G}$ the complement of $G$.

Definition (Lovász, 1979) A map $\varphi:[n] \rightarrow \mathbb{R}^{d}, i \mapsto\left(x_{i 1}, \ldots, x_{i d}\right)$ defines an orthogonal representation of $G$ if for every $\{i, j\} \in E(\bar{G})$,

$$
\varphi(i)^{T} \varphi(j)=x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}=0 .
$$

The easiest and the most expensive way to define an orthogonal representation for a graph $G$ on the vertices $[n]$ is choosing $d=n$ and $\varphi: i \mapsto e_{i} \in \mathbb{R}^{n}$.


## Orthogonal representations of a graph

Let $G$ be a graph with vertices $[n]=\{1, \ldots, n\}, d \geq 1$ be an integer and $\bar{G}$ the complement of $G$.

Definition (Lovász, 1979) A map $\varphi:[n] \rightarrow \mathbb{R}^{d}, i \mapsto\left(x_{i 1}, \ldots, x_{i d}\right)$ defines an orthogonal representation of $G$ if for every $\{i, j\} \in E(\bar{G})$,

$$
\varphi(i)^{T} \varphi(j)=x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}=0
$$

The easiest and the most expensive way to define an orthogonal representation for a graph $G$ on the vertices $[n]$ is choosing $d=n$ and $\varphi: i \mapsto e_{i} \in \mathbb{R}^{n}$.


A cheaper way is starting from a vertex coloring of $\bar{G}$ with $\chi(\bar{G})$ colors and associating to all vertices with the same color $i$ the vector $e_{i} \in \mathbb{R}^{\chi(\bar{G})}$.

## Orthogonal representations of a graph

Let $G$ be a graph with vertices $[n]=\{1, \ldots, n\}, d \geq 1$ be an integer and $\bar{G}$ the complement of $G$.

Definition (Lovász, 1979) A map $\varphi:[n] \rightarrow \mathbb{R}^{d}, i \mapsto\left(x_{i 1}, \ldots, x_{i d}\right)$ defines an orthogonal representation of $G$ if for every $\{i, j\} \in E(\bar{G})$,

$$
\varphi(i)^{T} \varphi(j)=x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}=0
$$

The easiest and the most expensive way to define an orthogonal representation for a graph $G$ on the vertices $[n]$ is choosing $d=n$ and $\varphi: i \mapsto e_{i} \in \mathbb{R}^{n}$.


A cheaper way is starting from a vertex coloring of $\bar{G}$ with $\chi(\bar{G})$ colors and associating to all vertices with the same color $i$ the vector $e_{i} \in \mathbb{R}^{\chi(\bar{G})}$.

## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Properties

- It suffices to consider $d=n$, since $\theta(G) \leq n$.


## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Properties

- It suffices to consider $d=n$, since $\theta(G) \leq n$.
- For every $G, \theta(G) \geq \Theta(G)$,


## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Properties

- It suffices to consider $d=n$, since $\theta(G) \leq n$.
- For every $G, \theta(G) \geq \Theta(G)$, where $\Theta(G)=\sup _{k} \sqrt[k]{\alpha\left(G^{k}\right)}$ is the Shannon capacity of $G$ (which measures the capacity of a communications channel defined by the graph).


## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Properties

- It suffices to consider $d=n$, since $\theta(G) \leq n$.
- For every $G, \theta(G) \geq \Theta(G)$, where $\Theta(G)=\sup _{k} \sqrt[k]{\alpha\left(G^{k}\right)}$ is the Shannon capacity of $G$ (which measures the capacity of a communications channel defined by the graph).
- (Sandwich theorem-Lovász, 1986) $\alpha(G)=\omega(\bar{G}) \leq \theta(G) \leq \chi(\bar{G})$,


## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Properties

- It suffices to consider $d=n$, since $\theta(G) \leq n$.
- For every $G, \theta(G) \geq \Theta(G)$, where $\Theta(G)=\sup _{k} \sqrt[k]{\alpha\left(G^{k}\right)}$ is the Shannon capacity of $G$ (which measures the capacity of a communications channel defined by the graph).
- (Sandwich theorem - Lovász, 1986) $\alpha(G)=\omega(\bar{G}) \leq \theta(G) \leq \chi(\bar{G})$, where $\alpha(G)$ is the independence number of $G, \omega(\bar{G})$ is the clique number of $\bar{G}$ and $\chi(\bar{G})$ is the vertex-chromatic number of $\bar{G}$.


## Motivation: the Theta function and the Shannon capacity

The theta function (Lovász, 1979) of a graph $G$ with vertices $[n]$ is

$$
\theta(G)=\min _{\left(u_{i}\right), c} \max _{i \in[n]} \frac{1}{\left(c^{T} u_{i}\right)^{2}},
$$

where the minimum is taken over all orthonormal representations $\left(u_{i}: i \in V\right)$ of $G$ in $\mathbb{R}^{d}$, all unit vectors $c \in \mathbb{R}^{d}$ and integers $d \geq 1$.

## Properties

- It suffices to consider $d=n$, since $\theta(G) \leq n$.
- For every $G, \theta(G) \geq \Theta(G)$, where $\Theta(G)=\sup _{k} \sqrt[k]{\alpha\left(G^{k}\right)}$ is the Shannon capacity of $G$ (which measures the capacity of a communications channel defined by the graph).
- (Sandwich theorem - Lovász, 1986) $\alpha(G)=\omega(\bar{G}) \leq \theta(G) \leq \chi(\bar{G})$, where $\alpha(G)$ is the independence number of $G, \omega(\bar{G})$ is the clique number of $\bar{G}$ and $\chi(\bar{G})$ is the vertex-chromatic number of $\bar{G}$.
- $\theta(G)$ is polynomial time computable, while $\omega(\bar{G})$ and $\chi(\bar{G})$ are $N P-$ complete, and the computational complexity of $\Theta(G)$ is unknown.


## From Combinatorics to Commutative Algebra

From an algebraic point of view, the set of all orthogonal representations of a graph $G$ is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

$$
L_{\bar{G}}=\left(x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}:\{i, j\} \in E(\bar{G})\right)
$$

in the polynomial ring $\mathbb{R}\left[x_{i k}: i=1, \ldots, n, k=1, \ldots, d\right]$. We call $L_{\bar{G}}$ Lovász-Saks-Schrijver ideal of $G$.

## From Combinatorics to Commutative Algebra

From an algebraic point of view, the set of all orthogonal representations of a graph $G$ is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

$$
L_{\bar{G}}=\left(x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}:\{i, j\} \in E(\bar{G})\right)
$$

in the polynomial ring $\mathbb{R}\left[x_{i k}: i=1, \ldots, n, k=1, \ldots, d\right]$. We call $L_{\bar{G}}$ Lovász-Saks-Schrijver ideal of $G$.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in $\mathbb{R}^{d}$ (any d vectors are linearly independent) if and only if $G$ is $(n-d)$-connected.

## From Combinatorics to Commutative Algebra

From an algebraic point of view, the set of all orthogonal representations of a graph $G$ is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

$$
L_{\bar{G}}=\left(x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}:\{i, j\} \in E(\bar{G})\right)
$$

in the polynomial ring $\mathbb{R}\left[x_{i k}: i=1, \ldots, n, k=1, \ldots, d\right]$. We call $L_{\bar{G}}$ Lovász-Saks-Schrijver ideal of $G$.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in $\mathbb{R}^{d}$ (any d vectors are linearly independent) if and only if $G$ is $(n-d)$-connected.

- We study some algebraic properties of the ideals $L_{G}$ for any graph $G$ and over an arbitrary field $K$.


## From Combinatorics to Commutative Algebra

From an algebraic point of view, the set of all orthogonal representations of a graph $G$ is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

$$
L_{\bar{G}}=\left(x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}:\{i, j\} \in E(\bar{G})\right)
$$

in the polynomial ring $\mathbb{R}\left[x_{i k}: i=1, \ldots, n, k=1, \ldots, d\right]$. We call $L_{\bar{G}}$ Lovász-Saks-Schrijver ideal of $G$.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in $\mathbb{R}^{d}$ (any d vectors are linearly independent) if and only if $G$ is $(n-d)$-connected.

- We study some algebraic properties of the ideals $L_{G}$ for any graph $G$ and over an arbitrary field $K$.
- For $d=1$, the ideal $L_{G}$ is the well-known edge ideal of $G$.


## From Combinatorics to Commutative Algebra

From an algebraic point of view, the set of all orthogonal representations of a graph $G$ is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

$$
L_{\bar{G}}=\left(x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}:\{i, j\} \in E(\bar{G})\right)
$$

in the polynomial ring $\mathbb{R}\left[x_{i k}: i=1, \ldots, n, k=1, \ldots, d\right]$. We call $L_{\bar{G}}$ Lovász-Saks-Schrijver ideal of $G$.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in $\mathbb{R}^{d}$ (any d vectors are linearly independent) if and only if $G$ is $(n-d)$-connected.

- We study some algebraic properties of the ideals $L_{G}$ for any graph $G$ and over an arbitrary field $K$.
- For $d=1$, the ideal $L_{G}$ is the well-known edge ideal of $G$.
- We consider the case $d=2$. For simplicity we rename the variables $x_{i 1}, x_{i 2}$ as $x_{i}, y_{i}$


## From Combinatorics to Commutative Algebra

From an algebraic point of view, the set of all orthogonal representations of a graph $G$ is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

$$
L_{\bar{G}}=\left(x_{i 1} x_{j 1}+\cdots+x_{i d} x_{j d}:\{i, j\} \in E(\bar{G})\right)
$$

in the polynomial ring $\mathbb{R}\left[x_{i k}: i=1, \ldots, n, k=1, \ldots, d\right]$. We call $L_{\bar{G}}$ Lovász-Saks-Schrijver ideal of $G$.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in $\mathbb{R}^{d}$ (any d vectors are linearly independent) if and only if $G$ is $(n-d)$-connected.

- We study some algebraic properties of the ideals $L_{G}$ for any graph $G$ and over an arbitrary field $K$.
- For $d=1$, the ideal $L_{G}$ is the well-known edge ideal of $G$.
- We consider the case $d=2$. For simplicity we rename the variables $x_{i 1}, x_{i 2}$ as $x_{i}, y_{i}$ and consider

$$
L_{\bar{G}}=\left(x_{i} x_{j}+y_{i} y_{j}:\{i, j\} \in E(\bar{G})\right)
$$

as an ideal in the polynomial ring $T=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$.

## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

G


## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

$$
L_{G}=\left(\begin{array}{l}
x_{1} x_{2}+y_{1} y_{2}, \\
x_{2} x_{3}+y_{2} y_{3}, \\
x_{3} x_{4}+y_{3} y_{4}
\end{array}\right)
$$

## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

$$
\begin{aligned}
& \xrightarrow{c} \begin{array}{c}
G \\
1
\end{array} 2 \quad 4 \quad L_{G}=\left(\begin{array}{c}
x_{1} x_{2}+y_{1} y_{2}, \\
x_{2} x_{3}+y_{2} y_{3} \\
x_{3} x_{4}+y_{3} y_{4}
\end{array}\right) \\
& \downarrow \\
& J_{G}=\left(\begin{array}{l}
x_{1} y_{2}-y_{1} x_{2}, \\
x_{2} y_{3}-y_{2} x_{3}, \\
x_{3} y_{4}-y_{3} x_{4}
\end{array}\right)
\end{aligned}
$$

## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

\[

\]

## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

$$
\begin{aligned}
& \stackrel{G}{\substack{G \\
\bullet}} \begin{array}{l}
2 \\
\bullet
\end{array} \quad L_{G}=\left(\begin{array}{l}
x_{1} x_{2}+y_{1} y_{2}, \\
x_{2} x_{3}+y_{2} y_{3}, \\
x_{3} x_{4}+y_{3} y_{4}
\end{array}\right) \\
& \uparrow \\
& {\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right] \quad \leftrightarrow \quad J_{G}=\left(\begin{array}{l}
x_{1} y_{2}-y_{1} x_{2}, \\
x_{2} y_{3}-y_{2} x_{3}, \\
x_{3} y_{4}-y_{3} x_{4}
\end{array}\right)}
\end{aligned}
$$

The primary decomposition of binomial edge ideals has been recently studied. It is also known that they are radical ideals.

## Lovász-Saks-Schrijver ideals VS Binomial edge ideals

Let $d=2, \sqrt{-1} \in K$ and $G$ be a bipartite graph. Then $L_{G}$ may be identified with the binomial edge ideal $J_{G}$ of $G$.

$$
\begin{aligned}
& \stackrel{G}{\substack{c \\
\bullet}} \begin{array}{l}
2 \\
\bullet
\end{array} \quad 4 \quad L_{G}=\left(\begin{array}{l}
x_{1} x_{2}+y_{1} y_{2}, \\
x_{2} x_{3}+y_{2} y_{3}, \\
x_{3} x_{4}+y_{3} y_{4}
\end{array}\right) \\
& \uparrow \\
& {\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right] \quad \leftrightarrow \quad J_{G}=\left(\begin{array}{c}
x_{1} y_{2}-y_{1} x_{2}, \\
x_{2} y_{3}-y_{2} x_{3}, \\
x_{3} y_{4}-y_{3} x_{4}
\end{array}\right)}
\end{aligned}
$$

The primary decomposition of binomial edge ideals has been recently studied. It is also known that they are radical ideals.

Achtung! This identification does not hold for $K=\mathbb{R}$.

## 1. Radicality of $L_{G}$

Theorem (-)
(1) If $\operatorname{char}(K) \neq 2$, then $L_{G}$ is a radical ideal.

## 1. Radicality of $L_{G}$

## Theorem (-)

(1) If $\operatorname{char}(K) \neq 2$, then $L_{G}$ is a radical ideal.
(2) Let $\operatorname{char}(K)=2$. Then $L_{G}$ is a radical ideal if and only if $G$ is bipartite.

## 1. Radicality of $L_{G}$

## Theorem (-)

(1) If $\operatorname{char}(K) \neq 2$, then $L_{G}$ is a radical ideal.
(2) Let $\operatorname{char}(K)=2$. Then $L_{G}$ is a radical ideal if and only if $G$ is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$.

## 1. Radicality of $L_{G}$

## Theorem (-)

(1) If $\operatorname{char}(K) \neq 2$, then $L_{G}$ is a radical ideal.
(2) Let $\operatorname{char}(K)=2$. Then $L_{G}$ is a radical ideal if and only if $G$ is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates $f$ such that for all $i$

$$
f\left(x_{i}\right)=x_{i}-y_{i} \quad \text { and } \quad f\left(y_{i}\right)=\sqrt{-1}\left(x_{i}+y_{i}\right),
$$

we transform $L_{G}$ into the ideal

$$
\Pi_{G}=\left(x_{i} y_{j}+x_{j} y_{i}:\{i, j\} \in E(G)\right)
$$

## 1. Radicality of $L_{G}$

## Theorem (-)

(1) If $\operatorname{char}(K) \neq 2$, then $L_{G}$ is a radical ideal.
(2) Let $\operatorname{char}(K)=2$. Then $L_{G}$ is a radical ideal if and only if $G$ is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates $f$ such that for all $i$

$$
f\left(x_{i}\right)=x_{i}-y_{i} \quad \text { and } \quad f\left(y_{i}\right)=\sqrt{-1}\left(x_{i}+y_{i}\right),
$$

we transform $L_{G}$ into the ideal

$$
\Pi_{G}=\left(x_{i} y_{j}+x_{j} y_{i}:\{i, j\} \in E(G)\right)
$$

The generators of $\Pi_{G}$ are those 2-permanents of the matrix $\left[\begin{array}{lll}x_{1} & \cdots & x_{n} \\ y_{1} & \ldots & y_{n}\end{array}\right]$ whose column indices correspond to edges of $G$. Therefore, we call $\Pi_{G}$ the permanental edge ideal of $G$.

The linear change of coordinates is needed since in many cases $L_{G}$ does not admit any squarefree Gröbner basis.

The linear change of coordinates is needed since in many cases $L_{G}$ does not admit any squarefree Gröbner basis. For example, if $G=C_{3}$, then all the possible initial ideals of $L_{G}$ are:

The linear change of coordinates is needed since in many cases $L_{G}$ does not admit any squarefree Gröbner basis. For example, if $G=C_{3}$, then all the possible initial ideals of $L_{G}$ are:

$$
\begin{aligned}
& \left(x_{3}^{2} y_{1} y_{2}, x_{2} y_{1} y_{3}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \left(x_{3} y_{1} y_{2}, x_{2} y_{1} y_{3}, x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}, x_{1}^{2} y_{2} y_{3}\right) \\
& \left(y_{1}^{2} y_{2} y_{3}, x_{3} y_{1} y_{2}, x_{2} y_{1} y_{3}, x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \left(y_{1} y_{2}, x_{2} y_{1} y_{3}, x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}^{2} y_{3}\right) \\
& \left(y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3}, x_{1} x_{3} y_{2}, x_{1} x_{2}^{2} y_{3}\right) \\
& \left(y_{1} y_{3}, x_{3} y_{1} y_{2}, x_{2} x_{3}, x_{1} x_{3}^{2} y_{2}, x_{1} x_{2}\right) \\
& \left(y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3}, x_{1} x_{3}^{2} y_{2}, x_{1} x_{2} y_{3}\right) \\
& \left(y_{1} y_{2} y_{3}^{2}, x_{2} y_{1} y_{3}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \left(y_{2} y_{3}, x_{2} y_{1} y_{3}, x_{2}^{2} x_{3} y_{1}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \left(y_{2} y_{3}, x_{3} y_{1} y_{2}^{2}, x_{2} y_{1} y_{3}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \left(y_{2} y_{3}, x_{3} y_{1} y_{2}, x_{2} y_{1} y_{3}^{2}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{2}, x_{2} y_{1} y_{3}^{2}, x_{1} x_{3}, x_{1} x_{2} y_{3}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{3}, x_{3} y_{1} y_{2}^{2}, x_{1} x_{3} y_{2}, x_{1} x_{2}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{3}, y_{1} y_{2}, x_{1} x_{3} y_{2}, x_{1} x_{2} y_{3}, x_{1}^{2} x_{2} x_{3}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3} y_{1}^{2}, x_{1} x_{3} y_{2}, x_{1} x_{2} y_{3}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3} y_{1}, x_{1} x_{3} y_{2}, x_{1} x_{2} y_{3}^{2}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3} y_{1}, x_{1} x_{3} y_{2}^{2}, x_{1} x_{2} y_{3}\right) \\
& \left(y_{2} y_{3}, y_{1} y_{3}, x_{2}^{2} x_{3} y_{1}, x_{1} x_{3} y_{2}, x_{1} x_{2}\right)
\end{aligned}
$$

$\left(y_{2} y_{3}, y_{1} y_{3}, x_{2} x_{3} y_{1}, x_{1} x_{2}, x_{1}^{2} x_{3} y_{2}\right)$
$\left(y_{2} y_{3}, y_{1} y_{3}, x_{3} y_{1}^{2} y_{2}, x_{2} x_{3} y_{1}, x_{1} x_{2}\right)$
$\left(y_{2} y_{3}, y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3} y_{1}, x_{1} x_{2} y_{3}, x_{1} x_{2}^{2} x_{3}\right)$
$\left(y_{1} y_{3}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{2}, x_{1}^{2} x_{3} y_{2}\right)$
$\left(y_{1} y_{3}, x_{3} y_{1}^{2} y_{2}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{2}\right)$
$\left(y_{1} y_{3}, x_{3} y_{1} y_{2}, x_{2} x_{3}, x_{1} y_{2} y_{3}^{2}, x_{1} x_{2}\right)$
$\left(y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3}, x_{1} y_{2} y_{3}^{2}, x_{1} x_{2} y_{3}\right)$
$\left(x_{3} y_{1} y_{2}, x_{2} x_{3}, x_{2}^{2} y_{1} y_{3}, x_{1} y_{2} y_{3}, x_{1} x_{3}, x_{1} x_{2}\right)$
$\left(y_{1} y_{2}^{2} y_{3}, x_{3} y_{1} y_{2}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{3}, x_{1} x_{2}\right)$
$\left(y_{2} y_{3}, x_{3} y_{1} y_{2}, x_{2} x_{3}^{2} y_{1}, x_{1} x_{3}, x_{1} x_{2}\right)$
$\left(y_{2} y_{3}, y_{1} y_{2}, x_{2} x_{3}^{2} y_{1}, x_{1} x_{3}, x_{1} x_{2} y_{3}\right)$
$\left(y_{2} y_{3}, y_{1} y_{2}, x_{2} x_{3} y_{1}, x_{1} x_{3}, x_{1}^{2} x_{2} y_{3}\right)$
$\left(y_{2} y_{3}, y_{1} y_{2}, x_{2} y_{1}^{2} y_{3}, x_{2} x_{3} y_{1}, x_{1} x_{3}\right)$
$\left(y_{2} y_{3}, y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3} y_{1}, x_{1} x_{3} y_{2}, x_{1} x_{2} x_{3}^{2}\right)$
$\left(y_{1} y_{2}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{3}, x_{1}^{2} x_{2} y_{3}\right)$
$\left(y_{1} y_{2}, x_{2} y_{1}^{2} y_{3}, x_{2} x_{3}, x_{1} y_{2} y_{3}, x_{1} x_{3}\right)$
$\left(y_{1} y_{2}, x_{2} y_{1} y_{3}, x_{2} x_{3}, x_{1} y_{2}^{2} y_{3}, x_{1} x_{3}\right)$
$\left(y_{1} y_{3}, y_{1} y_{2}, x_{2} x_{3}, x_{1} y_{2}^{2} y_{3}, x_{1} x_{3} y_{2}\right)$

- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- Hence $\mathrm{in}_{<}\left(\Pi_{G}\right)$ is a radical ideal. This implies that $\Pi_{G}$ is a radical ideal.
- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- Hence $\mathrm{in}_{<}\left(\Pi_{G}\right)$ is a radical ideal. This implies that $\Pi_{G}$ is a radical ideal.
- This proves that $L_{G}$ is a radical ideal if $\operatorname{char}(K) \neq 2$ and $\sqrt{-1} \in K$.
- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- Hence $\mathrm{in}_{<}\left(\Pi_{G}\right)$ is a radical ideal. This implies that $\Pi_{G}$ is a radical ideal.
- This proves that $L_{G}$ is a radical ideal if $\operatorname{char}(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.
- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- Hence $\mathrm{in}_{<}\left(\Pi_{G}\right)$ is a radical ideal. This implies that $\Pi_{G}$ is a radical ideal.
- This proves that $L_{G}$ is a radical ideal if $\operatorname{char}(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

Question If $\operatorname{char}(K)=0$ and $d \geq 3$, Conca found a graph $G$ for which $L_{G}$ is not a radical ideal.

- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- Hence $\mathrm{in}_{<}\left(\Pi_{G}\right)$ is a radical ideal. This implies that $\Pi_{G}$ is a radical ideal.
- This proves that $L_{G}$ is a radical ideal if $\operatorname{char}(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

Question If $\operatorname{char}(K)=0$ and $d \geq 3$, Conca found a graph $G$ for which $L_{G}$ is not a radical ideal.

- Can we characterize the ideals $L_{G}$ that are radical in terms of $G$ ?
- We prove that, if $\operatorname{char}(K) \neq 2, \Pi_{G}$ has a squarefree Gröbner basis with respect to the lexicographic order induced by $x_{1}>\cdots>x_{n}>$ $y_{1}>\cdots>y_{n}$.
- Hence $\mathrm{in}_{<}\left(\Pi_{G}\right)$ is a radical ideal. This implies that $\Pi_{G}$ is a radical ideal.
- This proves that $L_{G}$ is a radical ideal if $\operatorname{char}(K) \neq 2$ and $\sqrt{-1} \in K$.
- Using a deformation argument, we prove the claim removing the assumption $\sqrt{-1} \in K$.

Question If $\operatorname{char}(K)=0$ and $d \geq 3$, Conca found a graph $G$ for which $L_{G}$ is not a radical ideal.

- Can we characterize the ideals $L_{G}$ that are radical in terms of $G$ ?
- Is there at least a good class of graphs such that $L_{G}$ is radical (or prime)?


### 1.1 A Gröbner basis of $\Pi_{G}$

Let $G$ be a graph with vertices $[n]$ and $i, j$ be two distinct vertices of $G$. A path of length $r$ in $G$ from $i$ to $j$ is a sequence $\pi_{i j}: i=i_{0}, i_{1}, \ldots, i_{r}=j$ of pairwise distinct vertices such that $\left\{i_{k}, i_{k+1}\right\} \in E(G)$ for all $k$. We say that $\pi_{i j}$ is admissible if $i<j$ and for each $k=1, \ldots, r-1$, one has either $i_{k}<i$ or $i_{k}>j$.

### 1.1 A Gröbner basis of $\Pi_{G}$

Let $G$ be a graph with vertices $[n]$ and $i, j$ be two distinct vertices of $G$. A path of length $r$ in $G$ from $i$ to $j$ is a sequence $\pi_{i j}: i=i_{0}, i_{1}, \ldots, i_{r}=j$ of pairwise distinct vertices such that $\left\{i_{k}, i_{k+1}\right\} \in E(G)$ for all $k$. We say that $\pi_{i j}$ is admissible if $i<j$ and for each $k=1, \ldots, r-1$, one has either $i_{k}<i$ or $i_{k}>j$.


### 1.1 A Gröbner basis of $\Pi_{G}$

Let $G$ be a graph with vertices $[n]$ and $i, j$ be two distinct vertices of $G$. A path of length $r$ in $G$ from $i$ to $j$ is a sequence $\pi_{i j}: i=i_{0}, i_{1}, \ldots, i_{r}=j$ of pairwise distinct vertices such that $\left\{i_{k}, i_{k+1}\right\} \in E(G)$ for all $k$. We say that $\pi_{i j}$ is admissible if $i<j$ and for each $k=1, \ldots, r-1$, one has either $i_{k}<i$ or $i_{k}>j$.


### 1.1 A Gröbner basis of $\Pi_{G}$

Let $G$ be a graph with vertices $[n]$ and $i, j$ be two distinct vertices of $G$. A path of length $r$ in $G$ from $i$ to $j$ is a sequence $\pi_{i j}: i=i_{0}, i_{1}, \ldots, i_{r}=j$ of pairwise distinct vertices such that $\left\{i_{k}, i_{k+1}\right\} \in E(G)$ for all $k$. We say that $\pi_{i j}$ is admissible if $i<j$ and for each $k=1, \ldots, r-1$, one has either $i_{k}<i$ or $i_{k}>j$.


### 1.1 A Gröbner basis of $\Pi_{G}$

Let $G$ be a graph with vertices $[n]$ and $i, j$ be two distinct vertices of $G$. A path of length $r$ in $G$ from $i$ to $j$ is a sequence $\pi_{i j}: i=i_{0}, i_{1}, \ldots, i_{r}=j$ of pairwise distinct vertices such that $\left\{i_{k}, i_{k+1}\right\} \in E(G)$ for all $k$. We say that $\pi_{i j}$ is admissible if $i<j$ and for each $k=1, \ldots, r-1$, one has either $i_{k}<i$ or $i_{k}>j$.


If $\pi_{i j}$ is admissible, we attach to it the monomial

$$
u_{\pi_{i j}}=\prod_{i_{k}>j} x_{i_{k}} \prod_{i_{k}<i} y_{i_{k}}
$$

Theorem (-) Let $G$ be a graph on $[n]$ and assume that $\operatorname{char}(K) \neq 2$. Then, with respect to the lexicographic order on $T=K\left[x_{i}, y_{i}\right]$ induced by $x_{1}>\cdots>x_{n}>y_{1}>\cdots>y_{n}$, the following elements form a Gröbner basis of the ideal $\Pi_{G}$ :
(1) $u_{\pi_{i j}} b_{i j}$, where $\pi_{i j}$ is an odd admissible path and $b_{i j}=x_{i} y_{j}+x_{j} y_{i}$,
(2) $u_{\pi_{i j}} g_{i j}$, where $\pi_{i j}$ is an even admissible path and $g_{i j}=x_{i} y_{j}-x_{j} y_{i}$,
(3) $\operatorname{lcm}\left(u_{\pi_{i j}}, u_{\sigma_{i j}}\right) y_{i} x_{j}$, where $\pi_{i j}$ is an odd and $\sigma_{i j}$ is an even admissible path,
(4) $\left\{\begin{array}{ll}y_{b} \prod_{h \in W} x_{h} & \text { if } b<h \text { for every } h \in W \\ x_{b} \prod_{h \in W} y_{h} & \text { if } b>h \text { for every } h \in W\end{array}\right.$,
where $W=V\left(\pi_{i j}\right) \cup V\left(\sigma_{i j}\right) \cup V\left(\tau_{a b}\right) \backslash\{b\}, \pi_{i j}$ is an odd and $\sigma_{i j}$ is an even admissible path from $i$ to $j, \tau_{a b}$ is a path with endpoints $a$ and $b$, such that $a$ is the only vertex of $\tau_{a b}$ that belongs to $V\left(\pi_{i j}\right) \cup V\left(\sigma_{i j}\right)$.

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$.

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K=\mathbb{R}$.

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K=\mathbb{R}$. Let $H$ be an arbitrary connected graph on $[n]$.

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K=\mathbb{R}$. Let $H$ be an arbitrary connected graph on $[n]$.

- If $H$ is not bipartite, then we denote by $\widetilde{H}$ the complete graph $K_{n}$ on $[n]$.


H

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K=\mathbb{R}$. Let $H$ be an arbitrary connected graph on $[n]$.

- If $H$ is not bipartite, then we denote by $\widetilde{H}$ the complete graph $K_{n}$ on $[n]$.


$$
K_{5}
$$

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K=\mathbb{R}$.
Let $H$ be an arbitrary connected graph on $[n]$.

- If $H$ is not bipartite, then we denote by $\widetilde{H}$ the complete graph $K_{n}$ on $[n]$.
- If $H$ is bipartite on $V_{1} \cup V_{2},\left|V_{1}\right|=m,\left|V_{2}\right|=n-m$, then we denote by $\widetilde{H}$ the complete bipartite graph $K_{m, n-m}$ on [n] with respect to the same bipartition.

$K_{5}$


H

## 2. Primary decomposition of $L_{G}$ for $\sqrt{-1} \notin K$

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K=\mathbb{R}$.
Let $H$ be an arbitrary connected graph on $[n]$.

- If $H$ is not bipartite, then we denote by $\widetilde{H}$ the complete graph $K_{n}$ on $[n]$.
- If $H$ is bipartite on $V_{1} \cup V_{2},\left|V_{1}\right|=m,\left|V_{2}\right|=n-m$, then we denote by $\widetilde{H}$ the complete bipartite graph $K_{m, n-m}$ on [n] with respect to the same bipartition.

$K_{5}$

$K_{2,3}$

Let $G$ be a finite graph on $[n]$.

Let $G$ be a finite graph on $[n]$. For any $S \subset[n]$ we set

$$
Q_{S}(G)=\left(\left\{x_{i}, y_{i}\right\}_{i \in S}, I_{\widetilde{G}_{1}}, \ldots, I_{\tilde{G}_{c(S)}}\right),
$$

Let $G$ be a finite graph on $[n]$. For any $S \subset[n]$ we set

$$
Q_{S}(G)=\left(\left\{x_{i}, y_{i}\right\}_{i \in S}, I_{\tilde{G}_{1}}, \ldots, I_{\widetilde{G}_{c(S)}}\right),
$$

where $G_{1}, \ldots, G_{c(S)}$ are the connected components of $G_{[n] \backslash S}$ and

Let $G$ be a finite graph on $[n]$. For any $S \subset[n]$ we set

$$
Q_{S}(G)=\left(\left\{x_{i}, y_{i}\right\}_{i \in S}, I_{\tilde{G}_{1}}, \ldots, I_{\widetilde{G}_{c(S)}}\right)
$$

where $G_{1}, \ldots, G_{c(S)}$ are the connected components of $G_{[n] \backslash S}$ and

$$
I_{\widetilde{G}_{k}}= \begin{cases}\left(x_{i} x_{j}+y_{i} y_{j}, x_{i} y_{j}-x_{j} y_{i}, x_{h}^{2}+y_{h}^{2}: \begin{array}{c}
1 \leq i \leq j \leq \ell \\
1 \leq h \leq \ell
\end{array}\right) & \text { if } \widetilde{G}_{k}=K_{\ell} \\
\end{cases}
$$

Let $G$ be a finite graph on $[n]$. For any $S \subset[n]$ we set

$$
Q_{S}(G)=\left(\left\{x_{i}, y_{i}\right\}_{i \in S}, I_{\widetilde{G}_{1}}, \ldots, I_{\widetilde{G}_{c(S)}}\right),
$$

where $G_{1}, \ldots, G_{c(S)}$ are the connected components of $G_{[n] \backslash S}$ and

$$
I_{\widetilde{G}_{k}}= \begin{cases}\left(x_{i} x_{j}+y_{i} y_{j}, x_{i} y_{j}-x_{j} y_{i}, x_{h}^{2}+y_{h}^{2}: \begin{array}{c}
1 \leq i<j \leq \ell \\
1 \leq h \leq \ell
\end{array}\right) & \text { if } \widetilde{G}_{k}=K_{\ell} \\
\left(x_{i} x_{j}+y_{i} y_{j}, x_{r} y_{s}-x_{s} y_{r}:_{\substack{1 \leq i \leq m, m+1 \leq j \leq n \\
1 \leq r \leq s \leq m \text { or } m+1 \leq r<s \leq n}}\right) & \text { if } \widetilde{G}_{k}=K_{m, \ell-m}\end{cases}
$$

Let $G$ be a finite graph on $[n]$. For any $S \subset[n]$ we set

$$
Q_{S}(G)=\left(\left\{x_{i}, y_{i}\right\}_{i \in S}, I_{\widetilde{G}_{1}}, \ldots, I_{\tilde{G}_{c(S)}}\right),
$$

where $G_{1}, \ldots, G_{c(S)}$ are the connected components of $G_{[n] \backslash S}$ and

$$
I_{\widetilde{G}_{k}}= \begin{cases}\left(x_{i} x_{j}+y_{i} y_{j}, x_{i} y_{j}-x_{j} y_{i}, x_{h}^{2}+y_{h}^{2}: \underset{\substack{1 \leq i<j \leq \ell \\
1 \leq h \leq \ell}}{ }\right. & \text { if } \widetilde{G}_{k}=K_{\ell} \\
\left(x_{i} x_{j}+y_{i} y_{j}, x_{r} y_{s}-x_{s} y_{r}: \begin{array}{c}
1 \leq i \leq m, m+1 \leq j \leq n \\
1 \leq r \leq s \leq m \text { or } m+1 \leq r<s \leq n
\end{array}\right) & \text { if } \widetilde{G}_{k}=K_{m, \ell-m}\end{cases}
$$

Proposition (-) Let $\sqrt{-1} \notin K$. Then $Q_{S}(G)$ is a prime ideal for all $S \subset[n]$ and ht $Q_{S}(G)=|S|+n-b(S)$, where $b(S)$ is the number of bipartite connected components of $G_{[n] \backslash s}$.

Let $G$ be a finite graph on $[n]$. For any $S \subset[n]$ we set

$$
Q_{S}(G)=\left(\left\{x_{i}, y_{i}\right\}_{i \in S}, I_{\tilde{G}_{1}}, \ldots, I_{\widetilde{G}_{c(S)}}\right),
$$

where $G_{1}, \ldots, G_{c(S)}$ are the connected components of $G_{[n] \backslash S}$ and

$$
I_{\widetilde{G}_{k}}= \begin{cases}\left(x_{i} x_{j}+y_{i} y_{j}, x_{i} y_{j}-x_{j} y_{i}, x_{h}^{2}+y_{h}^{2}: \begin{array}{c}
1 \leq i<j \leq \ell \\
1 \leq h \leq \ell
\end{array}\right) & \text { if } \widetilde{G}_{k}=K_{\ell} \\
\left(x_{i} x_{j}+y_{i} y_{j}, x_{r} y_{s}-x_{s} y_{r}: \begin{array}{c}
1 \leq i \leq m, m+1 \leq j \leq n \\
1 \leq r \leq s \leq m \text { or } m+1 \leq r<s \leq n
\end{array}\right) & \text { if } \widetilde{G}_{k}=K_{m, \ell-m}\end{cases}
$$

Proposition (-) Let $\sqrt{-1} \notin K$. Then $Q_{S}(G)$ is a prime ideal for all $S \subset[n]$ and $\mathrm{ht} Q_{S}(G)=|S|+n-b(S)$, where $b(S)$ is the number of bipartite connected components of $G_{[n] \backslash s}$.

Theorem (-) Let $G$ be a graph on $[n]$ and $\sqrt{-1} \notin K$. Then

$$
L_{G}=\bigcap_{S \subset[n]} Q_{S}(G)
$$

is a redundant primary decomposition of $L_{G}$.

## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$.

## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.

## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.


## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.


## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.


We call a vertex $i \in[n]$ a bipartition point of $G$ if $G_{[n] \backslash\{i\}}$ has more bipartite connected components than $G$.

## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.


We call a vertex $i \in[n]$ a bipartition point of $G$ if $G_{[n] \backslash\{i\}}$ has more bipartite connected components than $G$.

## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.


We call a vertex $i \in[n]$ a bipartition point of $G$ if $G_{[n] \backslash\{i\}}$ has more bipartite connected components than $G$.
Let $\mathcal{M}(G)$ be the set of all sets $S \subset[n]$ such that each $i \in S$ is either a cut point or a bipartition point of the graph $G_{([n] \backslash S) \cup\{i\}}$. In particular, $\varnothing \in \mathcal{M}(G)$.

## 3. Minimal prime ideals of $L_{G}$ for $\sqrt{-1} \notin K$

Let $G$ be a graph on $[n]$. Then a vertex $i \in[n]$ is said to be a cut point of $G$ if $G_{[n] \backslash\{i\}}$ has more connected components than $G$.


We call a vertex $i \in[n]$ a bipartition point of $G$ if $G_{[n] \backslash\{i\}}$ has more bipartite connected components than $G$.
Let $\mathcal{M}(G)$ be the set of all sets $S \subset[n]$ such that each $i \in S$ is either a cut point or a bipartition point of the graph $G_{([n] \backslash S) \cup\{i\}}$. In particular, $\varnothing \in \mathcal{M}(G)$.

Theorem (-) Let $G$ be a graph on $[n], \sqrt{-1} \in K$ and $S \subset[n]$. Then $Q_{S}(G)$ is a minimal prime ideal of $L_{G}$ if and only if $S \in \mathcal{M}(G)$.

Example Let $G$ be the graph


Example Let $G$ be the graph


Then a minimal primary decomposition of $L_{G}$ is

$$
L_{G}=
$$

Example Let $G$ be the graph


Then a minimal primary decomposition of $L_{G}$ is

$$
\begin{gathered}
L_{G}=Q_{\varnothing}(G) \\
\left(x_{1} x_{2}+y_{1} y_{2}, x_{1} x_{3}+y_{1} y_{3}, x_{1} x_{4}+y_{1} y_{4}, x_{2} x_{3}+y_{2} y_{3}, x_{2} x_{4}+y_{2} y_{4}, x_{3} x_{4}+y_{3} y_{4},\right. \\
x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{4}-x_{4} y_{1}, x_{2} y_{3}-x_{3} y_{2}, x_{2} y_{4}-x_{4} y_{2}, x_{3} y_{4}-x_{4} y_{3} \\
\left.x_{1}^{2}+y_{1}^{2}, x_{2}^{2}+y_{2}^{2}, x_{3}^{2}+y_{3}^{2}, x_{4}^{2}+y_{4}^{2}\right)
\end{gathered}
$$

## Example Let $G$ be the graph



Then a minimal primary decomposition of $L_{G}$ is

$$
\begin{gathered}
L_{G}=Q_{\varnothing}(G) \cap Q_{\{1\}}(G) \\
\left(x_{1} x_{2}+y_{1} y_{2}, x_{1} x_{3}+y_{1} y_{3}, x_{1} x_{4}+y_{1} y_{4}, x_{2} x_{3}+y_{2} y_{3}, x_{2} x_{4}+y_{2} y_{4}, x_{3} x_{4}+y_{3} y_{4}\right. \\
x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{4}-x_{4} y_{1}, x_{2} y_{3}-x_{3} y_{2}, x_{2} y_{4}-x_{4} y_{2}, x_{3} y_{4}-x_{4} y_{3} \\
\left.x_{1}^{2}+y_{1}^{2}, x_{2}^{2}+y_{2}^{2}, x_{3}^{2}+y_{3}^{2}, x_{4}^{2}+y_{4}^{2}\right) \\
\cap\left(x_{1}, y_{1}, x_{2} x_{3}+y_{2} y_{3}, x_{3} x_{4}+y_{3} y_{4}, x_{2} y_{4}-x_{4} y_{2}\right)
\end{gathered}
$$

## Example Let $G$ be the graph

2


Then a minimal primary decomposition of $L_{G}$ is

$$
\begin{gathered}
L_{G}=Q_{\varnothing}(G) \cap Q_{\{1\}}(G) \cap Q_{\{2\}}(G)= \\
\left(x_{1} x_{2}+y_{1} y_{2}, x_{1} x_{3}+y_{1} y_{3}, x_{1} x_{4}+y_{1} y_{4}, x_{2} x_{3}+y_{2} y_{3}, x_{2} x_{4}+y_{2} y_{4}, x_{3} x_{4}+y_{3} y_{4},\right. \\
x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{4}-x_{4} y_{1}, x_{2} y_{3}-x_{3} y_{2}, x_{2} y_{4}-x_{4} y_{2}, x_{3} y_{4}-x_{4} y_{3}, \\
\left.x_{1}^{2}+y_{1}^{2}, x_{2}^{2}+y_{2}^{2}, x_{3}^{2}+y_{3}^{2}, x_{4}^{2}+y_{4}^{2}\right) \\
\cap\left(x_{1}, y_{1}, x_{2} x_{3}+y_{2} y_{3}, x_{3} x_{4}+y_{3} y_{4}, x_{2} y_{4}-x_{4} y_{2}\right) \\
\cap\left(x_{2}, y_{2}, x_{1} x_{3}+y_{1} y_{3}, x_{3} x_{4}+y_{3} y_{4}, x_{1} y_{4}-x_{4} y_{1}\right)
\end{gathered}
$$

## Example Let $G$ be the graph



Then a minimal primary decomposition of $L_{G}$ is

$$
\begin{gathered}
L_{G}=Q_{\varnothing}(G) \cap Q_{\{1\}}(G) \cap Q_{\{2\}}(G) \cap Q_{\{3\}}(G)= \\
\left(x_{1} x_{2}+y_{1} y_{2}, x_{1} x_{3}+y_{1} y_{3}, x_{1} x_{4}+y_{1} y_{4}, x_{2} x_{3}+y_{2} y_{3}, x_{2} x_{4}+y_{2} y_{4}, x_{3} x_{4}+y_{3} y_{4},\right. \\
x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{4}-x_{4} y_{1}, x_{2} y_{3}-x_{3} y_{2}, x_{2} y_{4}-x_{4} y_{2}, x_{3} y_{4}-x_{4} y_{3}, \\
\left.x_{1}^{2}+y_{1}^{2}, x_{2}^{2}+y_{2}^{2}, x_{3}^{2}+y_{3}^{2}, x_{4}^{2}+y_{4}^{2}\right) \\
\cap\left(x_{1}, y_{1}, x_{2} x_{3}+y_{2} y_{3}, x_{3} x_{4}+y_{3} y_{4}, x_{2} y_{4}-x_{4} y_{2}\right) \\
\cap\left(x_{2}, y_{2}, x_{1} x_{3}+y_{1} y_{3}, x_{3} x_{4}+y_{3} y_{4}, x_{1} y_{4}-x_{4} y_{1}\right) \\
\cap\left(x_{3}, y_{3}, x_{1} x_{2}+y_{1} y_{2}\right) .
\end{gathered}
$$

Corollary Let $K$ be a field such that $\operatorname{char}(K) \not \equiv 1,2 \bmod 4$ or $\operatorname{char}(K)=0$. Then the following are equivalent:

- the ideal $L_{\bar{G}}$ is prime,
- $\bar{G}$ is a disjoint union of edges and isolated vertices,
- $G$ is $(n-2)$-connected.

In this case, $L_{\bar{G}}$ is a complete intersection.

Corollary Let $K$ be a field such that $\operatorname{char}(K) \not \equiv 1,2 \bmod 4$ or $\operatorname{char}(K)=0$. Then the following are equivalent:

- the ideal $L_{\bar{G}}$ is prime,
- $\bar{G}$ is a disjoint union of edges and isolated vertices,
- $G$ is $(n-2)$-connected.

In this case, $L_{\bar{G}}$ is a complete intersection.

Corollary Let $G$ be a graph with b bipartite connected components, and let $\sqrt{-1} \notin K$. Then $L_{G}$ is unmixed if and only if $b(S)=|S|+$ bor every $\varnothing \neq S \in \mathcal{M}(G)$.

Corollary Let $K$ be a field such that $\operatorname{char}(K) \not \equiv 1,2 \bmod 4$ or $\operatorname{char}(K)=0$. Then the following are equivalent:

- the ideal $L_{\bar{G}}$ is prime,
- $\bar{G}$ is a disjoint union of edges and isolated vertices,
- $G$ is $(n-2)$-connected.

In this case, $L_{\bar{G}}$ is a complete intersection.

Corollary Let $G$ be a graph with b bipartite connected components, and let $\sqrt{-1} \notin K$. Then $L_{G}$ is unmixed if and only if $b(S)=|S|+b$ for every $\varnothing \neq S \in \mathcal{M}(G)$.

## Future works

- Which ideals $L_{G}$ are Cohen-Macaulay (or Gorenstein, or complete intersection)? (jointly with Davide Bolognini)
- Can we say something about the resolution of $L_{G}$ ?
- Can we compute $\operatorname{pd}_{T}\left(T / L_{G}\right)$ and $\operatorname{reg}\left(L_{G}\right)$ ?


## Thank you for listening!

