Hard Lefschetz Theorem for Sasakian manifolds

Antonio De Nicola

CMUC, University of Coimbra, Portugal

joint work with B. Cappelletti-Montano (Univ. Cagliari) and I. Yudin (CMUC)

Porto, 10 June 2015

Let (M^{2n+1},g) be a Riemannian manifold, η a 1-form, such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

Then, (M^{2n+1}, η, g) is a Sasakian manifold if and only if $(M^{2n+1} \times \mathbb{R}_+, \omega = d(r^2\eta), G = r^2g + dr^2)$

is a Kähler manifold.

Theorem (Lefschetz 1924, Hodge 1952)

Let (M^{2n}, ω, g) be a compact Kähler manifold. Then, for each $p \le n$ the map

$$\omega^{p} \wedge -: \Omega_{\Delta}^{n-p} (M) \to \Omega_{\Delta}^{n+p} (M)$$
$$\alpha \mapsto \omega^{p} \wedge \alpha$$

is an isomorphism.

Note that the map $\omega \wedge -$ sends harmonic forms to harmonic forms.

In a compact Sasakian manifold (M^{2n+1},η,g) one would like to define

$$\eta \wedge (d\eta)^{p} \wedge -: \Omega_{\Delta}^{n-p}(M) \to \Omega_{\Delta}^{n+p+1}(M)$$
$$\alpha \mapsto \eta \wedge (d\eta)^{p} \wedge \alpha$$

and to get isomorphisms.

PROBLEM: Neither $d\eta \wedge -$ nor $\eta \wedge d\eta \wedge -$ send harmonic forms into harmonic forms! So, a priori the above maps are not well defined.

However, the claim turns out to be true. So, what happens?

$$\alpha \in \Omega^{p,\lambda}_{\bullet}(M) \stackrel{\text{def}}{\Longrightarrow} \begin{cases} \boxed{\Delta \alpha = \lambda \alpha} \\ d\alpha = 0 \\ i_{\xi} \alpha = 0 \\ \eta \wedge \delta \alpha = 0 \end{cases}$$
$$\alpha \in \Omega^{p,\lambda}_{\bullet}(M) \stackrel{\text{def}}{\longleftrightarrow} \begin{cases} \boxed{\Delta \alpha = \lambda \alpha} \\ \delta \alpha = 0 \\ \eta \wedge \alpha = 0 \\ i_{\xi} d\alpha = 0 \end{cases}$$

By definition,

$$\Omega^{p,0}_{\bullet}(M) \subset \Omega^p_{\Delta}(M)$$

On the other hand, for $p \le n$, every harmonic *p*-form belongs to $\Omega^{p,0}_{\bullet}(M)$ since $d\alpha = 0$, $\delta\alpha = 0$, and [Tachibana]

 $i_{\xi}\alpha = 0.$

Thus,

Property

Let *M* be a compact Sasakian manifold of dimension 2n + 1. For $p \le n$,

$$\Omega^{p,0}_{\bullet}(M) = \Omega^p_{\Delta}(M) \,.$$

Moreover, $\Omega^{p,0}_{\bullet}(M) = 0.$

Property

For $p \ge n+1$, $\Omega^{p,0}_{\bullet}(M) = \Omega^{p}_{\Delta}(M)$

Moreover, $\Omega^{p,0}_{\bullet}(M) = 0.$

Some information on the spectrum of Δ

Theorem

Let M be a compact Sasakian manifold. We have the pair of inverse isomorphisms

$$\Omega^{p,4\nu}_{\bullet}(M) \xrightarrow[i_{\xi}]{\eta \wedge -} \Omega^{p+1,4(\nu-p+n)}_{\bullet}(M) . \tag{1}$$

Proposition

Let M be a compact Sasakian manifold and $\nu \neq 0$. We have the pair of isomorphisms

$$\Omega_{\bullet}^{p,4\nu}(M) \xrightarrow[\delta]{d} \Omega_{\bullet}^{p+1,4\nu}(M) , \qquad (2)$$

for any $0 \le p \le 2n$.

Putting together the two isomorphisms (??) and (??), we have

This shows that $L = (d\eta) \land -$ and its adjoint \land induce inverse isomorphisms between the spaces in the diagram.

Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let M a compact Sasakian manifold of dimension 2n + 1 and $p \le n$. Then the map

$$\Omega^{p}_{\Delta}(M) \longrightarrow \Omega^{2n+1-p}_{\Delta}(M)$$
$$\alpha \longmapsto \eta \wedge (d\eta)^{n-p} \wedge \alpha$$

is an isomorphism.

For a compact Sasakian manifold (M^{2n+1}, η, g) a naive guess would be to consider:

$$H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \alpha],$$

PROBLEM:

 α closed does NOT imply that $\eta \wedge (d\eta)^{n-p} \wedge \alpha$ is closed! SOLUTION?

First take the projection on the harmonic part

$$H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \mathcal{H}\alpha]$$

NEW PROBLEM: $\mathcal{H}\alpha$ could in general depend on the metric!

Theorem

Let (M^{2n+1}, η, g) be a compact Sasakian manifold and $p \le n$. Let $\mathcal{H}: \Omega^p(M) \to \Omega^p_{\Delta}(M)$ be the projection on the harmonic part. Then the map

Lef_p:
$$H^p(M) \longrightarrow H^{2n+1-p}(M)$$

[α] \longmapsto [$\eta \land (d\eta)^{n-p} \land \mathcal{H}\alpha$],

is an isomorphism. Furthermore, it does not depend on the choice of the Sasakian metric g on (M^{2n+1}, η) . Furthermore, it does not depend on the choice of the Sasakian metric g on (M^{2n+1}, η) .

Let (M^{2n+1}, η) be a compact contact manifold. We can define a relation between $H^{p}(M)$ and $H^{2n+1-p}(M)$:

$$\mathcal{R}_{Lef_p} = \left\{ \left(\left[\beta \right], \left[\eta \wedge (d\eta)^{n-p} \wedge \beta \right] \right) \middle| \begin{array}{l} \beta \in \Omega^p(M), \quad d\beta = 0, \\ i_{\xi}\beta = 0, \quad (d\eta)^{n-p+1} \wedge \beta = 0 \end{array} \right\}$$

Now, if (M, η) admits a compatible Sasakian metric, then \mathcal{R}_{Lef_p} is the graph of the isomorphism $Lef_p : H^p(M) \longrightarrow H^{2n+1-p}(M)$.

Definition

We say that (M, η) is a *Lefschetz contact manifold* if for every $p \leq n$ the relation \mathcal{R}_{Lef_p} is the graph of an isomorphism between $H^p(M)$ and $H^{2n+1-p}(M)$.

First applications

Theorem

Let (M^{2n+1}, η, g) be a compact Lefschetz contact manifold. Then for each $0 \le p \le n$ there exists a nondegenerate bilinear form

 $B: H^p(M) \times H^p(M) \longrightarrow \mathbb{R}$

defined by

$$B(x,x') = \int_M Lef_p(x) \sim x'.$$

Moreover, the bilinear form B is skew-symmetric for p odd and symmetric for p even.

Corollary

Let (M^{2n+1}, η) be a compact Lefschetz contact manifold. Then the odd Betti numbers b_{2k+1} are even for $0 \le 2k + 1 \le n$. In 2014, jointly with J.C. Marrero we found examples of compact non-Lefschetz K-contact manifolds in dim. 5 and 7, with b_{2k+1} even for 0 ≤ 2k + 1 ≤ n.

• Recently, jointly with J.C. Marrero we found an example of a compact non-Sasakian Lefschetz contact manifold in dim. 5.

References

🔋 S. Tachibana,

On harmonic tensors in compact Sasakian spaces. *Tôhoku Math. J.* **17** (1965), 271-284.

- B. Cappelletti-Montano, A.D.N., I. Yudin, Hard Lefschtez Theorem for Sasakian manifolds. Journal of Differential Geometry **101** (2015), 47–66.
- B. Cappelletti-Montano, A.D.N., J.C. Marrero, I. Yudin, Examples of compact *K*-contact manifolds with no Sasakian metric. *Int. J. Geom. Methods Mod. Phys.* **11**(2014), 1460028.

Y. Lin,

Lefschetz contact manifolds and odd dimensional symplectic geometry. *arXiv:1311.1431*.