Defects, Orbifolds and Spin

Ingo Runkel Hamburg University

joint with S. Novak

Outline

Idea:

Do the state-sum construction of an n-dimensional topological field theory inside an n-dimensional quantum field theory with defects.

Here: Restrict to 2d theories (only dimension with worked-out examples)

Results:

- Orbifolds from defects
- Spin from defects

Plan:

- "… state-sum construction …"
- "… QFT with defects."
- "… inside …"
- apply to 2d CFT

State-sum construction of 2d topological field theories

Bachas, Petropoulos '92 Fukuma, Hosono, Kawai '92

Data: fin. dim. k-vector space A , $c \in A \otimes A$, $t : A \otimes A \otimes A \rightarrow k$.

More general: take A, c, t in a symmetric monoidal category

- Σ : oriented surface for brevity: surfaces with empty boundary only To evaluate 2d state sum TFT on Σ ,
 - 1. Pick a triangulation of Σ . Equip with a *marking*: marked side for each triangle & orientation for each edge.

2. Use combinatorial data to build a linear map, e.g.

Get $Z(\Sigma) = t^{\otimes (\#triang)} \circ (permutation) \circ c^{\otimes (\#edges)}$

... state-sum construction

Independence of choice of marked triangulation from independence under *local moves*:

Theorem: For A, c, t the following are equivalent

- 1. Invariance under local moves holds, c is non-deg., μ has a unit
- 2. A is a Δ -separable symmetric Frobenius algebra

... state-sum construction

Theorem: For A, c, t the following are equivalent

- 1. Invariance under local moves holds, c is non-deg., μ has a unit
- 2. A is a Δ -separable symmetric Frobenius algebra

Here:

- Frobenius: $b: A \otimes A \rightarrow k$ invariant non-deg. pairing (dual to c)
- symmetric: b is symmetric
- Δ -separable: $\mu \circ c = 1$ (implies that *A*-mod is semi-simple)

State-sum construction: spin case

Novak, IR '14

... state-sum construction: spin case

Data: fin.dim. k-(super)-vector space A , $c_0, c_1 \in A \otimes A$, $t : A \otimes A \otimes A \rightarrow k$.

Choices: marked triang. of Σ , edge indices for spin structure on Σ

Get
$$Z(\Sigma) = t^{\otimes (\#triang)} \circ ((super)permutation) \circ \bigotimes_{edges e} c_{s(e)}$$

Define $\mu =$ $t \land A \otimes A \to A$.

Theorem: For A, t, c_0, c_1 the following are equivalent

- 1. Independance under local changes (marking & triangulation) , c_0, c_1 are non-degenerate, μ has a unit
- 2. A is a Δ -separable Frobenius algebra whose Nakayama automorphism N satisfies $N^2 = id$

... state-sum construction: spin case

Theorem: For A, t, c_0, c_1 the following are equivalent

- 1. Independance . . .
- 2. A is a Δ -separable Frobenius algebra whose Nakayama automorphism N satisfies $N^2 = id$.

Nakayama automorphism:

 $N: A \rightarrow A$ unique s.t. $b \circ (id_A \otimes N) = b \circ \sigma_{A,A}$

b: non-degenerate invariant pairing on A $\sigma_{A,A}$: tensor flip in (super) vector sp.

Comments:

- A is symmetric iff N = id
- "less conditions on A traded for more geometric structure"
- generalises to r-spin, where $N^r = id$ Novak '15

QFT with defects

Category of bordisms with topological, 1-dimensional defects:

- ► fix a set of defect conditions D
- objects: disjoint unions of circles and marked points with collars
- morphisms: { oriented compact surfaces with metric, parametrised boundaries and embedded 1-dimensional sub-manifolds labelled by D }/
 - { isometries and isotopies of defect lines rel boundary }

$$(a_{i+1}) \rightarrow (a_{i+1}) \rightarrow (a_$$

A QFT with defects Q is a symmetric monoidal functor from the category of bordisms with defects to a suitable category of topological vector spaces.

QFT with defects

Category of bordisms with topological, 1-dimensional defects:

- ► fix a set of defect conditions D
- objects: disjoint unions of circles and marked points with collars
- morphisms: { oriented compact surfaces with metric, parametrised boundaries and embedded 1-dimensional sub-manifolds labelled by D }/
 - { isometries and isotopies of defect lines rel boundary }

$$\begin{array}{c} (a_{i},-) \rightarrow & & \\ (a_{i},+) \rightarrow & & \\ (b_{i},-) \rightarrow & & \\ \end{array} \begin{array}{c} c & \\ \end{array} \begin{array}{c} c & \\ c & \\ c & \\ c & \\ \end{array} \begin{array}{c} c & \\ c & \\ c & \\ \end{array} \end{array}$$

A QFT with defects Q is a symmetric monoidal functor from the category of bordisms with defects to a suitable category of topological vector spaces.

Problem: Currently no non-topological examples known.

There is one example (without defects) if one adds "spin": free fermions (Tener '14).

... QFT with defects

Vafa '87, Huang, Kong '06

Way out: Different approach used in *conformal* quantum field theory, similar in spirit but more technical

(restrict to genus 0,1, glue spheres along local coordinates of punctures) .

Fröhlich, Fuchs, Schweigert, IR '06 Fjelstad, Fuchs, Stigner '12

Benefit: Many examples from rational conformal field theory

State sum inside a QFT with defects: Orbifolds

Need defect junctions:

state space *H* assigned to circle with marked points

junction: $\psi \in \mathcal{H}$

Topological junction: invariant under isotopies moving boundary component labelled by ψ

Data: defect $A \in D$, topological junctions c, t, subject to conditions as in state sum construction:

- invariance under change of marking
- invariance under Pachner moves

Get: new theory Q_{orb} from old QFT Q with defects by setting

 $Q_{\rm orb}(\Sigma) := Q\left(\begin{array}{c} \Sigma \text{ with defect network} \\ {\rm constructed from } A, c, t \end{array}\right)$

= (

... orbifolds

Davydov, Kong, IR '11

Observation: A QFT Q with defect set D gives rise to a *rigid tensor* category of defect conditions $\mathcal{D}(Q)$

- \blacktriangleright objects: lists of defect conditions, i.e. of elements of D
- morphisms: topological junction fields
- tensor product: concatenation of lists

As in state sum construction on finds:

If A is a Δ -separable symmetric Frobenius algebra in $\mathcal{D}(Q)$, the resulting c, t satisfy the required invariance conditions.

Why is this called orbifold?

A faithful tensor functor $\iota : G \to \mathcal{D}(Q)$ from a group (with only unit morphisms) to $\mathcal{D}(Q)$ describes a *G*-symmetry of *Q*.

Suppose $\mathcal{D}(Q)$ has direct sums. Set $A = \bigoplus_{g \in G} \iota(g)$. One checks: A is a Δ -separable Frobenius algebra.

If A is symmetric, one can construct the orbifold theory Q_{orb} .

Example: Evaluate Q_{orb} on a torus.

Application to rational CFT

Fröhlich, Fuchs, Schweigert, IR '09

Theorem:

Let V be a rational vertex operator algebra. Every CFT C whose left and right symmetry contains V and which has a unique vacuum state can be written as an orbifold (not necessarily of group-type) of any other such CFT D :

There exists Δ -separable symmetric Frobenius algebra in $\mathcal{D}(D)$ such that $C = D_{orb}$.

State sum inside a QFT with defects: Spin

Novak, IR (in prep.)

Result:

Let Q be a QFT with defects. A Δ -separable Frobenius algebra in $\mathcal{D}(Q)$ with $N^2 = id$ produces junctions c_0, c_1, t satisfying the required invariance conditions s.t.

Also in spin case: explicit examples from rational CFT.

Summary

Carry out state sum construction of

- ► 2d oriented TFT
- ► 2d spin TFT

inside a QFT with defects to obtain

- (generalised) orbifold QFTs
- ► spin QFTs

