On the Cactus Varieties of Cubic Forms

B, J. Jelisiejew, P. Macias Marques, K. Ranestad

Alessandra Bernardi
Univeristy of Bologna (Italy)

Porto, June 13th, 2015
Commutative Artinian Algebras and Their Deformations 2015
International Meeting AMS/ EMS/ SPM

Waring rank

$F \in S_{d}=K\left[x_{0}, \ldots, x_{n}\right]_{d}$ homog. of $\operatorname{deg} d(\operatorname{char} K \neq 2,3)$
Definition
Waring rank: $\min r \in \mathbb{N}$ s.t. $F=L_{1}^{d}+\cdots+L_{r}^{d}$ with $L_{i} \in S_{1}$
Veronese: $\nu_{d}: \mathbb{P}\left(S_{1}\right) \rightarrow \mathbb{P}\left(S_{d}\right),[L] \mapsto\left[L^{d}\right]$

- $\min r \in \mathbb{N}$ s.t. $[F] \in r$-th secant space to $\nu_{d}\left(\mathbb{P}\left(S_{1}\right)\right):=X_{d, n}$
- The shortest length of a smooth finite scheme $\Gamma \subset \mathbb{P}\left(S_{1}\right)$ s.t.

$$
[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle, \Gamma=\left\{\left[L_{1}\right], \ldots,\left[L_{r}\right]\right\}
$$

Cactus rank-Definition

Remove "smooth"

Definition
Cactus Rank: $\min r \in \mathbb{N}$ s.t. \exists finite (Gor.) scheme Γ of length r s.t.
$[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$

$\operatorname{Sec}_{r}\left(X_{d, n}\right)=\cup_{\Gamma \in \operatorname{Hilb}_{r} \mathbb{P}\left(S_{1}\right),\lceil\text { smooth }}\left\langle\nu_{d}(\Gamma)\right\rangle$ Secant variety to Veronese

Cactus rank-Definition

Remove "smooth"

Definition

Cactus Rank: $\min r \in \mathbb{N}$ s.t. \exists finite (Gor.) scheme Γ of length r s.t.
$[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$

$\operatorname{Sec}_{r}\left(X_{d, n}\right)=\overline{U_{\Gamma \in \operatorname{Hilb}_{r} \mathbb{P}\left(S_{1}\right), \Gamma \text { smooth }}\left\langle\nu_{d}(\Gamma)\right\rangle}$ Secant variety to Veronese
$\operatorname{Cactus}_{r}\left(X_{d, n}\right)=\overline{\bigcup_{\Gamma \in \operatorname{Hilb}_{r} \mathbb{P}\left(S_{1}\right)}\left\langle\nu_{d}(\Gamma)\right\rangle}$ Cactus variety

Cactus rank-History

1999 larrobino and Kanev: scheme length.
2010 Buczyńska, Buczyński:

- Definition of Cactus variety;
- Study its relation with Secant variety,
- if $d \geq 2 r$ and $r \leq i \leq d-r$ the cactus rank $=$ maximal rank of a catalecticant matrix of order $i([B, B r a c h a t$, Mourrain $]-2014)=$ differential length in [IK], catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank $=$ generalized rank.
2012 B, Ranestad: the general cubic form in $n+1$ variables has cactus rank at most $2 n+2$.

2014 Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is smoothable $\Rightarrow \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{Sec}_{r}\left(X_{3, n}\right)$ when $r \leq 13$.

Cactus rank-History

1999 larrobino and Kanev: scheme length.
2010 Buczyńska, Buczyński:

- Definition of Cactus variety;
- Study its relation with Secant variety,
- if $d \geq 2 r$ and $r \leq i \leq d-r$ the cactus rank $=$ maximal rank of a catalecticant matrix of order $;$ ($[B, B r a c h a t, ~ M o u r r a i n]-2014)=$ differential length in [IK], catalecticant rank in [BBM]

2014 B, Brachat, Mourrain: catus rank = generalized rank.
2012 B, Ranestad: the general cubic form in $n+1$ variables has cactus rank at
most $2 n+2$.
2014 Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is smoothable \Rightarrow Cactus $_{r}\left(X_{3, n}\right)=\operatorname{Sec}_{r}\left(X_{3, n}\right)$ when $r \leq 13$.

Cactus rank-History

1999 larrobino and Kanev: scheme length.
2010 Buczyńska, Buczyński:

- Definition of Cactus variety;
- Study its relation with Secant variety,
- if $d \geq 2 r$ and $r \leq i \leq d-r$ the cactus rank $=$ maximal rank of a catalecticant matrix of order $i([B, B r a c h a t$, Mourrain $]-2014)=$ differential length in [IK], catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank $=$ generalized rank.
2012 B, Ranestad: the general cubic form in $n+1$ variables has cactus rank at
most $2 n+2$.
2014 Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is smoothable $\Rightarrow \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{Sec}_{r}\left(X_{3, n}\right)$ when $r \leq 13$.

Cactus rank-History

1999 larrobino and Kanev: scheme length.
2010 Buczyńska, Buczyński:

- Definition of Cactus variety;
- Study its relation with Secant variety,
- if $d \geq 2 r$ and $r \leq i \leq d-r$ the cactus rank $=$ maximal rank of a catalecticant matrix of order $i([B, B r a c h a t$, Mourrain $]-2014)=$ differential length in $[\mathrm{IK}]$, catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank $=$ generalized rank.
2012 B, Ranestad: the general cubic form in $n+1$ variables has cactus rank at most $2 n+2$.

2011 Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is smoothable $\Rightarrow \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{Sec}_{r}\left(X_{3, n}\right)$ when $r \leq 13$.

Cactus rank-History

1999 larrobino and Kanev: scheme length.
2010 Buczyńska, Buczyński:

- Definition of Cactus variety;
- Study its relation with Secant variety,
- if $d \geq 2 r$ and $r \leq i \leq d-r$ the cactus rank $=$ maximal rank of a catalecticant matrix of order $i([B, B r a c h a t$, Mourrain $]-2014)=$ differential length in $[\mathrm{IK}]$, catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank = generalized rank.
2012 B, Ranestad: the general cubic form in $n+1$ variables has cactus rank at most $2 n+2$.

Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is smoothable $\Rightarrow \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{Sec}_{r}\left(X_{3, n}\right)$ when $r \leq 13$.

Cactus rank-History

1999 larrobino and Kanev: scheme length.
2010 Buczyńska, Buczyński:

- Definition of Cactus variety;
- Study its relation with Secant variety,
- if $d \geq 2 r$ and $r \leq i \leq d-r$ the cactus rank $=$ maximal rank of a catalecticant matrix of order $i([B, B r a c h a t$, Mourrain $]-2014)=$ differential length in $[\mathrm{IK}]$, catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank = generalized rank.
2012 B, Ranestad: the general cubic form in $n+1$ variables has cactus rank at most $2 n+2$.

2014 Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is smoothable $\Rightarrow \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{Sec}_{r}\left(X_{3, n}\right)$ when $r \leq 13$.

Theorem

We focus on CUBIC forms

Theorem

When r <17, then

$$
\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} \operatorname{Sec}_{r}\left(X_{3, n}\right)
$$

When $18 \leq r \leq 2 n+2$, then
$\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} 1 / /\left(X_{3, n}\right)>\operatorname{dim} \operatorname{Sec}_{r}\left(X_{3, n}\right)$ and

$$
\begin{gathered}
\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)= \\
=\left\{\begin{array}{c}
\min \left\{\frac{1}{48} r^{3}-\frac{3}{8} r^{2}+r n+\frac{5}{3} r-2,\binom{n+3}{3}-1\right\}, \text { if } r \geq 18 \text { even } \\
\min \left\{\frac{1}{48} r^{3}-\frac{7}{16} r^{2}+r n+\frac{119}{48} r-\frac{65}{16},\binom{n+3}{3}-1\right\}, \text { if } r \geq 18 \text { odd. }
\end{array}\right.
\end{gathered}
$$

Theorem

We focus on CUBIC forms
Theorem
When $r \leq 17$, then

$$
\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} \operatorname{Sec}_{r}\left(X_{3, n}\right)
$$

When $18 \leq r \leq 2 n+2$, then
$\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} W_{r}\left(X_{3, n}\right)>\operatorname{dim} \operatorname{Sec}_{r}\left(X_{3, n}\right)$ and

$$
\begin{gathered}
\operatorname{dim} \text { Cactus }_{r}\left(X_{3, n}\right)= \\
=\left\{\begin{array}{l}
\min \left\{\frac{1}{48} r^{3}-\frac{3}{8} r^{2}+r n+\frac{5}{3} r-2,\binom{n+3}{3}-1\right\}, \text { if } r \geq 18 \text { even }, \\
\min \left\{\frac{1}{48} r^{3}-\frac{7}{16} r^{2}+r n+\frac{119}{48} r-\frac{65}{16},\binom{n+3}{3}-1\right\}, \text { if } r \geq 18 \text { odd. }
\end{array}\right.
\end{gathered}
$$

Apolarity

$S=K\left[x_{0}, \ldots, x_{n}\right], T=K\left[y_{0}, \ldots, y_{n}\right]$

$$
y^{\alpha}\left(x^{[\beta]}\right)= \begin{cases}x^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { otherwise }\end{cases}
$$

S_{1} and T_{1} are dual spaces.
T is naturally the coordinate ring of $\mathbb{P}\left(S_{1}\right)$.
Definition
$f \in S$. Apolar ideal: $f^{\perp}=\{\varphi \in T \mid \varphi(f)=0\}$
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $F \in S$ if $I_{\ulcorner } \subset F^{\perp} \subset T$
Lemma (Apolarity Lemma)
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $\Gamma \in S_{d}$ iff $[\Gamma] \in\left\langle\nu_{d}(\Gamma)\right\rangle \subset \mathbb{P}\left(S_{d}\right)$.

Apolarity

$S=K\left[x_{0}, \ldots, x_{n}\right], T=K\left[y_{0}, \ldots, y_{n}\right]$

$$
y^{\alpha}\left(x^{[\beta]}\right)= \begin{cases}x^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { otherwise }\end{cases}
$$

S_{1} and T_{1} are dual spaces.
T is naturally the coordinate ring of $\mathbb{P}\left(S_{1}\right)$.
Definition
$f \in S$. Apolar ideal: $f^{\perp}=\{\varphi \in T \mid \varphi(f)=0\}$.
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $F \in S$ if $I_{\Gamma} \subset F^{\perp} \subset T$.
Lemma (Apolarity Lemma)
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $F \in S_{d}$ iff $[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle \subset \mathbb{P}\left(S_{d}\right)$.

Apolarity

$S=K\left[x_{0}, \ldots, x_{n}\right], T=K\left[y_{0}, \ldots, y_{n}\right]$

$$
y^{\alpha}\left(x^{[\beta]}\right)= \begin{cases}x^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { otherwise }\end{cases}
$$

S_{1} and T_{1} are dual spaces.
T is naturally the coordinate ring of $\mathbb{P}\left(S_{1}\right)$.
Definition
$f \in S$. Apolar ideal: $f^{\perp}=\{\varphi \in T \mid \varphi(f)=0\}$.
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $F \in S$ if $I \subset F^{\perp} \subset T$.
Lemma (Apolarity Lemma)
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $F \in S_{d}$ iff $[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle \subset \mathbb{P}\left(S_{d}\right)$.

Apolarity

- $\operatorname{crk}(F)=\min r \in \mathbb{N}$ s.t. $\exists \Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right):[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$
- $\operatorname{crk}(F)=\min r \in \mathbb{N}$ s.t. $\exists \Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right): \Gamma$ is apolar to F
- $\operatorname{crk}(F)=\min r \in \mathbb{N}$ s.t. $\exists \Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right): I_{\Gamma} \subset F^{\perp}$

We start with $F \in S_{d}$, we can compute $F^{\perp} \subset T$, then we want to describe the minimal $\Gamma \subset \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right): I_{\Gamma} \subset F^{\perp}$.

Local apolar scheme

In order to study the ideals contained in $F^{\perp} \subset T$, the first natural ring to study is T / F^{\perp} :

Properties: $T_{f}:=T / f \perp$ local Artinian Gorenstein ring ([$[K]$):

- Local: The image of T_{1} in T_{f} generates the only max ideal m;
- Artinian: T_{f} is finitely generated as K-mod;
- Gor: T_{f} has 1-dim'I socle (the annihilator of the max ideal).

If F is homog. $\Rightarrow T / F^{1}$ graded

Local apolar scheme

In order to study the ideals contained in $F^{\perp} \subset T$, the first natural ring to study is T / F^{\perp} :

Properties: $T_{f}:=T / f^{\perp}$ local Artinian Gorenstein ring ([IK]):

- Local: The image of T_{1} in T_{f} generates the only max ideal m;
- Artinian: T_{f} is finitely generated as K-mod;
- Gor: T_{f} has 1-dim'l socle (the annihilator of the max ideal).

If F is homog. $\Rightarrow T / F^{\perp}$ graded.

Local apolar scheme

$F \in S_{d} \Rightarrow \Gamma$ apolar scheme locally Gor. \Rightarrow

$$
\begin{aligned}
& \Gamma=\Gamma_{1} \cup \cdots \cup \Gamma_{s}, \text { with } \Gamma_{i} \text { local A.G. } \\
& F=F_{1}+\cdots+F_{s} \text { s.t. } \Gamma_{i} \text { apolar to } F_{i}
\end{aligned}
$$

Local cactus rank

$\operatorname{lcr}(F)=$ Local cactus rank of $F=\min _{r \in \mathbb{N}}$ s.t. \exists local $\Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right)$:
$[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$
$\Leftrightarrow \Gamma$ is apolar to $F \Leftrightarrow I_{\Gamma} \subset \Gamma^{\perp}$

$$
W_{r}\left(X_{d, n}\right):=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid \operatorname{Icr}(F)=r\right\}: r \text {-local cactus variety }
$$

$\operatorname{dim} W_{r_{i}}\left(X_{d, n}\right) \Rightarrow \operatorname{dim} \operatorname{Cactus}_{r}\left(X_{d, n}\right)$

Local cactus rank

$\operatorname{lcr}(F)=$ Local cactus rank of $F=\min _{r \in \mathbb{N}}$ s.t. \exists local $\Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right)$:
$[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$
$\Leftrightarrow \Gamma$ is apolar to $F \Leftrightarrow I_{\Gamma} \subset F^{\perp}$

$$
W_{r}\left(X_{d, n}\right):=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid \operatorname{lcr}(F)=r\right\}: r \text {-local cactus variety }
$$

Local cactus rank

$\operatorname{lcr}(F)=$ Local cactus rank of $F=\min _{r \in \mathbb{N}}$ s.t. \exists local $\Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right)$:
$[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$
$\Leftrightarrow \Gamma$ is apolar to $F \Leftrightarrow I_{\Gamma} \subset \Gamma^{\perp}$

$$
W_{r}\left(X_{d, n}\right):=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid \operatorname{lcr}(F)=r\right\}: r \text {-local cactus variety }
$$

$$
\begin{gathered}
\operatorname{Cactus}_{r}\left(X_{d, n}\right)=\overline{\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid c r(F)=r\right\}}= \\
=\overline{\bigcup_{r_{1}+\cdots+r_{s}=r} J\left(W_{r_{1}}\left(X_{d, n}\right), \ldots, W_{r_{s}}\left(X_{d, n}\right)\right)}
\end{gathered}
$$

Local cactus rank

$\operatorname{lcr}(F)=$ Local cactus rank of $F=\min _{r \in \mathbb{N}}$ s.t. \exists local $\Gamma \in \operatorname{Hilb}_{r}\left(\mathbb{P}\left(S_{1}\right)\right)$:
$[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$
$\Leftrightarrow \Gamma$ is apolar to $F \Leftrightarrow I_{\Gamma} \subset \Gamma^{\perp}$

$$
W_{r}\left(X_{d, n}\right):=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid \operatorname{lcr}(F)=r\right\}: r \text {-local cactus variety }
$$

$$
\begin{gathered}
\operatorname{Cactus}_{r}\left(X_{d, n}\right)=\overline{\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid c r(F)=r\right\}}= \\
=\frac{\bigcup_{r_{1}+\cdots+r_{s}=r} J\left(W_{r_{1}}\left(X_{d, n}\right), \ldots, W_{r_{s}}\left(X_{d, n}\right)\right)}{}
\end{gathered}
$$

$\operatorname{dim} W_{r_{i}}\left(X_{d, n}\right) \Rightarrow \operatorname{dim} \operatorname{Cactus}_{r}\left(X_{d, n}\right)$

Local cactus rank

Theorem
If $18 \leq r \leq 2 n+2$ and $n \geq 8$, then

$$
\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} W_{r}\left(X_{3, n}\right)
$$

So the cactus rank of a general cubic form can be computed locally.
(1) $\operatorname{dim} W_{r}\left(X_{d, n}\right)=$?
(2) How to compute the local cactus rank?

Local cactus rank

Theorem
If $18 \leq r \leq 2 n+2$ and $n \geq 8$, then

$$
\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} W_{r}\left(X_{3, n}\right)
$$

So the cactus rank of a general cubic form can be computed locally.
(1) $\operatorname{dim} W_{r}\left(X_{d, n}\right)=$?
(2) How to compute the local cactus rank?

Local cactus rank

Theorem

If $18 \leq r \leq 2 n+2$ and $n \geq 8$, then

$$
\operatorname{dim} \operatorname{Cactus}_{r}\left(X_{3, n}\right)=\operatorname{dim} W_{r}\left(X_{3, n}\right)
$$

So the cactus rank of a general cubic form can be computed locally.
(1) $\operatorname{dim} W_{r}\left(X_{d, n}\right)=$?
(2) How to compute the local cactus rank?
$W_{r}\left(X_{d, n}\right)$ the r-local cactus variety

$$
C_{r, l}=\bigcup_{\text {supp } Z_{l}=\left[d^{d}\right],\left(z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle
$$

$W_{r}\left(X_{d, n}\right)=\overline{\bigcup_{I \in S_{1}} C_{r, l}}$
$\operatorname{dim} C_{r, l} \Rightarrow \operatorname{dim} W_{r}\left(X_{d, n}\right) \Rightarrow \operatorname{dim} \operatorname{Cactus}_{r}\left(X_{d, n}\right)$.
So we want to study $C_{r, l}$, i.e we want to parameterize the polynomials whose
local apolar scheme has given length.
Any Local AG scheme Γ is the AFFINE apolar scheme of a poly $g \in S$ (unique
up to a unit in the ring of diff. operators): for any LAG
$T^{0} / l, \exists g \in S^{0} S . t . l=g^{1}$

$W_{r}\left(X_{d, n}\right)$ the r-local cactus variety

$$
C_{r, l}=\bigcup_{\text {supp } Z_{l}=\left[d^{d}\right],\left(z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle
$$

$W_{r}\left(X_{d, n}\right)=\overline{\bigcup_{l \in S_{1}} C_{r, l}}$
$\operatorname{dim} C_{r, l} \Rightarrow \operatorname{dim} W_{r}\left(X_{d, n}\right) \Rightarrow \operatorname{dim} \operatorname{Cactus}_{r}\left(X_{d, n}\right)$.
So we want to study $C_{r, l}$, i.e we want to parameterize the polynomials whose
local apolar scheme has given length.
Any Local AG scheme Γ is the AFFINE apolar scheme of a poly $g \in S$ (unique
up to a unit in the ring of diff. operators): for any LAG
$T^{0} / I, \exists g \in S^{0} s . t . I=g^{\perp}$.
$W_{r}\left(X_{d, n}\right)$ the r-local cactus variety

$$
C_{r, l}=\bigcup_{\text {supp } Z_{1}=\left[d^{d}\right],\left(z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle
$$

$W_{r}\left(X_{d, n}\right)=\overline{\bigcup_{l \in S_{1}} C_{r, l}}$
$\operatorname{dim} C_{r, l} \Rightarrow \operatorname{dim} W_{r}\left(X_{d, n}\right) \Rightarrow \operatorname{dim} \operatorname{Cactus}_{r}\left(X_{d, n}\right)$.
So we want to study $C_{r, l}$, i.e we want to parameterize the polynomials whose local apolar scheme has given length.

Any Local AG scheme Γ is the AFFINE apolar scheme of a poly $g \in S$ (unique
up to a unit in the ring of diff. operators): for any LAG
$T^{0} / I, \exists g \in S^{0}{ }_{\text {s.t. }} I=g^{\perp}$.

$W_{r}\left(X_{d, n}\right)$ the r-local cactus variety

$$
C_{r, l}=\bigcup_{\operatorname{supp} Z_{l}=\left[l^{d}\right], l\left(Z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle
$$

$W_{r}\left(X_{d, n}\right)=\overline{\bigcup_{l \in S_{1}} C_{r, l}}$
$\operatorname{dim} C_{r, l} \Rightarrow \operatorname{dim} W_{r}\left(X_{d, n}\right) \Rightarrow \operatorname{dim} \operatorname{Cactus}_{r}\left(X_{d, n}\right)$.
So we want to study $C_{r, l}$, i.e we want to parameterize the polynomials whose local apolar scheme has given length.

Any Local AG scheme Γ is the AFFINE apolar scheme of a poly $g \in S$ (unique up to a unit in the ring of diff. operators): for any LAG $T^{0} / I, \exists g \in S^{0}$ s.t.l $=g^{\perp}$.

Which is the link between F having Γ as minimal apolar local scheme and g being the AFFINE polynomial defining Γ ?

Proposition
$F \in S_{d}, f=F\left(1, x_{1}, \ldots, x_{n}\right)$. Let Γ be a scheme of minimal length
among local schemes supported at $[/]=[1: 0: \ldots: 0]$ that are apolar to
$F \Rightarrow \Gamma$ is the AFFINE apolar scheme to a poly $g \in K\left[x_{1}, \ldots, x_{n}\right]$ whose
deg d tail equals f
So g may be chosen s.t. f is its tail (: Γ is also defined by many g 's that
does not have f as a tail).

Which is the link between F having Γ as minimal apolar local scheme and g being the AFFINE polynomial defining Γ ?
$g=\underbrace{g^{(0)}+\cdots+g^{(d)}}_{\operatorname{deg} d \text { tail of } g}+g^{(d+1)}+\cdots+g^{(1)}, \operatorname{deg}\left(g^{(i)}\right)=i$.
Proposition
$F \in S_{d}, f=F\left(1, x_{1}, \ldots, x_{n}\right)$. Let Γ be a scheme of minimal length
among local schemes supported at $[/]=[1: 0: \ldots: 0]$ that are apolar to
$F \Rightarrow \Gamma$ is the AFFINE apolar scheme to a poly $g \in K\left[x_{1}, \ldots, x_{n}\right]$ whose
deg d tail equals f
So g may be chosen s.t. f is its tail (: Γ is also defined by many g 's that
does not have f as a tail).

Which is the link between F having Γ as minimal apolar local scheme and g being the AFFINE polynomial defining Γ ?

$$
g=\underbrace{g^{(0)}+\cdots+g^{(d)}}_{\operatorname{deg} d \text { tail of } g}+g^{(d+1)}+\cdots+g^{(I)}, \operatorname{deg}\left(g^{(i)}\right)=i
$$

Proposition

$F \in S_{d}, f=F\left(1, x_{1}, \ldots, x_{n}\right)$. Let Γ be a scheme of minimal length among local schemes supported at $[/]=[1: 0: \ldots: 0]$ that are apolar to $F \Rightarrow \Gamma$ is the AFFINE apolar scheme to a poly $g \in K\left[x_{1}, \ldots, x_{n}\right]$ whose deg d tail equals f.

So g may be chosen s.t. f is its tail (: Γ is also defined by many g 's that
does not have f as a tail).

Which is the link between F having Γ as minimal apolar local scheme and g being the AFFINE polynomial defining Γ ?

$$
g=\underbrace{g^{(0)}+\cdots+g^{(d)}}_{\operatorname{deg} d \text { tail of } g}+g^{(d+1)}+\cdots+g^{(I)}, \operatorname{deg}\left(g^{(i)}\right)=i
$$

Proposition

$F \in S_{d}, f=F\left(1, x_{1}, \ldots, x_{n}\right)$. Let Γ be a scheme of minimal length among local schemes supported at $[/]=[1: 0: \ldots: 0]$ that are apolar to $F \Rightarrow \Gamma$ is the AFFINE apolar scheme to a poly $g \in K\left[x_{1}, \ldots, x_{n}\right]$ whose deg d tail equals f.

So g may be chosen s.t. f is its tail (: Γ is also defined by many g 's that does not have f as a tail).

Proof of the Thm

$\operatorname{Cactus}_{r}\left(X_{d, n}\right)=\overline{\bigcup_{r_{1}+\cdots+r_{s}=r} J\left(W_{r_{1}, n}, \ldots, W_{r_{s}, n}\right)}$
$W_{r, n}=\overline{\bigcup_{I \in S_{1}} C_{r, l}}$ the r-local cactus variety
$C_{r, l}=\bigcup_{\text {supp }} Z_{l}=\left[d^{d}\right],\left(Z_{l}\right) \leq r, ~\left\langle Z_{l}\right\rangle$

Parameterize the set of poly's $g \in K\left[x_{1}, \ldots x_{n}\right]$ whose affine local apolar
 $f \in K\left[x_{1}, \ldots, x_{n}\right]$ of g 's.
$C_{r, l}=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid f=g_{\leq d}\right.$ for some $g \in S_{\text {loc }}$ with $\left.\operatorname{dim} \operatorname{Diff}(g) \leq r\right\}$

Proof of the Thm

$C_{r, I}=\bigcup_{\text {supp } Z_{i}=\left[l^{d}\right], l\left(Z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle=$
$=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid f=g_{\leq d}\right.$ for some $g \in S_{l o c}$ with $\left.\operatorname{dim} \operatorname{Diff}(g) \leq r\right\}$
Parameterize the family of cubic tails $f \in K\left[x_{1}, \ldots, x_{n}\right]$ of g 's.
Find a discrete invariant for LAG schemes, parameterize the cubic tails of
all polynomials that define a scheme with given invariant.
The Hilbert function is not good: Ex.:
$g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$

They have the same HF:[$\left.\begin{array}{lllll}1 & 4 & 3 & 2 & 1\end{array}\right]$ but different degree 3

Proof of the Thm

$C_{r, I}=\bigcup_{\text {supp } Z_{l}=\left[l^{d}\right], l\left(Z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle=$
$=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid f=g_{\leq d}\right.$ for some $g \in S_{\text {loc }}$ with $\left.\operatorname{dim} \operatorname{Diff}(g) \leq r\right\}$
Parameterize the family of cubic tails $f \in K\left[x_{1}, \ldots, x_{n}\right]$ of g 's.
Find a discrete invariant for LAG schemes, parameterize the cubic tails of all polynomials that define a scheme with given invariant.

The Hilbert function is not good: Ex.:

They have the same HF:[1

Proof of the Thm

$C_{r, l}=\bigcup_{\text {supp } Z_{l}=\left[l^{d}\right], l\left(Z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle=$
$=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid f=g_{\leq d}\right.$ for some $g \in S_{\text {loc }}$ with $\left.\operatorname{dim} \operatorname{Diff}(g) \leq r\right\}$
Parameterize the family of cubic tails $f \in K\left[x_{1}, \ldots, x_{n}\right]$ of g 's.
Find a discrete invariant for LAG schemes, parameterize the cubic tails of all polynomials that define a scheme with given invariant.

The Hilbert function is not good: Ex.:
$g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$
$g_{2}=x^{4}+y^{4}+z^{3}+t^{2}$
They have the same HF:[$\left.\begin{array}{lllll}1 & 4 & 3 & 2 & 1\end{array}\right]$ but different degree 3 tails.

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]): $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & = & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & & & & & \\
\Delta_{1} & = & & & & \\
\Delta_{2} & = & & & &
\end{array}
$$

Partials of order 0:
It has deg 4 (so it will contribute to the last column)

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]): $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & = & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & & & & & \\
\Delta_{1} & = & & & & \\
\Delta_{2} & = & & & &
\end{array}
$$

Partials of order $0: \quad g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$
It has deg 4 (so it will contribute to the last column)
It is the only one partial of degree 4 (so we have to put a 1 in the last colump order $0+$ degree $4+i=\operatorname{deg}\left(g_{1}\right)=4$ where i is for $\Delta_{i}($ so $i=0 \Rightarrow 1$ in tt

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]): $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & = & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & & & & & \\
\Delta_{1} & = & & & & \\
\Delta_{2} & = & & & &
\end{array}
$$

Partials of order 0: $\quad g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$
It has deg 4 (so it will contribute to the last column)
It is the only one partial of degree 4 (so we have to put a 1 in the last colump ${ }^{\text {R }} \mathrm{E}$ ST order $0+$ degree $4+i=\operatorname{deg}\left(g_{1}\right)=4$ where i is for $\Delta_{i}($ so $i=0 \Rightarrow 1$ in tt

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]): $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & = & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & & & & & \\
\Delta_{1} & = & & & & \\
\Delta_{2} & = & & & &
\end{array}
$$

Partials of order 0: $\quad g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$
It has deg 4 (so it will contribute to the last column)
It is the only one partial of degree 4 (so we have to put a 1 in the last column)
order $0+$ degree $4+i=\operatorname{deg}\left(g_{1}\right)=4$ where i is for Δ_{i} (so $i=0 \Rightarrow$

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]): $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & = & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & & & & & \\
\Delta_{1} & = & & & & & \\
\Delta_{2} & = & & & & &
\end{array}
$$

Partials of order 0: $\quad g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$
It has deg 4 (so it will contribute to the last column)
It is the only one partial of degree 4 (so we have to put a 1 in the last column)
order $0+$ degree $4+i=\operatorname{deg}\left(g_{1}\right)=4$ where i is for Δ_{i} (so $i=0 \Rightarrow 1$ in the row of Δ_{0})

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]): $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & = & \mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & & & & & 1 \\
\Delta_{1} & = & & & & & \\
\Delta_{2} & = & & & & &
\end{array}
$$

Partials of order 0 : $\quad g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}$
It has deg 4 (so it will contribute to the last column)
It is the only one partial of degree 4 (so we have to put a 1 in the last column)
order $0+$ degree $4+i=\operatorname{deg}\left(g_{1}\right)=4$ where i is for Δ_{i} (so $i=0 \Rightarrow 1$ in the row of Δ_{0})

Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]):
$g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}:$

$$
\begin{array}{rllllll}
\mathbf{H} & =\mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & 1 & 2 & 3 & 2 & 1 \\
\Delta_{1} & = & 0 & 0 & 0 & 0 & \\
\Delta_{2} & = & 0 & 2 & 0 & &
\end{array}
$$

Order 0: $g_{1}=x^{4}+y^{3} x+z^{2}+t^{2},\left(0+4=4 \Rightarrow \Delta_{0}\right)$
Order 1: $\partial_{x}=4 x^{3}+y^{3}, \partial_{y}=3 x y^{2},\left(1+3=4 \Rightarrow \Delta_{0}\right)$

$$
\partial_{z}=2 z, \partial_{t}=2 t\left(1+1=2 \Rightarrow \Delta_{2}\right)
$$

Order 2: $\partial_{x x}=12 x^{2}, \partial_{x y}=3 y^{2}, \partial_{y y}=6 x y,\left(2+2=4 \Rightarrow \Delta_{0}\right) \partial_{z z}=\partial_{t t}=2$
Order 3: $\partial_{x x x}=24 x \sim \partial_{y y y}=6 x, \partial_{x y y}=6 y\left(3+1=4 \Rightarrow \Delta_{0}\right)$
Order 4: $1\left(4+0=4 \Rightarrow \Delta_{0}\right)$.

Proof of the Thm

$$
g_{1}=x^{4}+y^{3} x+z^{2}+t^{2}
$$

$$
\begin{array}{rllllll}
\mathbf{H} & =\mathbf{1} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\
\Delta_{0} & = & 1 & 2 & 3 & 2 & 1 \\
\Delta_{1} & = & 0 & 0 & 0 & \\
\Delta_{2} & =0 & 2 & 0 & &
\end{array}
$$

$g_{2}=x^{4}+y^{4}+z^{3}+t^{2}:$

$$
\begin{aligned}
& H=\begin{array}{lllll}
1 & 4 & 3 & 2 & 1
\end{array} \\
& \Delta_{0}=12221 \\
& \Delta_{1}=0110 \\
& \Delta_{2}=010
\end{aligned}
$$

Proof of the Thm

$g \in S, \operatorname{deg}(g)=d, g^{\perp} \subset T, T_{g}:=T / g^{\perp} \simeq \operatorname{Diff}(g)=\{\psi(g) \mid \psi \in T\}$

Iarrobino

T_{f} is local \Rightarrow one max ideal m.

- m-adic filtration:

$$
\begin{aligned}
& T_{f}=m^{0} \supset \cdots \supset m^{d+1}=0 \\
& T_{f}^{*}=\bigoplus_{i=0}^{d} \frac{m^{i}}{m^{i+1}}
\end{aligned}
$$

- Löewy filtration:

$$
\begin{aligned}
& T_{f}=\left(0: m^{d+1}\right) \supset \cdots \supset(0: \\
& m) \supset 0
\end{aligned}
$$

Interpr. in terms of partial of f

- $m^{i} \stackrel{\tau}{\mapsto}$ Partial of order at least i of $f(\operatorname{deg} \leq d-i)$ (Order of a partial f^{\prime} of $f=$ largest order of $\psi \in T$ s.t. $\left.f^{\prime}=\psi(f)\right)$
- $\left(0: m^{i}\right) \stackrel{\tau}{\mapsto}$
$\operatorname{Diff}(f)_{i-1}=$ partials of deg at most $i-1$ of f

Proof of the Thm

Order filtration: $\operatorname{Diff}(f)=\operatorname{Diff}(f)^{0} \supseteq \operatorname{Diff}(f)^{1} \supseteq \cdots \supseteq \operatorname{Diff}(f)^{d}$
Degree filtration: $\operatorname{Diff}(f)=\operatorname{Diff}(f)_{d} \supseteq \operatorname{Diff}(f)_{d-1} \supseteq \cdots \supseteq \operatorname{Diff}(f)_{0}$
Different filtrations (f not homog)
but

$$
\frac{\left(0: m^{i}\right)}{\left(0: m^{i-1}\right)} \cong\left(\frac{m^{i-1}}{m^{i}}\right)^{\vee} \quad \frac{\operatorname{Diff}(f)_{i+1}}{\operatorname{Diff}(f)_{i}} \simeq \frac{\operatorname{Diff}(f)^{i+1}}{\operatorname{Diff}(f)^{i}}
$$

In particular

$$
H_{f}(i)=\operatorname{dim}_{K}(\operatorname{Diff}(f))_{i}-\operatorname{dim}_{K}\left(\operatorname{Diff}(f)_{i-1}\right)
$$

has symmetric decomposition:

$$
H=\sum_{a \geq 0} \Delta_{a}
$$

each Δ_{a} symm. around $(d-a) / 2$, i.e. $\Delta_{a}(i)=\Delta_{a}(d-a-i)$

Proof of the Thm

$\operatorname{Cactus}_{r}\left(X_{d, n}\right)=\overline{\bigcup_{r_{1}+\cdots+r_{s}=r} J\left(W_{r_{1}, n}, \ldots, W_{r_{s}, n}\right)}$
$W_{r, n}=\bigcup_{t \in S_{1}} C_{r, I}$ the r-local cactus variety
$C_{r, I}=\bigcup_{\text {supp } Z_{l}=\left[l^{d}\right], l\left(Z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle=$
$=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid f=g_{\leq d}\right.$ for some $g \in S_{\text {loc }}$ with $\left.\operatorname{dim} \operatorname{Diff}(g) \leq r\right\}$
Found an invariant to stratify poly's with the same degree 3-tail i.e. for poly's with loc. apolar scheme with given length.

Then: Compute the dimension of all the poly's with a given HF decomposition (i.e. of $C_{r, l}$)

Proof of the Thm

$\operatorname{Cactus}_{r}\left(X_{d, n}\right)=\overline{\bigcup_{r_{1}+\cdots+r_{s}=r} J\left(W_{r_{1}, n}, \ldots, W_{r_{s}, n}\right)}$
$W_{r, n}=\bigcup_{I \in S_{1}} C_{r, l}$ the r-local cactus variety
$C_{r, I}=\bigcup_{\text {supp } Z_{l}=\left[l^{d}\right], l\left(Z_{l}\right) \leq r}\left\langle Z_{l}\right\rangle=$
$=\left\{[F] \in \mathbb{P}\left(S_{d}\right) \mid f=g_{\leq d}\right.$ for some $g \in S_{\text {loc }}$ with $\left.\operatorname{dim} \operatorname{Diff}(g) \leq r\right\}$
Found an invariant to stratify poly's with the same degree 3-tail i.e. for poly's with loc. apolar scheme with given length.

Then: Compute the dimension of all the poly's with a given HF decomposition (i.e. of $C_{r, I}$)

$$
\begin{gathered}
V(3, \Delta, n)=\left\{f_{\leq 3} \mid f \in K\left[x_{1}, \ldots, x_{n}\right], \Delta_{f}=\Delta\right\} \\
C_{r, l}=\bigcup_{l(\Delta) \leq r} V(3, \Delta, n)
\end{gathered}
$$

Proof of the Thm

Proposition

$r \geq 7, v(3, \Delta, n)$ attains its max for

$$
\left\{\begin{array}{l}
H F=(1, m-1, m-1,1), \Delta=(1, m-1, m-1,1), r=2 m \\
H F=(1, m-1, m-1,1,1), \Delta=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & m-2 & m-2 & 0 & 0
\end{array}\right), r=2 m+1
\end{array}\right.
$$

and

$$
\operatorname{dim} V(3, \Delta, n)=\left\{\begin{array}{l}
M_{e}:=\binom{m+2}{3}+2 m(n-m)+3 m-n-1, r=2 m, \\
M_{o}:=\binom{m+2}{3}+2 m(n-m)+3 m-2, r=2 m+1 .
\end{array}\right.
$$

Proof of the Thm

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ with even local cactus rank $2 m, m \leq n$ is projectively equivalent to some

$$
F=f_{3}+x_{0} f_{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0}
$$

where

$$
\begin{array}{lc}
f_{3} \in & \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3}, \\
f_{2} \in & \left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
f_{1} \in & \left\langle x_{1}, \ldots, x_{n}\right\rangle, \\
f_{0} \in & \mathbb{C}
\end{array}
$$

$H F(f)=(1, m-1, m-1,1)$
The forms of local cactus rank $2 n$ form a family of codimension the space of cubic forms $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{3}$.

Proof of the Thm

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ with even local cactus rank $2 m, m \leq n$ is projectively equivalent to some

$$
F=f_{3}+x_{0} f_{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0}
$$

where

$$
\begin{array}{lc}
f_{3} \in & \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3} \\
f_{2} \in & \left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
f_{1} \in & \left\langle x_{1}, \ldots, x_{n}\right\rangle \\
f_{0} \in & \mathbb{C}
\end{array}
$$

$$
H F(f)=(1, m-1, m-1,1)
$$

The forms of local cactus rank $2 n$ form a family of codimension

Proof of the Thm

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ with even local cactus rank $2 m, m \leq n$ is projectively equivalent to some

$$
F=f_{3}+x_{0} f_{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0}
$$

where

$$
\begin{array}{lc}
f_{3} \in & \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3} \\
f_{2} \in & \left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
f_{1} \in & \left\langle x_{1}, \ldots, x_{n}\right\rangle \\
f_{0} \in & \mathbb{C}
\end{array}
$$

$H F(f)=(1, m-1, m-1,1)$
The forms of local cactus rank $2 n$ form a family of codimension $\binom{n-1}{2}+1$ in the space of cubic forms $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{3}$.

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, with odd local cactus rank $2 m+1, m \leq n$ is projectively equivalent to some

$$
\begin{aligned}
& F=f_{3}+x_{m} x_{1}^{2}+x_{0} f_{2}+x_{0} x_{m}^{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0} \\
& f_{3} \in \quad \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3}, \\
& f_{2} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
& f_{1} \in \quad\left\langle x_{1}, \ldots, x_{n}\right\rangle, \\
& f_{0} \in \\
& \mathbb{C} \text {. }
\end{aligned}
$$

$\operatorname{HF}(f)=(1, m, m, 1)$, while $g=x_{1}^{4}+f$ has the same degree 3 tails of f so $g{ }^{\perp}$ defines a local anolar scheme that belongs to F^{\perp} and $\operatorname{HF}(g)=(1, m-1, m-1,1,1)$ whose length is smaller than the length of $(1, m, m, 1)$. (NB: $\operatorname{deg} g=4>3=\operatorname{deg} f)$. The forms of local cactus rank $2 n+1, n>3$ form a family of codimensior 2 , $\binom{n-2}{2}-1$ in the space of cubic forms $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{3}$.

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, with odd local cactus rank $2 m+1, m \leq n$ is projectively equivalent to some

$$
\begin{aligned}
& F=f_{3}+x_{m} x_{1}^{2}+x_{0} f_{2}+x_{0} x_{m}^{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0} \\
& f_{3} \in \quad \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3}, \\
& f_{2} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
& f_{1} \in \quad\left\langle x_{1}, \ldots, x_{n}\right\rangle, \\
& f_{0} \in \\
& \mathbb{C} \text {. }
\end{aligned}
$$

$H F(f)=(1, m, m, 1)$,
defines a local apolar scheme that belongs to F^{\perp} and
$H F(g)=(1, m-1, m-1,1,1)$ whose length is smaller than the length of
$(1, m, m, 1)$. (NB: $\operatorname{deg} g=4>3=\operatorname{deg} f)$.
The forms of local cactus rank $2 n+1, n>3$ form a family of codimensior $n^{2}=1$
$\binom{n-2}{2}-1$ in the space of cubic forms $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{3}$.

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, with odd local cactus rank $2 m+1, m \leq n$ is projectively equivalent to some

$$
\begin{aligned}
& F=f_{3}+x_{m} x_{1}^{2}+x_{0} f_{2}+x_{0} x_{m}^{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0} \\
& f_{3} \in \quad \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3}, \\
& f_{2} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
& f_{1} \in \quad\left\langle x_{1}, \ldots, x_{n}\right\rangle, \\
& f_{0} \in \\
& \mathbb{C} \text {. }
\end{aligned}
$$

$H F(f)=(1, m, m, 1)$, while $g=x_{1}^{4}+f$ has the same degree 3 tails of f so g^{\perp} defines a local apolar scheme that belongs to F^{\perp} and $H F(g)=(1, m-1, m-1,1,1)$ whose length is smaller than the length of $(1, m, m, 1)$. (NB: $\operatorname{deg} g=4>3=\operatorname{deg} f)$.

A general cubic form $F \in S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, with odd local cactus rank $2 m+1, m \leq n$ is projectively equivalent to some

$$
\begin{aligned}
& F=f_{3}+x_{m} x_{1}^{2}+x_{0} f_{2}+x_{0} x_{m}^{2}+x_{0}^{2} f_{1}+x_{0}^{3} f_{0} \\
& f_{3} \in \quad \mathbb{C}\left[x_{1}, \ldots, x_{m-1}\right]_{3}, \\
& f_{2} \in\left\langle x_{1}, \ldots, x_{n}\right\rangle \cdot\left\langle x_{1}, \ldots, x_{m-1}\right\rangle, \\
& f_{1} \in \quad\left\langle x_{1}, \ldots, x_{n}\right\rangle, \\
& f_{0} \in \\
& \mathbb{C} \text {. }
\end{aligned}
$$

$H F(f)=(1, m, m, 1)$, while $g=x_{1}^{4}+f$ has the same degree 3 tails of f so g^{\perp} defines a local apolar scheme that belongs to F^{\perp} and $H F(g)=(1, m-1, m-1,1,1)$ whose length is smaller than the length of $(1, m, m, 1)$. (NB: $\operatorname{deg} g=4>3=\operatorname{deg} f$).
The forms of local cactus rank $2 n+1, n>3$ form a family of codimension $\binom{n-2}{2}-1$ in the space of cubic forms $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{3}$.

THANKS!

