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Finsler Geometry

Classical Finsler Geometry:

(M, gR) Riemannian: replace Euclidean scalar products by
(positively homogeneous) norms at each p ∈ M
Positively homogeneous: ‖ λv ‖= |λ| ‖ v ‖ for λ ≥ 0

Motivation: norms more general than Euclidean scalar
products (parallelogram identity)

Application: Lagrangians, navigation, fastest trajectories to go
up and down a hill...
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Two types of Lorentz-Finsler links

Link 1 with Lorentzian Geometry:

(M, gL) spacetime: replace Lorentzian scalar products by
“Lorentz-norms”

Disputable notion of “Lorentz-norms”

Potential applications...

1 Geometrize electromagnetism in Relativity: Randers ’41,
Ingarden ’57, Miron ’04; Lichnerowicz ‘55 (with Thiry ’47)

2 Finsler spacetime: Beem, ’70; Perlick ’06, Laemmerzahl,
Perlick, Hasse ’12; Aazami, Javaloyes’14...

3 Physical Lagrangian viewpoint (modified gravity,
quantization):
Kouretsis, Stathakopoulos, Stavrinos ’09, Vacaru ’12; Pfeifer,
Wohlfarth ’11; Kostelecky ’11, Russell’12

We will NOT follow this link
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Two types of Lorentz-Finsler links

Link 2: pure geometric correpondence between

A class of spacetimes ←→ A class of Finsler manifols
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Understanding the link 2

1 Product spacetime (R×M, gL = −dt2 + g0), g0 Riemannian:
Finsler F (v) =

√
g0(v , v), v ∈ TM.

Lightlike directions ←→ F-unit vectors

2 Standard static spacetimes (R×M,−Λdt2 + g0), Λ > 0 (on
M): Finsler F (v) =

√
g0(v , v)/Λ.

Lightlike directions ←→ F-unit vectors

3 Product spacetime with stationary cross term
(R×M, gL = −dt2 + ω ⊗ dt + dt ⊗ ω + g0), ω: 1 form.
Finsler (Randers): F±(v) =

√
g0(v , v) + ω(v)2 ± ω(v).

Future (resp. past)-directed lightlike directions
←→ F+ (resp. F−)-unit vectors

4 Standard stationary (strictly)
(R×M, gL = −Λdt2 + ω ⊗ dt + dt ⊗ ω + g0), Λ > 0.
Finsler (Randers): F± for gL/Λ.
Future (resp. past)-directed lightlike directions
←→ F+ (resp. F−)-unit vectors
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Understanding the link 2

Step further to be developed here

Standard space-transverse Killing (SSTK):
(R×M, gL = −Λdt2 + ω ⊗ dt + dt ⊗ ω + g0),
only under Λ+ ‖ ω ‖2> 0 (Lorentzian restriction).
Assign “wind-Finsler structures” Σ± so that
Future (resp.) past-directed lightlike directions
←→ Σ+ (resp. Σ−)-unit vectors
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Stationary to Randers

Previous results on the standard stationary case
(Stationary spacetimes vs Randers spaces)

Caponio, Javaloyes, Masiello Math, Ann. ’11 (arxiv:0702323)
 Fermat’s principle

Gibbons, Herdeiro, Warnick, Werner PRD’09 (arxiv:08112877)
 links between curvatures

Very precise relations:

1 Causal structure ←→ Finslerian distances
(Caponio, Javaloyes, —, Rev. Mat. Iberoam, ’11)

2 Visibility and gravitational lensing ←→
convexity of Finsler hypersurfaces
(Caponio, Germinario, —, J. Geom. Anal.’15)

3 Causal boundaries ←→ Cauchy, Gromov and Busemann
boundaries in Finslerian (and Riemannian) settings
(Flores, Herrera, — Memoirs AMS’13).

And so on...
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Summing up: precedents

Conformal structure of a class of spacetimes:
(standard) stationary ones
←→ Geometry of a class of Finsler manifolds:
Randers spaces

Applicability:

→ new geometric elements and results for Randers spaces can
be obtained from the spacetime viewpoint
—some of them extensible to general Finsler manifolds

← Finsler elements allow a precise description of spacetime
counterparts

Broader relation

Lorentzian Geometry ←→ Finsler Geometry

(including the Riemannian one!)
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Summing up: aim

A step further: equivalence between

Conformal structure of a class of spacetimes:
(standard) space-transverse Killing (SSTK) ones ←→
Geometry of a class of generalized Finsler manifolds:
Wind Riemannian/ Wind Finslerian structures

Applicability:

→ new geometric elements and results for wind Riemannian
structures can be obtained from the spacetime viewpoint
—some of them extensible to general wind Finsler structures

← (generalized) Finsler elements allow a precise description of
spacetime counterparts.
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Summing up: aim

Remarkably:

Wind Riemannian structures include some “singular Finsler
geometries” commonly used (Kropina metrics), which are
described by “non-singular” spacetimes.

Broader relation:
Lorentzian Geometry ←→ Extended Finsler Geometry
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Motivation: navigation and spacetimes

Non-relativistic motivation
Why to generalize Finsler manifolds?

Note: in the literature “Finsler” is commonly used for
non-standard notions of Finsler manifolds

A simple example on the necessity of our generalization:
windy navigation
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Motivation: navigation and spacetimes

Classical Zermelo’s navigation: plane/Zeppelin in the air or ship on
the sea with a (mild) wind.
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Motivation: navigation and spacetimes

The possible maximum velocities at each point and direction
(linearized trips of unit time) determine a (topological) smooth
sphere Σp at each tangent space TpM, p ∈ M
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Motivation: navigation and spacetimes

Regarding the spheres Σp as the indicatrices (unit spheres) for
(non-reversible) norms, a Finsler metric Z (Zermelo) is obtained
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Motivation: navigation and spacetimes

Note:

The geodesics for Z are the curves that (locally) minimize the
time of the trip between pairs of points

Zermelo metric is, in fact, a Randers metric obtained by:

1 taking a Riemannian metric gR and
2 shifting the centers of the unit balls by means of a vector field

W (wind) ... with gR(W ,W ) < 1
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Motivation: navigation and spacetimes

What about if the wind is not mild? (gR(W ,W ) ≥ 1)

The plane/ship is not able to move in some forbidden
directions:
some regions become unreachable —or must be reached by
going around
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Motivation: navigation and spacetimes

In the critical case gR(W ,W ) = 1 one obtains a Kropina metric,
which is singular as a Finsler metric
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Motivation: navigation and spacetimes

For strong wind gR(W ,W ) > 1,

Vector 0 does not belong to the “unit ball”
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Motivation: navigation and spacetimes

From the Finsler viewpoint, one has two “conic Finsler
pseudometric”:
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Motivation: navigation and spacetimes

one properly Finslerian (“definite positive”, convex indicatrix)
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Motivation: navigation and spacetimes

the other Lorentzian (concave).
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Motivation: navigation and spacetimes

This seems complicated! ...but, from the viewpoint of the set Σ of
the indicatrices, nothing singular happens.
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Motivation: navigation and spacetimes

The spacetime viewpoint:

Add the time as a dimension more
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Motivation: navigation and spacetimes

The spacetime viewpoint:

Add the time as a dimension more
Putting a “unit of time” to all the indicatrices... one has a
cone structure
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Motivation: navigation and spacetimes

1 This yields a Lorentz metric (in fact, a conformal class, as
Lorentz metrics are conformal iff they share the lightlike
cones)

The metric does not change with t (∂t is Killing) (Notice that
the wind is not assumed to vary with time, i.e., the situation
is “stationary”)

2 One can visualize the reachable regions... as well as those
regions that must be abandoned necessarily.
This is completely analogous to the situations for causal
futures, black holes and all the relativists’ fauna.
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Motivation: navigation and spacetimes

The moral is then:

1 One has powerful tools to describe Zermelo’s navigation by
using spacetimes, in a smooth non-singular way, including
Kropina metrics!

2 But this will be useful to describe spacetimes too: the
“conformal initial data” (t = 0) that determines the
Lorentzian metric are the introduced “wind Finsler” elements.
That is, the conformal part of the so-called Killing initial data
for Einstein equations can be always represented by “wind
Finsler” elements!
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Parts of the remainder of the talk

1 Wind Finslerian structures

2 SSTK spacetimes

3 Mild and critical wind: Randers-Kropina (Causal K )

4 Arbitrary wind and wind Riemannian structures
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Finsler metrics

Definition

Finsler metric F : TM → R:
— positively homog. strongly convex norm at each p ∈ M
— varying with p continuously and smooth away 0.

Strongly convex: the second fundamental form of the unit
sphere is positive definite
—if replaced by concaveness, Lorentz-Finsler
(but necessarily defined only in a conic domain of TM)

Positively homogeneous: F (λv) = λF (v) for λ > 0

Reversed Finsler metric: F rev(v) := F (−v)
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Finsler metrics

Distance and balls:

Taking infimum of lengths of curves connecting two points, each
Finsler metric induces a generalized distance dF . This means:

1 all the axioms of a distance hold but symmetry

2 for sequences {xn}: dF (x , xn)→ 0 ⇐⇒ dF (xn, x)→ 0

Centered at any point x0, there are:

forward balls: dF (x0, x) < r

backward balls: dF (x , x0) < r

They may differ but each one generate the manifold topology.
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Finsler metrics

Relevant examples, for Riemannian gR , 1-forms ω, β:

Randers metric: R =
√
gR + ω2 + ω (=

√
h + ω, ‖ ω ‖h< 1)

Kropina metric: F = gR/β
—Defined in the conic domain (open half plane)
β(v) > 0
—It will be a “limit case” of Randers
– Beware! One can define formally dF but
typically dF (x , x) =∞.
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Notion of wind Finslerian structure

Definition

For a vector space V :
—Wind Minkowski structure: Compact strongly convex smooth
hypersurface ΣV embedded in V
—Unit ball B Bounded open domain B enclosed by ΣV

—Conic domain A : open region determined by B from 0.

For a manifold M:
— Wind Finsler structure: smooth hypersurface Σ ↪→ TM:
Σp = Σ ∩ TpM is wind Minkowski in TpM (+transversality)
— Ball at p: Bp ⊂ TpM ( Ap) Domain A := ∪pAp

— Region of strong wind: Ml := {p ∈ M : 0 /∈ B̄p}
— Properly conic domain: Al := Σ ∩ π−1(Ml)
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Notion of wind Finslerian structure

Proposition

Any Σ determines two conic pseudo-Finsler metrics:

(i) F : A→ [0,+∞) conic Finsler metric on all M,

(ii) Fl : Al → [0,+∞) Fl is a Lorentz-Finsler metric in the region
Ml of strong wind

Moreover, F < Fl on Al , F and Fl can be extended continuously,
and both extensions coincide on the boundary of Al
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Notion of wind Finslerian structure

Proposition

Any Σ is the displacement of the indicatrix of Finsler metric F0

along some vector field W :

F0

(
v

Z (v)
−W

)
= 1,

(v ∈ Σ⇐⇒ Z (v) is a solution)
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Wind Riemann structures

Definition

A wind Riemann structure is a wind Finslerian structure Σ ⊂ TM
such that, alternatively:

Σ is the translation of the indicatrix of a Riemannian norm
F0 =

√
gR along some vector field W .

Σp is an ellipsoid ∀p ∈ M.
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Wind Riemannian structures

Proposition

Let (M,Σ) be a wind Riemann structure. Then, for some h
semi-Riemannian and β 1-form

(i) 0p ∈ Bp ⇒ Σp indicatrix for Randers:
F (v) =

√
h(v , v) + β(v)

(h Riemann on Ap = TpM, ‖β‖h < 1),

(ii) 0p ∈ Σp ⇒ Σp indicatrix for Kropina:
F (v) = −h(v , v)/2β(v) (on Ap = {v ∈ TpM : −β(v) > 0}),

(iii) 0p 6∈ B̄p ⇒ Σp indicatrix for two pseudo-Randers type:
F (v) = −

√
h(v , v)− β(v),Fl(v) =

√
h(v , v)− β(v)

Ap = {v ∈ TpM : h(v , v) > 0 and − β(v) > 0}.
−h Lorentz, β(v)2 > α(v , v), v ∈ TpM\0.

M. Sánchez Wind Finslerian structures



Wind Riemannian structures

Proposition

Let (M,Σ) be a wind Riemann structure. Then, for some h
semi-Riemannian and β 1-form

(i) 0p ∈ Bp ⇒ Σp indicatrix for Randers:
F (v) =

√
h(v , v) + β(v)

(h Riemann on Ap = TpM, ‖β‖h < 1),

(ii) 0p ∈ Σp ⇒ Σp indicatrix for Kropina:
F (v) = −h(v , v)/2β(v) (on Ap = {v ∈ TpM : −β(v) > 0}),

(iii) 0p 6∈ B̄p ⇒ Σp indicatrix for two pseudo-Randers type:
F (v) = −

√
h(v , v)− β(v),Fl(v) =

√
h(v , v)− β(v)

Ap = {v ∈ TpM : h(v , v) > 0 and − β(v) > 0}.
−h Lorentz, β(v)2 > α(v , v), v ∈ TpM\0.

M. Sánchez Wind Finslerian structures



Wind Riemannian structures

Proposition

Let (M,Σ) be a wind Riemann structure. Then, for some h
semi-Riemannian and β 1-form

(i) 0p ∈ Bp ⇒ Σp indicatrix for Randers:
F (v) =

√
h(v , v) + β(v)

(h Riemann on Ap = TpM, ‖β‖h < 1),

(ii) 0p ∈ Σp ⇒ Σp indicatrix for Kropina:
F (v) = −h(v , v)/2β(v) (on Ap = {v ∈ TpM : −β(v) > 0}),

(iii) 0p 6∈ B̄p ⇒ Σp indicatrix for two pseudo-Randers type:
F (v) = −

√
h(v , v)− β(v),Fl(v) =

√
h(v , v)− β(v)

Ap = {v ∈ TpM : h(v , v) > 0 and − β(v) > 0}.
−h Lorentz, β(v)2 > α(v , v), v ∈ TpM\0.

M. Sánchez Wind Finslerian structures



Wind Riemannian structures

Remark.

The elements h, β cannot be chosen to match continuously in
the Kropina region  complicated viewpoint

However, this is possible when 0 ∈ B̄p, ∀p ∈ M
 “Randers-Kropina” metric appears:

lengths, distances, geodesics formally definible as a
limit of the standard Finslerian case...
(but with striking differences!)
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Parts of the talk

1 Wind Finslerian structures

2 SSTK spacetimes

3 Mild and critical Wind: Randers-Kropina (Causal K )

4 Arbitrary wind and wind Riemannian structures

M. Sánchez Wind Finslerian structures



Notion of SSTK

A spacetime (R×M, g) is standard with a space-transverse Killing
vector field (SSTK) when

g = −(Λ ◦ π)dt2 + π∗ω ⊗ dt + dt ⊗ π∗ω + π∗g0,

(necessarily Λ > −‖ω‖2
0 ) π : R×M → M projection

∂t Killing and


timelike Λ > 0
lightlike Λ = 0
spacelike Λ < 0

The projection t : R×M → R temporal function
[for v causal (timelike or lightlike), dt(v) > 0 defines the future
direction]
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Notion of SSTK
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Wind Riemannian structure for a SSTK

The set of all the future-pointing lightlike directions determines:
Σ = {v ∈ TM : (1, v) is (future-p.) lightlike in T (R×M)}

Proposition

Σ is a wind Riemannian structure
—the Fermat structure of the conformal class of the SSTK

Proof. (1, v) lightlike iff −Λ + 2ω(v) + g0(v , v) = 0,
—pointwise ellipsoid by the Lorentzian condition Λ > −‖ω‖2

0. �

Remark: analogously for past: Σ̃ = −Σ
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Interpretation of F and Fl

Region Ml ≡ {Λ < 0} (∂t spacelike)
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Interpretation of F and Fl

Explicit formulas:

F (v) = g0(v ,v)

−ω(v)+
√

Λg0(v ,v)+ω(v)2
, ∀v ∈ A

Fl(v) = − g0(v ,v)

ω(v)+
√

Λg0(v ,v)+ω(v)2
, ∀v ∈ Al ,

Interpretation of the metric in the root:

h(v , v) = Λg0(v , v) + ω(v)2
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Interpretation of F and Fl

Interpretation of the metric in the root:

h(v , v) = Λg0(v , v) + ω(v)2

Remark:

h/Λ2 (= (F − Fl)
2/4) conformally invariant, intrinsic

h well defined on all M

Proposition

Let p⊥R : T (R×MΛ6=0)→ T (R×MΛ6=0) the natural projection on
the bundle ∂⊥t g-orthogonal to ∂t .

h(v , v) =−Λg(p⊥R(0, v), p⊥R(0, v)) ∀v ∈ TxM, x ∈ MΛ6=0
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Interpretation of F and Fl

Summing up:
−h/Λ is the metric for the projection on K⊥ (= ∂⊥t )
up to Λ, which allows its extension to all M

h


Riemannian if Λ > 0
Lorentz with index n − 1 if Λ < 0
Degenerate if Λ = 0

M. Sánchez Wind Finslerian structures



Parts of the talk

1 Wind Finslerian structures

2 SSTK spacetimes

3 Mild and critical Wind: Randers-Kropina (Causal K)

4 Arbitrary wind and wind Riemannian structures

M. Sánchez Wind Finslerian structures



Causal K

Case

K = ∂t


Causal (timelike or lightlike) Λ ≥ 0
Non-strong wind (mild or critical) gR(W ,W ) ≤ 1
Randers-Kropina metric F

dF : F -separation , formal distance but POSSIBLY:

Non- symmetric

dF (x , x) > 0

dF (x , y) = +∞ (even for x = y)
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Characterization of chronology

Description of chronology in terms of dF -balls

Proposition

For any SSTK spacetime (R×M, g) with causal K:

(t0, x0)� (t1, x1) ⇔ dF (x0, x1) < t1 − t0

I+(t0, x0) = {(t, y) : dF (x0, y) < t − t0},
I−(t0, x0) = {(t, y) : dF (y , x0) < t0 − t}.
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Continuity of dF K

Properties for dF from non-trivial properties of limits of lightlike
geodesics

Proposition

For any Randers-Kropina metric F on M:

dF : M ×M → [0,∞] is continuous away from the diagonal

D = {(x , x) : x ∈ M} ⊂ M ×M.
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Full characterization of causality

Main theorem:
For any SSTK (R×M, g) (necessarily stably causal) with causal K

Causal continuity (I± vary continuously) holds always

Causal simplicity (closed J+(p), J−(p)) equivalent to any of:

1 (M,F ) is convex: x0, x1 ∈ M with dF (x0, x1) <∞ connectable
by minimizing geodesic.

2 J+(p) is closed ∀p ∈ R×M.
3 J−(p) is closed ∀p ∈ R×M.
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Full characterization of causality

Global hyperbolicity (J+(p) ∩ J−(q) compact) equivalent to
All B̄+

F (x0, r1) ∩ B̄−F (x1, r2) compact

The slices St = {(t, x) : x ∈ R×M} spacelike Cauchy
hypersurfaces (crossed exactly once by any inextendible causal
curve) equivalent to any of:

1 Closures B̄+
F (x , r), B̄−

F (x , r) compact
2 F forward and backward geodesically complete. (i.e. all

geodesics extendible to +∞ and −∞)
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Further consequences for dF

Straightforward consequence: Hopf-Rinow type theorem

Corollary

For any Randers-Kropina metric F on a manifold M:

Forward geodesic completeness of F
⇐⇒ compactness of B̄+(x , r) (forward closed balls)

=⇒ compactness of B̄+(x1, r1) ∩ B̄−(x2, r2)

=⇒ convexity of (M,F )
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Balls and geodesics for wind Finsler

No “distance” dF for wind Riemannian

 redefinitions of balls and geodesics for any wind Finsler
–simplify here always by using “wind curves” (w.c.) with
velocity in or inside the indicatrices

Wind balls:

B+
Σ (x0, r) = {x ∈ M | ∃ γ w. c. : `F (γ) < r < `Fl

(γ)},
B−Σ (x0, r) = {x ∈ M | ∃ γ w. c. : `F (γ) < r < `Fl

(γ)}.

Wind c-balls:

B̂+
Σ (x0, r) = {x ∈ M | ∃ γ w. c. : `F (γ) ≤ r ≤ `Fl

(γ)},
B̂−Σ (x0, r) = {x ∈ M | ∃ γ w. c. : `F (γ) ≤ r ≤ `Fl

(γ)}.
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(γ)}.
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Balls and geodesics for wind Finsler

Closed balls: B̄+
Σ (x0, r), B̄−Σ (x0, r)

B+
Σ (x0, r) ⊂ B̂+

Σ (x0, r) ⊂ B̄+
Σ (x0, r)
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Balls and geodesics for wind Finsler

Extremizing (wind) pregeodesic: given x1 ∈ B̂+
Σ (x0, r) \ B+

Σ (x0, r),
w. c. curve γ: `F (γ) ≤ r ≤ `Fl

(γ)

Pregeodesic: locally extremizing pregeodesic
Farametrization by arc length (geodesic):
γ(t + ε) ∈ B̂+

Σ (γ(t), ε) \ B+
Σ (γ(t), ε)

Proposition

Let γ geodesic parametrized by arc length for a wind Finslerian
structure (M,Σ): γ̇(t) ∈ A (open)
Then γ is a (standard) unit geodesic for either F or Fl .
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Characterization of causal relations in SSTK

Proposition

Let (R×M, g) a SSTK:

I+(t0, x0) = ∪s>0 {t0 + s} × B+
Σ (x0, s),

J+(t0, x0) = ∪s≥0 {t0 + s} × B̂+
Σ (x0, s)

Moreover:
(t1, x1) ∈ J+(t0, x0) \ I+(t0, x0)⇐⇒

∃γ extremizing geodesic from x0 to x1 :

{
`F (γ) = t1 − t0

`Fl
(γ) = t1 − t0
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Consequences for wind Riemannian

Characterization of wind geodesics, solution of navigation
(extending Bao, Robles, Shen ’04) and “normal” neighborhoods

Theorem

Let (M,Σ) be a wind Riemannian structure. A wind curve x in Ml

is a wind geodesic ⇐⇒ x is

a (standard) geodesic of F , Fl or

a lightlike geodesic of −h (Lorentzian metric).

Moreover, given x0 ∈ M, ∃ε > 0:

the c-balls B̂±(x , r) are compact, and

the F (resp. Fl) geodesics parametrized by the arc length
departing from x0 are defined on all [0, r ] and are global
minima (resp. local maxima).
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Full characterization of causality

Main theorem: for any SSTK (R×M, g)

Stable causality (existence of a temporal function) holds
always

Causal continuity equivalent to
x1 ∈ B̄+

Σ (x0, r) ⇐⇒ x0 ∈ B̄−Σ (x1, r).

Causal simplicity equivalent to:
w-convexity : the c-balls are closed

M. Sánchez Wind Finslerian structures



Full characterization of causality

Main theorem: for any SSTK (R×M, g)

Stable causality (existence of a temporal function) holds
always

Causal continuity equivalent to
x1 ∈ B̄+

Σ (x0, r) ⇐⇒ x0 ∈ B̄−Σ (x1, r).

Causal simplicity equivalent to:
w-convexity : the c-balls are closed

M. Sánchez Wind Finslerian structures



Full characterization of causality

Main theorem: for any SSTK (R×M, g)

Stable causality (existence of a temporal function) holds
always

Causal continuity equivalent to
x1 ∈ B̄+

Σ (x0, r) ⇐⇒ x0 ∈ B̄−Σ (x1, r).

Causal simplicity equivalent to:
w-convexity : the c-balls are closed

M. Sánchez Wind Finslerian structures



Full characterization of causality

Global hyperbolicity equivalent to any of

1 All intersections B̄+
Σ (x0, r1) ∩ B̄−

Σ (x1, r2) compact

2 All intersections B̂+
Σ (x0, r1) ∩ B̂−

Σ (x1, r2) compact

The slices St = {(t, x) : x ∈ R×M} spacelike Cauchy
hypersurfaces equivalent to any of:

1 All closed B̄+
Σ (x , r), B̄−

Σ (x , r) compact

2 All c-balls B̂+
Σ (x , r), B̂−

Σ (x , r) compact
3 Σ forward and backward geodesically complete .
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Further applications

1 Hopf-Rinow properties:
generalizing the Randers-Kropina case

2 Accessible regions for Σ (including planes and ships) and
K -horizons:
determined by −h (in Ml and its “Newtonian limit” in Λ = 0)
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Further applications

3 Cauchy developments:
fully characterization in terms of the “wind-distance” to a
subset
 properties of smoothness of the distance to a subset

Riemannian case: horizons in a product spacetime (Chrusciel,
Fu, Galloway and Howard ’02)
Finslerian case (connections with Hamilton-Jacobi, Li,
Nirenberg ’05): horizons in a standard stationary spacetime
(Caponio, Javaloyes, — ’11)
Randers-Kropina and properly Wind Finsler: further results,
including interpretations and generalizations of results for
trapped surfaces (Mars and Reiris ’12).
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Further applications

4 Fermat principle:
holds for the arrival time to integral curves of K = ∂t even
when they are spacelike!

5 Existence of closed geodesics
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Muito obrigado pela vossa atenção

Thank you very much for your attention

Muchas gracias por vuestra atención
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