Commutants of Toeplitz operators The AMS-EMS-SPM International Meeting 2015, Porto, Portugal

Issam Louhichi

American University of Sharjah Sharjah, UAE

June 13th, 2015

Issam Louhichi (AUS)

Commutants of Toeplitz operators

June 13th, 2015 1 / 11

4 A N

Let $L^2(\mathbb{D}, dA)$ be the space of all square integrable functions on the unit disk \mathbb{D} with respect to the normalized Lebesgue measure $dA = rdr \frac{d\theta}{\pi}$. The analytic Bergman space, denoted by $L^2_a(\mathbb{D})$, is the closed subspace of $L^2(\mathbb{D}, dA)$ consisting of all analytic functions on \mathbb{D} . It is well known that $L^2_a(\mathbb{D})$ is a Hilbert space with the set $\{\sqrt{n+1} z^n\}_{n=0}^{\infty}$ as an orthonormal basis. Let *P* be the orthogonal projection of $L^2(\mathbb{D}, dA)$ onto $L^2_a(\mathbb{D})$. Let $L^2(\mathbb{D}, dA)$ be the space of all square integrable functions on the unit disk \mathbb{D} with respect to the normalized Lebesgue measure $dA = rdr \frac{d\theta}{\pi}$. The analytic Bergman space, denoted by $L^2_a(\mathbb{D})$, is the closed subspace of $L^2(\mathbb{D}, dA)$ consisting of all analytic functions on \mathbb{D} . It is

well known that $L^2_a(\mathbb{D})$ is a Hilbert space with the set $\{\sqrt{n+1} z^n\}_{n=0}^{\infty}$ as an orthonormal basis. Let *P* be the orthogonal projection of $L^2(\mathbb{D}, dA)$ onto $L^2_a(\mathbb{D})$.

Definition

For a bounded function f on \mathbb{D} , the Toeplitz operator T_f with symbol f is defined on $L^2_a(\mathbb{D})$ by

$$T_f(u) = P(fu)$$
, for $u \in L^2_a$.

It is easy to check the following properties of the Toeplitz operator:

- $T_{\alpha f+\beta} = \alpha T_f + \beta I$, where *I* is the identity operator.
- $T_f^* = T_{\overline{f}}$.
- If $f \in \mathscr{A}^{\infty}(\mathbb{D})$, then T_f is simply the multiplication operator with f.

A (1) > A (2) > A

Under which conditions is the product (composition) of two Toeplitz operators T_f and T_g commutative i.e., $T_f T_g = T_g T_f$?

4 E 5

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Well known results

Theorem (S. Axler & Ž. Čučković)

Suppose that f and g are two bounded harmonic functions on \mathbb{D} . Then $T_f T_g = T_g T_f$ if and only if

- (i) f and g are both analytic on \mathbb{D} , or
- (ii) \overline{f} and \overline{g} are both analytic on \mathbb{D} , or
- (iii) there exist constants $\alpha, \beta \in \mathbb{C}$ such that $f = \alpha g + \beta$ on \mathbb{D} .

Well known results

Theorem (S. Axler & Ž. Čučković)

Suppose that f and g are two bounded harmonic functions on \mathbb{D} . Then $T_f T_g = T_g T_f$ if and only if

- (i) f and g are both analytic on \mathbb{D} , or
- (ii) \overline{f} and \overline{g} are both analytic on \mathbb{D} , or
- (iii) there exist constants $\alpha, \beta \in \mathbb{C}$ such that $f = \alpha g + \beta$ on \mathbb{D} .

Theorem (S. Axler, Ž. Čučković & N. V. Rao)

If f is nonconstant function in $\mathscr{A}^{\infty}(\mathbb{D})$ and $g \in L^{\infty}(\mathbb{D}, dA)$ such that $T_f T_g = T_g T_f$, then g is analytic.

Well known results

Theorem (S. Axler & Ž. Čučković)

Suppose that f and g are two bounded harmonic functions on \mathbb{D} . Then $T_f T_g = T_g T_f$ if and only if

- (i) f and g are both analytic on \mathbb{D} , or
- (ii) \overline{f} and \overline{g} are both analytic on \mathbb{D} , or
- (iii) there exist constants $\alpha, \beta \in \mathbb{C}$ such that $f = \alpha g + \beta$ on \mathbb{D} .

Theorem (S. Axler, Ž. Čučković & N. V. Rao)

If f is nonconstant function in $\mathscr{A}^{\infty}(\mathbb{D})$ and $g \in L^{\infty}(\mathbb{D}, dA)$ such that $T_f T_g = T_g T_f$, then g is analytic.

Theorem (Ž. Čučković & N. V. Rao)

Let $f, g \in L^{\infty}(\mathbb{D}, dA)$ such that f is radial i.e., f(z) = f(|z|). If $T_f T_g = T_g T_f$, then g is a radial function.

Definition

A function *f* is said to be quasihomogeneous of degree *p* if it is of the form $e^{ip\theta}\phi$, where *p* is an integer and ϕ is a radial function. In this case the associated Toeplitz operator T_f is also called quasihomogeneous Toeplitz operator of degree *p*.

The reasons why we study such family of symbols are

æ

The reasons why we study such family of symbols are

 (i) Any function *f* in L²(D, *dA*) has the following polar decomposition (Fourier series)

$$f(re^{i\theta}) = \sum_{k\in\mathbb{Z}} e^{ik\theta} f_k(r),$$

where f_k are radial functions in $L^2([0,1], rdr)$.

The reasons why we study such family of symbols are

 (i) Any function *f* in L²(D, *dA*) has the following polar decomposition (Fourier series)

$$f(re^{i\theta}) = \sum_{k\in\mathbb{Z}} e^{ik\theta} f_k(r),$$

where f_k are radial functions in $L^2([0,1], rdr)$.

(ii) $T_{e^{ik\theta}f_k}$ acts on the elements of the orthogonal basis of $L^2_a(\mathbb{D})$ as a shift operator with a holomorphic weight.

The reasons why we study such family of symbols are

 (i) Any function *f* in L²(D, *dA*) has the following polar decomposition (Fourier series)

$$f(re^{i\theta}) = \sum_{k\in\mathbb{Z}} e^{ik\theta} f_k(r),$$

where f_k are radial functions in $L^2([0,1], rdr)$.

$$T_{e^{ik heta}f_k}(z^n) = P(e^{ik heta}f_kz^n)$$

The reasons why we study such family of symbols are

 (i) Any function *f* in L²(D, *dA*) has the following polar decomposition (Fourier series)

$$f(re^{i\theta}) = \sum_{k\in\mathbb{Z}} e^{ik\theta} f_k(r),$$

where f_k are radial functions in $L^2([0,1], rdr)$.

$$\mathcal{T}_{e^{ik\theta}f_k}(z^n) = \mathcal{P}(e^{ik\theta}f_kz^n) = \sum_{j\geq 0} (j+1)\langle e^{ik\theta}f_kz^n, z^j\rangle z^j$$

The reasons why we study such family of symbols are

 (i) Any function *f* in L²(D, *dA*) has the following polar decomposition (Fourier series)

$$f(re^{i\theta}) = \sum_{k\in\mathbb{Z}} e^{ik\theta} f_k(r),$$

where f_k are radial functions in $L^2([0,1], rdr)$.

$$T_{e^{ik\theta}f_k}(z^n) = P(e^{ik\theta}f_kz^n) = \sum_{j\geq 0} (j+1)\langle e^{ik\theta}f_kz^n, z^j\rangle z^j$$
$$= \sum_{j\geq 0} (j+1) \left(\int_0^1 \int_0^{2\pi} f_k(r)r^{n+j+1}e^{i(n+k-j)\theta}\frac{d\theta}{\pi}dr\right) z^j$$

The reasons why we study such family of symbols are

 (i) Any function *f* in L²(D, *dA*) has the following polar decomposition (Fourier series)

$$f(re^{i\theta}) = \sum_{k\in\mathbb{Z}} e^{ik\theta} f_k(r),$$

where f_k are radial functions in $L^2([0,1], rdr)$.

$$T_{e^{ik\theta}f_k}(z^n) = P(e^{ik\theta}f_kz^n) = \sum_{j\geq 0} (j+1)\langle e^{ik\theta}f_kz^n, z^j\rangle z^j$$

= $\sum_{j\geq 0} (j+1) \left(\int_0^1 \int_0^{2\pi} f_k(r)r^{n+j+1}e^{i(n+k-j)\theta} \frac{d\theta}{\pi} dr \right) z^j$
= $2(n+k+1) \int_0^1 f_k(r)r^{2n+k+1} dr z^{n+k}.$

The Mellin Transform

Definition

The Mellin transform \hat{f} of a radial function f in $L^1([0,1], rdr)$ is defined by

$$\widehat{f}(z) = \int_0^1 f(r) r^{z-1} \, dr.$$

Definition

The Mellin transform \hat{f} of a radial function f in $L^1([0,1], rdr)$ is defined by

$$\widehat{f}(z) = \int_0^1 f(r) r^{z-1} \, dr.$$

It is clear that, for these functions, the Mellin transform is bounded on the right half-plane $\{z : \Re z \ge 2\}$ and it is holomorphic on $\{z : \Re z > 2\}$.

Definition

The Mellin transform \hat{f} of a radial function f in $L^1([0,1], rdr)$ is defined by

$$\widehat{f}(z) = \int_0^1 f(r) r^{z-1} \, dr.$$

It is clear that, for these functions, the Mellin transform is bounded on the right half-plane $\{z : \Re z \ge 2\}$ and it is holomorphic on $\{z : \Re z > 2\}$.

Therefore, we have

$$T_{e^{ik\theta}f_k}(z^n) = 2(n+k+1)\widehat{f_k}(2n+k+2)z^{n+k}$$

Holomorphic Weighted Shift (HWS)

To exploit well this observation, we introduce the following definition

Definition

Let *F* be a holomorphic function in the right-half plane $\{z \in \mathbb{C} | \Re z > 0\}$, we define the HWS operator T_F of symbol *F* and order *p* on $L^2_a(\mathbb{D})$ by

 $T_F(z^k)=F(k)z^{k+\rho}.$

Holomorphic Weighted Shift (HWS)

To exploit well this observation, we introduce the following definition

Definition

Let *F* be a holomorphic function in the right-half plane $\{z \in \mathbb{C} | \Re z > 0\}$, we define the HWS operator T_F of symbol *F* and order *p* on $L^2_a(\mathbb{D})$ by

$$T_F(z^k) = F(k)z^{k+p}$$

Proposition

 T_F is bounded if and only if F is bounded on \mathbb{N}_0 , the set of all nonnegative integers.

4 A N

Holomorphic Weighted Shift (HWS)

To exploit well this observation, we introduce the following definition

Definition

Let *F* be a holomorphic function in the right-half plane $\{z \in \mathbb{C} | \Re z > 0\}$, we define the HWS operator T_F of symbol *F* and order *p* on $L^2_a(\mathbb{D})$ by

$$T_F(z^k) = F(k)z^{k+p}$$

Proposition

 T_F is bounded if and only if F is bounded on \mathbb{N}_0 , the set of all nonnegative integers.

The product (composition) of two HWS operators of order respectively p and q is a HWS operator of order p + q.

< ロ > < 同 > < 回 > < 回 >

Let T_F and T_G be two HWS operators of order respectively p and q both positive integers. If $T_F T_G = T_G T_F$, then $T_F^m = cT_G^n$ for some constant c and any positive integer m, n such that mp = nq.

< 🗇 🕨 < 🖻 🕨

Let T_F and T_G be two HWS operators of order respectively p and q both positive integers. If $T_F T_G = T_G T_F$, then $T_F^m = c T_G^n$ for some constant c and any positive integer m, n such that mp = nq.

Is the converse true? YES. We need the following results:

Let T_F and T_G be two HWS operators of order respectively p and q both positive integers. If $T_F T_G = T_G T_F$, then $T_F^m = cT_G^n$ for some constant c and any positive integer m, n such that mp = nq.

Is the converse true? YES. We need the following results:

(1) If T_F and T_G are of same order p and if there exists a positive integer d such that $T_F^d = T_G^d$, then $T_F = cT_G$ where c is a d^{th} root of unity.

Let T_F and T_G be two HWS operators of order respectively p and q both positive integers. If $T_F T_G = T_G T_F$, then $T_F^m = cT_G^n$ for some constant c and any positive integer m, n such that mp = nq.

Is the converse true? YES. We need the following results:

- (1) If T_F and T_G are of same order p and if there exists a positive integer d such that $T_F^d = T_G^d$, then $T_F = cT_G$ where c is a d^{th} root of unity.
- (2) If T_F and T_G are of order respectively p and q and if there exist two co-prime integers m and n such that $T_F^m = T_G^n$, then $T_F T_G = T_G T_F$.

Let T_F and T_G be two HWS operators of order respectively p and q both positive integers. If $T_F T_G = T_G T_F$, then $T_F^m = cT_G^n$ for some constant c and any positive integer m, n such that mp = nq.

Is the converse true? YES. We need the following results:

- (1) If T_F and T_G are of same order p and if there exists a positive integer d such that $T_F^d = T_G^d$, then $T_F = cT_G$ where c is a d^{th} root of unity.
- (2) If T_F and T_G are of order respectively p and q and if there exist two co-prime integers m and n such that $T_F^m = T_G^n$, then $T_F T_G = T_G T_F$.

Theorem

Let T_F and T_G be two HWS operators. Suppose that there exist two positive integers *m* and *n* such that $T_F^m = T_G^n$. Then $T_F T_G = T_G T_F$.

Theorem (Bicommutant)

Let T_F , T_G and T_H be HWS operators of order p,q and s respectively. Suppose that T_F commutes with T_H and T_H commutes with T_G . Then T_F and T_G commute with each other.

Theorem (Bicommutant)

Let T_F , T_G and T_H be HWS operators of order p,q and s respectively. Suppose that T_F commutes with T_H and T_H commutes with T_G . Then T_F and T_G commute with each other.

Corollary

If T_f and T_g are two Toeplitz operators with bounded symbols which commute with a quasihomogeneous Toeplitz operator, then they commute with each other.

Theorem (Bicommutant)

Let T_F , T_G and T_H be HWS operators of order p,q and s respectively. Suppose that T_F commutes with T_H and T_H commutes with T_G . Then T_F and T_G commute with each other.

Corollary

If T_f and T_g are two Toeplitz operators with bounded symbols which commute with a quasihomogeneous Toeplitz operator, then they commute with each other.

Conjecture

If two Toeplitz operators commute with a third one, none of them being the identity, then they commute with each other.

э

・ロト ・四ト ・ヨト ・ヨト