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Rules to compute probabilities

Discrete case – classical probability definition – the probability that an

element X randomly chosen from a finite set Ω belongs to the subset

A ⊆ Ω is given by

P(X ∈ A|X ∈ Ω) =
#A

#Ω
, A ⊂ Ω, #Ω < ∞.

Continuous case – geometrical probability definition – the probability that
a point X randomly chosen in a region Ω lies in a subregion B ⊆ Ω is
given by

P(X ∈ B|X ∈ Ω) =
µ (B)

µ (Ω)
, B ⊆ Ω, µ (Ω) < ∞,

where µ denotes some measure of the given regions (area, volume, ...)
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Nevertheless, in the use of these definitions it is assumed

µ (Ω) < ∞ (#Ω < ∞) a finite measure of the universe; and

Equipossibility/Equiprobability (i.e., equal probability of the basic
events).

Symmetry;

Principle of insufficient reason of Bernoulli and Laplace – if we
have no reason to believe that one way will occur preferentially compared
to another, then the events will occur equally likely.
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Isaac Newton (written 1664/1666, published in 1976)

B A

A ball of negligible size falls perpendicularly upon
the centre of a horizontal circle divided into two
unequal sectors A and B. Suppose that the ratio
of areas of these sectors is 2 to

√
5.

And if the ball falls in the sector A the player
wins a, and if it falls into sector B wins b.

Newton claims that the “hopes” of the player
worth

2a+ b
√
5

2 +
√
5

.

Newton shows that a chance of a simple event can be irrational, and

discover the basic rule for the geometric probability definition (chance is
proportional to the area).
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Georges-Louis Leclerc (Comte de Buffon)
Buffon’s problems — French Royal Academy of Science

Presented in 1733 and published in 1777

First problem — Le jeu du Franc-carreau

A round coin is tossed at random on a large
plane area covered by regular tiles (squares in
1733; triangles, rhombi and hexagons in 1777)
and one of the players bets that the coin hits
only one tile (while the other bets that it hits
more of them).

Buffon solves the problem noting that it is
sufficient to use the place where the center of
the coin drops on the pavement.

And the geometric probability definition (ratio
of areas) is applied.
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The second problem – Buffon’s needle problem

In a room, the floor of which is simply divided
by parallel joints, a needle is thrown in the air,
and one of the players bets that the needle will
not cross any of the lines, while the other bets
that it will cross.

Using integral calculus, Buffon obtained
P = 2ℓ

π d
, where ℓ is the needle length and d the

distance between the parallels (for d > ℓ).

Buffon didn’t solve the case d ≤ ℓ, only
provided (an erroneous) solution (which
Laplace corrects in 1812).

This was the problem that disseminated the
geometric probability definition.
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Jacob Bernoulli (1655−1705)
1713 – Ars conjectandi

First theorem of stochastic convergence
(Weak Law of Large Numbers)

∀ε > 0 : lim
n→∞

P [|p̂− p| < ε] = 1.

10 000 20 000 30 000 40 000 50 000

0.49

0.50

0.51

→ Connecting link between the probability theory and reality
(freedom from their dependence on gambling).
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Thus, in n random throws in a region Ω, we have

lim
n→∞

Bhits

n
= P(X ∈ B|X ∈ Ω) =

µ (B)

µ (Ω)
,

where Bhits denotes the number of hits on region B.

Therefore, carrying out (simulating) the problem of Buffon, we get

Bhits

n
→ 2ℓ

π d
⇐⇒ π ≈ 2ℓ n

Bhits d
, for large n.

allowing calculate experimentally the value of π.

1850 Rudolf Wolf performed 5000 throws.
1855 Augustus de Morgan refers that Ambrose Smith performed 3204 throws;
1864 Asaph Hall refers that O. C. Fox performed several sequences with more

than 500 throws;
1901 Lazzarini performed 3408 throws (π ≈ 355

113
≈ 3.1415929).
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Bertrand’s paradox (1888) — What is the probability of one chord,
chosen at random in a circle with radius r, is longer than a side of the
equilateral triangle inscribed in the circle?

S1 — If he suppose one fix endpoint of the
chord and choose the other, at random, in the
circumference → P1 = 1

3
;

S2 — If he suppose a fix direction and chose,
at random, one point in the diameter which is
perpendicular → P2 = 1

2
;

S3 — If he chose, at random, one point in the
circle and consider the chord that have this
point as middle point → P3 = 1

4
.

There is an one to one relation between the chosen point and
the chord.
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Contextualization
Elements of Probability Calculus
Standard model

Probability circa 1914

The application of the principle of insufficient reason gave rise to
several paradoxes (such as the Bertrand’s paradox).

The basic concepts of Probability Theory are not clear

random choice is a vague concept, having no clear meaning by itself.

Hilbert (1900) proposed 23 open problems to guide the mathematical
investigation during XX century.

6th → “To treat in the same manner, by means of axioms, those

physical sciences in which mathematics plays an important part; in the

first rank are the theory of probabilities and mechanics.”
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Diogo Pacheco d’Amorim
(1888–1976)

Pacheco d’Amorim, D.

(1914).
Elements of Probability

Calculus,
Ph.D. Thesis,

Coimbra University.

English translation available on

http://www.estg.ipleiria.pt/∼rui.santos,

done by S. Mendonça, D. Pestana and R.

Santos.

ELEMENTS

OF

PROBABILITY CALCULUS

by

DIOGO PACHECO D’AMORIM

// � oo

COIMBRA

Imprensa da Universidade

1914

32 Elements of Probability Calculus

There are N +1 urns, one of them with N black balls, another one with
1 white and N − 1 black balls, another one with 2 white and N − 2 black
balls, etc., until the last urn, containing N white balls.

Performing m + n extractions of one ball from a randomly chosen urn
(always returning the extracted ball to the urn before proceeding to the
next extraction), white ball is observed in m occasions, and black ball in n

occasions. What is the probability of extracting white ball in the (m+n+1)-
th extraction?

*

The solution is given in the corollary above, where we may use

p
k

=
k

N
and q

k
=

N − k

N
,

obtaining

P =

N
∑

k=0

(

k

N

)m+1 (

N − k

N

)n

N
∑

k=0

(

k

N

)m (

N − k

N

)n
,

which may be approximated by

P ≈

N
∫

0

( α

N

)m+1
(

N − α

N

)n

dα

N
∫

0

( α

N

)m
(

N − α

N

)n

dα

.

Using the substitution
α = N x,
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Standard model

Selecting, at random, one element from the sample space

Pacheco d’Amorim considers that this sentence have a clear meaning if:

we are the agent of the selection;

we possess full information about the sample space.

Therefore it can be used as the base to build up Probability Theory.

CHAPTER I – Discrete case ⇒ random extractions in a finite set ⇒
classical probability definition;

CHAPTER II – Continuous case ⇒ random throws in a limited region ⇒
geometrical probability definition
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CHAPTER III – Random figures

Goal: To end up with the paradoxes in geometric probability problems
by the definition of random choice of each geometrical figure.

Def. 1 – The random choice of an orientation in R
n

is, by definition, the same
as randomly throwing a point (x

1
, . . . , x

n
) in the set defined by the equation

(

x
1
− x′

1

)
2

+
(

x
2
− x′

2

)
2

+ · · ·+
(

x
n
− x′

n

)
2

= 1.

Def. 2 – Randomly throwing a smaller segment on a bigger one is the same

as randomly throwing any given point of the smaller segment on the segment

it defines when the smaller segment slides over the bigger one.
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Def. 3 – To throw a straight line at random in a given region A means, by

definition, to throw a point, at random, in A, and to select at random one

direction in the region A, which determine the straight line.

· · ·

Def. 6 – To throw, at random, a plane region in another plane region · · ·

Α =

Π

4

· · ·
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Bertrand’s Paradox

To chose at random one chord in a circle is
(by Pacheco d’Amorim’s definitions)

1 to throw a point, at random, in the circle,

2 to select, at random, one direction.

The probability is independent of the
chord direction (let’s assume horizontal);

The probability will be equal to

P ≈ 0.609.
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C2

C1

In Pacheco d’Amorim resolution the possibility
of each chord is proportional to its length!

In fact, all the points that lie in a given chord
with the given direction will correspond to the
same randomly thrown straight line in
Pacheco d’Amorim’s definition.

Therefore, we can not consider that the chords
are chosen at random (Pacheco d’Amorim has
not reached its goal of solving the paradoxes of
geometric probability).
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Out of standard model hypothesis
Throws without full information

If the support is known, but not the probability law

Estimate the probability law.

Sub-divided the region

A =
n⋃

i=1

A
i
,A

i
∩A

j
= ∅, ∀i 6= j;

Make a great number of throws in the region, in
order to estimate the probability of each region.

If we have no information about sample space

We can use the same method, cause the law determination will gives us
the regions where the probability is null.
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Is it random?

And if we are not the agent?

If the sequence of extractions (throws) are in agreement with Bernoulli’s
laws, then it can be considered as random.

→ He analyses if a (long enough) sequence of trials performed by someone
else, or even by a mechanical device, can be considered as random.

→ Thus, it is not required to be a random phenomenon to apply these
methodologies (i.e., simulation can be use).

If it cannot be considered as random then it is out of the scope of Probability

Theory Science.
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Some current applications of geometric probability

Islands area River length

Veins length Volume of a tumor % quartz in sandstone
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Final Remarks

Final Comment

Pacheco d’Amorim (1914) devotes a cumbersome and messy chapter of
his doctoral thesis to the explanation of random figures, but in some of
his definitions it can not be considered as a random choice.

Nevertheless, his ideas of probability estimation based on random
throws and on the Bernoulli’s theorems are in fact the bases of many
current applications of geometrical probability.

Thank you for your attention!
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