Commutants of Toeplitz operators

The AMS-EMS-SPM International Meeting 2015, Porto, Portugal

Issam Louhichi

American University of Sharjah
Sharjah, UAE

June $13^{\text {th }}, 2015$

Preliminaries

Let $L^{2}(\mathbb{D}, d A)$ be the space of all square integrable functions on the unit disk \mathbb{D} with respect to the normalized Lebesgue measure $d A=r d r \frac{d \theta}{\pi}$. The analytic Bergman space, denoted by $L_{a}^{2}(\mathbb{D})$, is the closed subspace of $L^{2}(\mathbb{D}, d A)$ consisting of all analytic functions on \mathbb{D}. It is well known that $L_{a}^{2}(\mathbb{D})$ is a Hilbert space with the set $\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$ as an orthonormal basis. Let P be the orthogonal projection of $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$.

Preliminaries

Let $L^{2}(\mathbb{D}, d A)$ be the space of all square integrable functions on the unit disk \mathbb{D} with respect to the normalized Lebesgue measure $d A=r d r \frac{d \theta}{\pi}$. The analytic Bergman space, denoted by $L_{a}^{2}(\mathbb{D})$, is the closed subspace of $L^{2}(\mathbb{D}, d A)$ consisting of all analytic functions on \mathbb{D}. It is well known that $L_{a}^{2}(\mathbb{D})$ is a Hilbert space with the set $\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$ as an orthonormal basis. Let P be the orthogonal projection of $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$.

Definition

For a bounded function f on \mathbb{D}, the Toeplitz operator T_{f} with symbol f is defined on $L_{a}^{2}(\mathbb{D})$ by

$$
T_{f}(u)=P(f u), \text { for } u \in L_{a}^{2} .
$$

Preliminaries

It is easy to check the following properties of the Toeplitz operator:

- $T_{\alpha f+\beta}=\alpha T_{f}+\beta I$, where l is the identity operator.
- $T_{f}^{*}=T_{\bar{f}}$.
- If $f \in \mathscr{A}^{\infty}(\mathbb{D})$, then T_{f} is simply the multiplication operator with f.

The general problem

Under which conditions is the product (composition) of two Toeplitz operators T_{f} and T_{g} commutative i.e., $T_{f} T_{g}=T_{g} T_{f}$?

Well known results

Theorem (S. Axler \& Z̆. C̆uc̆ković)

Suppose that f and g are two bounded harmonic functions on \mathbb{D}. Then $T_{f} T_{g}=T_{g} T_{f}$ if and only if
(i) f and g are both analytic on \mathbb{D}, or
(ii) \bar{f} and \bar{g} are both analytic on \mathbb{D}, or
(iii) there exist constants $\alpha, \beta \in \mathbb{C}$ such that $f=\alpha g+\beta$ on \mathbb{D}.

Well known results

Theorem (S. Axler \& Z̆. C̆uc̆ković)

Suppose that f and g are two bounded harmonic functions on \mathbb{D}. Then $T_{f} T_{g}=T_{g} T_{f}$ if and only if
(i) f and g are both analytic on \mathbb{D}, or
(ii) \bar{f} and \bar{g} are both analytic on \mathbb{D}, or
(iii) there exist constants $\alpha, \beta \in \mathbb{C}$ such that $f=\alpha g+\beta$ on \mathbb{D}.

Theorem (S. Axler, Z̆. C̆uc̆ković \& N. V. Rao)

If f is nonconstant function in $\mathscr{A}^{\infty}(\mathbb{D})$ and $g \in L^{\infty}(\mathbb{D}, d A)$ such that $T_{f} T_{g}=T_{g} T_{f}$, then g is analytic.

Well known results

Theorem (S. Axler \& Z̆. C̆uc̆ković)

Suppose that f and g are two bounded harmonic functions on \mathbb{D}. Then $T_{f} T_{g}=T_{g} T_{f}$ if and only if
(i) f and g are both analytic on \mathbb{D}, or
(ii) \bar{f} and \bar{g} are both analytic on \mathbb{D}, or
(iii) there exist constants $\alpha, \beta \in \mathbb{C}$ such that $f=\alpha g+\beta$ on \mathbb{D}.

Theorem (S. Axler, Z̆. C̆uc̆ković \& N. V. Rao)

If f is nonconstant function in $\mathscr{A}^{\infty}(\mathbb{D})$ and $g \in L^{\infty}(\mathbb{D}, d A)$ such that $T_{f} T_{g}=T_{g} T_{f}$, then g is analytic.

Theorem (Z̆. Čuc̆ković \& N. V. Rao)

Let $f, g \in L^{\infty}(\mathbb{D}, d A)$ such that f is radial i.e., $f(z)=f(|z|)$. If $T_{f} T_{g}=T_{g} T_{f}$, then g is a radial function.

Quasihomogeneous symbol

Definition

A function f is said to be quasihomogeneous of degree p if it is of the form $e^{i p \theta} \phi$, where p is an integer and ϕ is a radial function. In this case the associated Toeplitz operator T_{f} is also called quasihomogeneous Toeplitz operator of degree p.

Motivations

The reasons why we study such family of symbols are

Motivations

The reasons why we study such family of symbols are
(i) Any function f in $L^{2}(\mathbb{D}, d A)$ has the following polar decomposition (Fourier series)

$$
f\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} e^{i k \theta} f_{k}(r),
$$

where f_{k} are radial functions in $L^{2}([0,1], r d r)$.

Motivations

The reasons why we study such family of symbols are
(i) Any function f in $L^{2}(\mathbb{D}, d A)$ has the following polar decomposition (Fourier series)

$$
f\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} e^{i k \theta} f_{k}(r)
$$

where f_{k} are radial functions in $L^{2}([0,1], r d r)$.
(ii) $T_{e^{i k \theta} f_{k}}$ acts on the elements of the orthogonal basis of $L_{a}^{2}(\mathbb{D})$ as a shift operator with a holomorphic weight.

Motivations

The reasons why we study such family of symbols are
(i) Any function f in $L^{2}(\mathbb{D}, d A)$ has the following polar decomposition (Fourier series)

$$
f\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} e^{i k \theta} f_{k}(r)
$$

where f_{k} are radial functions in $L^{2}([0,1], r d r)$.
(ii) $T_{e^{i k \theta} f_{k}}$ acts on the elements of the orthogonal basis of $L_{a}^{2}(\mathbb{D})$ as a shift operator with a holomorphic weight. In fact, for example if $k \geq 0$, then

$$
T_{e^{i k \theta} f_{k}}\left(z^{n}\right)=P\left(e^{i k \theta} f_{k} z^{n}\right)
$$

Motivations

The reasons why we study such family of symbols are
(i) Any function f in $L^{2}(\mathbb{D}, d A)$ has the following polar decomposition (Fourier series)

$$
f\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} e^{i k \theta} f_{k}(r)
$$

where f_{k} are radial functions in $L^{2}([0,1], r d r)$.
(ii) $T_{e^{i k \theta} f_{k}}$ acts on the elements of the orthogonal basis of $L_{a}^{2}(\mathbb{D})$ as a shift operator with a holomorphic weight. In fact, for example if $k \geq 0$, then

$$
T_{e^{i k \theta} f_{k}}\left(z^{n}\right)=P\left(e^{i k \theta} f_{k} z^{n}\right)=\sum_{j \geq 0}(j+1)\left\langle e^{i k \theta} f_{k} z^{n}, z^{j}\right\rangle z^{j}
$$

Motivations

The reasons why we study such family of symbols are
(i) Any function f in $L^{2}(\mathbb{D}, d A)$ has the following polar decomposition (Fourier series)

$$
f\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} e^{i k \theta} f_{k}(r)
$$

where f_{k} are radial functions in $L^{2}([0,1], r d r)$.
(ii) $T_{e^{i k \theta} f_{k}}$ acts on the elements of the orthogonal basis of $L_{a}^{2}(\mathbb{D})$ as a shift operator with a holomorphic weight. In fact, for example if $k \geq 0$, then

$$
\begin{aligned}
T_{e^{i k \theta} f_{k}}\left(z^{n}\right) & =P\left(e^{i k \theta} f_{k} z^{n}\right)=\sum_{j \geq 0}(j+1)\left\langle e^{i k \theta} f_{k} z^{n}, z^{j}\right\rangle z^{j} \\
& =\sum_{j \geq 0}(j+1)\left(\int_{0}^{1} \int_{0}^{2 \pi} f_{k}(r) r^{n+j+1} e^{i(n+k-j) \theta} \frac{d \theta}{\pi} d r\right) z^{j}
\end{aligned}
$$

Motivations

The reasons why we study such family of symbols are
(i) Any function f in $L^{2}(\mathbb{D}, d A)$ has the following polar decomposition (Fourier series)

$$
f\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} e^{i k \theta} f_{k}(r)
$$

where f_{k} are radial functions in $L^{2}([0,1], r d r)$.
(ii) $T_{e^{i k \theta} f_{k}}$ acts on the elements of the orthogonal basis of $L_{a}^{2}(\mathbb{D})$ as a shift operator with a holomorphic weight. In fact, for example if $k \geq 0$, then

$$
\begin{aligned}
T_{e^{i k \theta} f_{k}}\left(z^{n}\right) & =P\left(e^{i k \theta} f_{k} z^{n}\right)=\sum_{j \geq 0}(j+1)\left\langle e^{i k \theta} f_{k} z^{n}, z^{j}\right\rangle z^{j} \\
& =\sum_{j \geq 0}(j+1)\left(\int_{0}^{1} \int_{0}^{2 \pi} f_{k}(r) r^{n+j+1} e^{i(n+k-j) \theta} \frac{d \theta}{\pi} d r\right) z^{j} \\
& =2(n+k+1) \int_{0}^{1} f_{k}(r) r^{2 n+k+1} d r z^{n+k}
\end{aligned}
$$

The Mellin Transform

Definition

The Mellin transform \widehat{f} of a radial function f in $L^{1}([0,1], r d r)$ is defined by

$$
\widehat{f}(z)=\int_{0}^{1} f(r) r^{z-1} d r
$$

The Mellin Transform

Definition

The Mellin transform \widehat{f} of a radial function f in $L^{1}([0,1], r d r)$ is defined by

$$
\widehat{f}(z)=\int_{0}^{1} f(r) r^{z-1} d r .
$$

It is clear that, for these functions, the Mellin transform is bounded on the right half-plane $\{z: \Re z \geq 2\}$ and it is holomorphic on $\{z: \Re z>2\}$.

The Mellin Transform

Definition

The Mellin transform \hat{f} of a radial function f in $L^{1}([0,1], r d r)$ is defined by

$$
\widehat{f}(z)=\int_{0}^{1} f(r) r^{z-1} d r .
$$

It is clear that, for these functions, the Mellin transform is bounded on the right half-plane $\{z: \Re z \geq 2\}$ and it is holomorphic on $\{z: \Re z>2\}$.

Therefore, we have

$$
T_{e^{j k \theta_{k}}}\left(z^{n}\right)=2(n+k+1) \widehat{f}_{k}(2 n+k+2) z^{n+k}
$$

Holomorphic Weighted Shift (HWS)

To exploit well this observation, we introduce the following definition

Definition

Let F be a holomorphic function in the right-half plane $\{z \in \mathbb{C} \mid \Re z>0\}$, we define the HWS operator T_{F} of symbol F and order p on $L_{a}^{2}(\mathbb{D})$ by

$$
T_{F}\left(z^{k}\right)=F(k) z^{k+p}
$$

Holomorphic Weighted Shift (HWS)

To exploit well this observation, we introduce the following definition

Definition

Let F be a holomorphic function in the right-half plane $\{z \in \mathbb{C} \mid \Re z>0\}$, we define the HWS operator T_{F} of symbol F and order p on $L_{a}^{2}(\mathbb{D})$ by

$$
T_{F}\left(z^{k}\right)=F(k) z^{k+p} .
$$

Proposition

T_{F} is bounded if and only if F is bounded on \mathbb{N}_{0}, the set of all nonnegative integers.

Holomorphic Weighted Shift (HWS)

To exploit well this observation, we introduce the following definition

Definition

Let F be a holomorphic function in the right-half plane $\{z \in \mathbb{C} \mid \Re z>0\}$, we define the HWS operator T_{F} of symbol F and order p on $L_{a}^{2}(\mathbb{D})$ by

$$
T_{F}\left(z^{k}\right)=F(k) z^{k+p}
$$

Proposition

T_{F} is bounded if and only if F is bounded on \mathbb{N}_{0}, the set of all nonnegative integers.

The product (composition) of two HWS operators of order respectively p and q is a HWS operator of order $p+q$.

On the commutativity of HWS

Theorem

Let T_{F} and T_{G} be two HWS operators of order respectively p and q both positive integers. If $T_{F} T_{G}=T_{G} T_{F}$, then $T_{F}^{m}=c T_{G}^{n}$ for some constant c and any positive integer m, n such that $m p=n q$.

On the commutativity of HWS

Abstract

Theorem Let T_{F} and T_{G} be two HWS operators of order respectively p and q both positive integers. If $T_{F} T_{G}=T_{G} T_{F}$, then $T_{F}^{m}=c T_{G}^{n}$ for some constant c and any positive integer m, n such that $m p=n q$.

Is the converse true? YES. We need the following results:

On the commutativity of HWS

Theorem

Let T_{F} and T_{G} be two HWS operators of order respectively p and q both positive integers. If $T_{F} T_{G}=T_{G} T_{F}$, then $T_{F}^{m}=c T_{G}^{n}$ for some constant c and any positive integer m, n such that $m p=n q$.

Is the converse true? YES. We need the following results:
(1) If T_{F} and T_{G} are of same order p and if there exists a positive integer d such that $T_{F}^{d}=T_{G}^{d}$, then $T_{F}=c T_{G}$ where c is a $d^{\text {th }}$ root of unity.

On the commutativity of HWS

Theorem

Let T_{F} and T_{G} be two HWS operators of order respectively p and q both positive integers. If $T_{F} T_{G}=T_{G} T_{F}$, then $T_{F}^{m}=c T_{G}^{n}$ for some constant c and any positive integer m, n such that $m p=n q$.

Is the converse true? YES. We need the following results:
(1) If T_{F} and T_{G} are of same order p and if there exists a positive integer d such that $T_{F}^{d}=T_{G}^{d}$, then $T_{F}=c T_{G}$ where c is a $d^{\text {th }}$ root of unity.
(2) If T_{F} and T_{G} are of order respectively p and q and if there exist two co-prime integers m and n such that $T_{F}^{m}=T_{G}^{n}$, then $T_{F} T_{G}=T_{G} T_{F}$.

On the commutativity of HWS

Theorem

Let T_{F} and T_{G} be two HWS operators of order respectively p and q both positive integers. If $T_{F} T_{G}=T_{G} T_{F}$, then $T_{F}^{m}=c T_{G}^{n}$ for some constant c and any positive integer m, n such that $m p=n q$.

Is the converse true? YES. We need the following results:
(1) If T_{F} and T_{G} are of same order p and if there exists a positive integer d such that $T_{F}^{d}=T_{G}^{d}$, then $T_{F}=c T_{G}$ where c is a $d^{\text {th }}$ root of unity.
(2) If T_{F} and T_{G} are of order respectively p and q and if there exist two co-prime integers m and n such that $T_{F}^{m}=T_{G}^{n}$, then $T_{F} T_{G}=T_{G} T_{F}$.

Theorem

Let T_{F} and T_{G} be two HWS operators. Suppose that there exist two positive integers m and n such that $T_{F}^{m}=T_{G}^{n}$. Then $T_{F} T_{G}=T_{G} T_{F}$.

Consequences

Theorem (Bicommutant)

Let T_{F}, T_{G} and T_{H} be HWS operators of order p, q and s respectively. Suppose that T_{F} commutes with T_{H} and T_{H} commutes with T_{G}. Then T_{F} and T_{G} commute with each other.

Consequences

Theorem (Bicommutant)

Let T_{F}, T_{G} and T_{H} be HWS operators of order p, q and s respectively. Suppose that T_{F} commutes with T_{H} and T_{H} commutes with T_{G}. Then T_{F} and T_{G} commute with each other.

Corollary

If T_{f} and T_{g} are two Toeplitz operators with bounded symbols which commute with a quasihomogeneous Toeplitz operator, then they commute with each other.

Consequences

Theorem (Bicommutant)

Let T_{F}, T_{G} and T_{H} be HWS operators of order p, q and s respectively. Suppose that T_{F} commutes with T_{H} and T_{H} commutes with T_{G}. Then T_{F} and T_{G} commute with each other.

Corollary

If T_{f} and T_{g} are two Toeplitz operators with bounded symbols which commute with a quasihomogeneous Toeplitz operator, then they commute with each other.

Conjecture

If two Toeplitz operators commute with a third one, none of them being the identity, then they commute with each other.

