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Waring rank
F € S4 = K[xo, - - -, Xn]4 homog. of deg d (charK # 2,3)
Definition
Waring rank: minr € Ns.t. F = Lf 4+ -+ Lf with L; € §;
Veronese: vg : P(S1) — P(Sq), [L] = [L9]
e minr € Ns.t. [F] € r-th secant space to v4(P(51)) := Xa.n

e The shortest length of a smooth finite scheme ' C P(S5;) s.t.
[Fl € wa(M)), T =A{[La], .., [Le]}

o o [O Vd
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Cactus rank—Definition
Remove “smooth”
Definition
Cactus Rank: minr € N s.t. 3 finite (Gor.) scheme I of length r s.t.
[F] € (va(I))
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Cactus rank—Definition
Remove “smooth”

Definition
Cactus Rank: minr € N s.t. 3 finite (Gor.) scheme I of length r s.t.
[F] € (va(I))

va(P(S1))

Sec,(Xd,n) = UreHilb,IP(Sl),Fsmooth<Vd(r)> Secant variety to Veronese

Cactus,(Xa,n) = Ureni,p(s,)(va(I")) Cactus variety
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1999 larrobino and Kanev: scheme length.
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Cactus rank—History

1999 larrobino and Kanev: scheme length.

2010 Buczynska, Buczynski:

o Definition of Cactus variety;

o Study its relation with Secant variety,

e if d>2rand r </ <d— rthe cactus rank = maximal rank of a
catalecticant matrix of order i ([B,Brachat, Mourrain]-2014) =
differential length in [IK], catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank = generalized rank.

2012 B, Ranestad: the general cubic form in n+ 1 variables has cactus rank at
most 2n + 2.

2014 Casnati, Jelisiejew, Notari: local Gor. scheme of length < 13 is

smoothable = Cactus,(X3,,) = Sec,(X3,n) when r < 13.
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Theorem

We focus on CUBIC forms

Theorem
When r < 17, then

dim Cactus,(X3,,) = dim Sec,(X3,).

When 18 < r < 2n+ 2, then
dim Cactus,(Xz,,) = dim W,(X3,,) > dim Sec,(X3,,) and

dim Cactus,(X3,,) =

mm{ rl ——r +rn+3 S5r—2, ('”3'3)—1},ifr218even,

mln{—r — —r +rn+ @r— ?—2,(";3) — 1},ifr2 18 odd.

5/26



Apolarity
S=Klxo,---s %)y, T=K[¥0,---,¥n]

[B=al if g >
X if 6> a,
Ve (X[ﬁ]) _
0 otherwise.

51 and T; are dual spaces.

T is naturally the coordinate ring of P(5;).
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S=Klxo,---s %)y, T=K[¥0,---,¥n]
[B—al if B>

X if B3> a,
Yo (<) =

0 otherwise.
51 and T; are dual spaces.
T is naturally the coordinate ring of P(5;).
Definition
f €S. Apolar ideal: fX = {pc T|p(f)=0}.
I CP(S;)isapolarto FESiflrC F-CT.
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Apolarity

S=Klxo,---s %)y, T=K[¥0,---,¥n]

[B=al if g >
X if 6> a,
Ve (X[ﬁ]) _
0 otherwise.

51 and T; are dual spaces.

T is naturally the coordinate ring of P(5;).
Definition

f €S. Apolar ideal: fX = {pc T|p(f)=0}.
I CP(S;)isapolarto FESiflrC F-CT.
Lemma (Apolarity Lemma)

I C P(51) is apolar to F € Sq iff [F] € (vq(T)) C P(Sq).

6
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Apolarity

LlaEE Vd S

va(P(S1))

e crk(F) =minr € Ns.it. 3T € Hilb,(P(51)) : [F] € (va(I))
e crtk(F) =minr € Ns.t. 3T € Hilb,(P(51)) : T is apolar to F
e crk(F) =minr € Ns.t. 3T € Hilb,(P(S5;)) : Ir € F+

We start with F € Sy, we can compute F+ C T, then we want to

describe the minimal I' C Hilb,(P(51)) : Ir € F*-.




Local apolar scheme

In order to study the ideals contained in F- C T, the first natural ring to

study is T/F*:
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Local apolar scheme

In order to study the ideals contained in F- C T, the first natural ring to
study is T/F*:

Properties: T;:= T/f* local Artinian Gorenstein ring ([IK]):
e Local: The image of Ty in T¢ generates the only max ideal m;
e Artinian: Ty is finitely generated as K-mod,;
e Gor: T¢ has 1-dim’l socle (the annihilator of the max ideal).

If Fis homog. = T/F~ graded.
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Local apolar scheme

F € Sy =T apolar scheme locally Gor. =
F=ryuU---Urly, with I; local A.G.

F=F +--+Fsst. [;apolar to F;




Local cactus rank
ler(F) =Local cactus rank of F = min,ey s.t. 3 local T € Hilb,(P(51)):

[F] € (va())
& isapolarto F < Ir C F*
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Local cactus rank

ler(F) =Local cactus rank of F = min,ey s.t. 3 local T € Hilb,(P(51)):

[F] € (va())
& isapolarto F < Ir C F*

W, (Xa,n) == {[F] € P(Sq) | lcr(F) = r} : r-local cactus variety

Cactus,(Xq,n) = {[F] € P(Sq) [ cr(F) = r} =

= U J(er(Xd,")""? Wrs(Xd,"))
rebre=r

dim W,,(Xg.») = dim Cactus,(Xq4,n)

10/26



Local cactus rank

Theorem
If18 < r<2n+2 and n > 8, then

dim Cactus, (X3 ,) = dim W,(X3 ,)
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Local cactus rank

Theorem
If18 < r<2n+2 and n > 8, then

dim Cactus, (X3 ,) = dim W,(X3 ,)

So the cactus rank of a general cubic form can be computed locally.

® dim W,(Xq,) =7

® How to compute the local cactus rank?

11/26



W, (X4,n) the r-local cactus variety

Crit = Usuppzi=ie1,12) < (41)

W, (Xa,n) = U1651 Cri
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W, (X4,n) the r-local cactus variety

Crt = Usuppzi=pe1,12 < {Z1)

W, (Xa,n) = U/es1 Cri
dim C,; = dim W,(Xq4,,) = dim Cactus,(Xq,s).
So we want to study G, i.e we want to parameterize the polynomials whose

local apolar scheme has given length.
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W, (X4,n) the r-local cactus variety

Crt = Usuppzi=pe1,12 < {Z1)

Wi (Xan) = Upes, Cri

dim C;,; = dim W,(Xg4,n) = dim Cactus,(Xq,n).

So we want to study G, i.e we want to parameterize the polynomials whose
local apolar scheme has given length.

Any Local AG scheme T is the AFFINE apolar scheme of a poly g € S (unique

up to a unit in the ring of diff. operators): for any LAG

T°/1,3g € S%.t.1 =gt

12/26



Which is the link between F having I as minimal apolar local scheme and

g being the AFFINE polynomial defining ['?
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Which is the link between F having I as minimal apolar local scheme and

g being the AFFINE polynomial defining ['?

g — g(o) _|_ e _|_ g(d) +g(d+1) + o e + g‘(/)v deg(g(’)) = ['_
N—_————

deg d tail of ¢
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Which is the link between F having I as minimal apolar local scheme and
g being the AFFINE polynomial defining ['?
g=g9 4. . 4 g 4gldt) L. 4 gD deg(gl)) = i.

deg d tail of ¢
Proposition
FeSy f=F(Q1,x1,...,xn). Let T be a scheme of minimal length
among local schemes supported at [[| =[1:0:...: 0] that are apolar to
F =T is the AFFINE apolar scheme to a poly g € K[xy,...,x,] whose
deg d tail equals f.
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Which is the link between F having I as minimal apolar local scheme and
g being the AFFINE polynomial defining ['?
g=g9 4. . 4 g 4gldt) L. 4 gD deg(gl)) = i.

deg d tail of ¢
Proposition
FeSy f=F(Q1,x1,...,xn). Let T be a scheme of minimal length
among local schemes supported at [[| =[1:0:...: 0] that are apolar to
F =T is the AFFINE apolar scheme to a poly g € K[xy,...,x,] whose
deg d tail equals f.

So g may be chosen s.t. f is its tail (: T is also defined by many g's that

does not have f as a tail).
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Proof of the Thm

Cactus,(Xq,n) = Ur1+»-~+r5:r JWipny ooy Wi n)

W:.n = U,Es1 C:,/ the r-local cactus variety

Cri = Usuppz=ti12)< (1)

Parameterize the set of poly's g € K|[xi, ... xa] whose affine local apolar

. P i . . S
scheme has given length. 22" Parameterize the family of cubic tails
f e K[xy,...,xp) of g's.

C,.i={[F] € P(S4)|f = g<a for some g € Sj,c with dim Diff(g) < r}
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Proof of the Thm

Crt = Usuppzi=tie1. 1029\ 21) =
= {[F] € P(Sy)|f = g<q for some g € Sjoc with dim Diff(g) < r}

Parameterize the family of cubic tails f € K[xy,...,x,] of g's.
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Proof of the Thm

Crit = Usuppzi=pie1,1029<- (21 =
= {[F] € P(Sy)|f = g<q for some g € Sjoc with dim Diff(g) < r}

Parameterize the family of cubic tails f € K[xy,...,x,] of g's.
Find a discrete invariant for LAG schemes, parameterize the cubic tails of

all polynomials that define a scheme with given invariant.
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Proof of the Thm

Cri = Usuppzi=ier 292 (41) =
= {[F] € P(54)|f = g<q for some g € Sjoc with dim Diff(g) < r}

Parameterize the family of cubic tails f € K[xy,...,x,] of g's.

Find a discrete invariant for LAG schemes, parameterize the cubic tails of
all polynomials that define a scheme with given invariant.

The Hilbert function is not good: Ex.:

gi=x x4+ 242

G =x"+y'+27+1

They have the same HF:[ 1 4 3 2 1 ] but different degree 3 tails;

15/26



The HF symmetric decomposition

g =x"+yx+22+t%

Proof of the Thm

is the good invariant (larrobino [Memoirs]):

1 4 3 21

16
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The HF symmetric decomposition is the good invariant (larrobino [Memoirs]):

g =x"+yx+22+t%

H =14 3 21

Partials of order 0: g1 = x* + y3x + 22 4+ ¢*

It has deg 4 (so it will contribute to the last column)

It is the only one partial of degree 4 (so we have to put a I in the last column)
order 0+ degree 4 + i = deg(g1) = 4 where i is for Aj (so i =0 =1 in the
row of Ag)
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Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]):

g =x"+yx+22+t%

H =143 21
Do = 1
A =
Ny =

Partials of order 0: g1 = x* + y3x + 22 4+ ¢*

It has deg 4 (so it will contribute to the last column)

It is the only one partial of degree 4 (so we have to put a I in the last column)
order 0+ degree 4 + i = deg(g1) = 4 where i is for Aj (so i =0 =1 in the
row of Ag)
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Proof of the Thm

The HF symmetric decomposition is the good invariant (larrobino [Memoirs]):

g1:X4+y3x+z2+t2:

H =14 3 2 1
Ao =1 2 3 2 1
Ay = 0 0 0 O

A = 0 0

Order 0: g1 =x* +y3x+ 22+ 2, (0+4=4= Ag)
Order 1: 9, = 4x> +y*, 8, = 3xy°, (1 +3 =4 = Ao)
0. =220 =2t (1+1=2= Ay)
Order 2: O = 1252, Dxy = 3y?, 8,y = bxy, (2+2=4 = Ag) Oz = O =2
Order 3: O = 24x ~ Oyyy = 6x, Oxy =06y (3+1=14= Ao)
Order 4: 1 (4+0=14= Ay).
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g1:X4+y3x+z2+t2:

g =x"+y'+2+1t%

Ag
Ay

AV
Ay
As

o O = =

o O =

N O N b

o= N D

o O w W

o = N W

Proof of the Thm
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Proof of the Thm

g€ S deg(g)=d, g" C T, T,:=T/g" ~ Diff(g) = {v(g) | € T}

larrobino

T+ is local = one max ideal m.

e m-adic filtration:
Tf:mOD"'Dmd+1:O

i

* d m
Tf - @,‘:0 mi+L

® LGewy filtration:

Tr=0:m™)>...5(0:

m) D0

Interpr. in terms of partial of 1

e m' Partial of order at least i
of f (deg < d — i) (Order of a
partial f' of f = largest order
of p € T s.t. £ =1(f))

o (0:m)%

Diff (f)i—1 =partials of deg at

most i — 1 of

20/26



Proof of the Thm
Order filtration: Diff(f) = Diff(f)° D Diff (f)* 2 --- D Diff ()
Degree filtration: Diff (f) = Diff(f)q 2 Diff(f)g—1 2 -+ 2 Diff(f)o

Different filtrations (f not homog)

but
0:m i1\ V Diff(f)isa _ Diff(f)™!
(é '”7)1) ~ (’" , ) Diff(f); ~ Diff(f)
m'- m'
In particular

Hf(l) = dImK(lef(f)), — dimK(Diff(f);_1)

has symmetric decomposition:

each A, symm. around (d — a)/2, i.e. Ay(i) = As(d —a—1)



Proof of the Thm

Cactus, (Xa.n) = Uy oogrimr J(Winy s Wi )

W= U,es1 C,; the r-local cactus variety

Crt = Usuppzi=pi1(2y< (1) =
= {[F] € P(54)|f = g<q for some g € Sjoc with dim Diff(g) < r}
Found an invariant to stratify poly’s with the same degree 3-tail i.e. for

poly’s with loc. apolar scheme with given length.
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Proof of the Thm

Cactus, (Xa.n) = Uy oogrimr J(Winy s Wi )

W= U,es1 C,; the r-local cactus variety

Cri = Usuppz=pi91, 12 <(Z1) =

= {[F] € P(54)|f = g<q for some g € Sjoc with dim Diff(g) < r}
Found an invariant to stratify poly’s with the same degree 3-tail i.e. for
poly’s with loc. apolar scheme with given length.

Then: Compute the dimension of all the poly's with a given HF

decomposition (i.e. of C; )
V(37 Aa n) = {f§3 | fe K[Xh v aXn]a Af = A}

Ci= |J v3.4an)

(A)<r

22/26



Proof of the Thm

Proposition

r>17, v(3,A,n) attains its max for

HF=(1,m-1m-11),A=(1,m—1m—11),r=2m,

1 1 1 1 1
HF=(1,m-1m-1,1,1),A = ,r=2m+1
0 m-—2 m—-2 0 O
and
Me:= (") +2m(n—m)+3m—n—1,r =2m,
dim V(3,A,n) = (") ( )

Mo := ("7?) +2m(n— m)+3m—2,r =2m+1.
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Proof of the Thm

A general cubic form F € S = C|xo, .. ., xs] with even local cactus rank

2m, m < n is projectively equivalent to some
F="fi+xhb+xh+xh
where
fz € Clxt, - . - Xm—1]3,

€ (X1, .eey Xn) (XL, eey Xm—1),

fi € (X1, ey Xn),
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Proof of the Thm

A general cubic form F € S = C|xo, .. ., xs] with even local cactus rank

2m, m < n is projectively equivalent to some
F="fi+xhb+xh+xh
where
fz € Clxt, - . - Xm—1]3,
€ (X1, .eey Xn) (XL, eey Xm—1),
fi € (X1, vey Xn),
fo € C.
HF(f)=(1,m—1,m—1,1)

The forms of local cactus rank 2n form a family of codimension (";') + 1'in

the space of cubic forms C[x, .. ., Xa]3.
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A general cubic form F € S = C|xo, . .., Xa], with odd local cactus rank

2m+ 1, m < n is projectively equivalent to some

F =+ XmXi + Xof2 4+ x0Xp + X3 i + X3 fo

f; € (C[X1,...,Xm,1]3,
fr € (X1, eey Xn) * (XL, vey Xm—1),
f € (X1, vey Xn),

fo € C.
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A general cubic form F € S = C|xo, . .., Xa], with odd local cactus rank

2m+ 1, m < n is projectively equivalent to some

F =+ XmXi + Xof2 4+ x0Xp + X3 i + X3 fo

f; € (C[X1,...,Xm,1]3,
fr € (X1, eey Xn) * (XL, vey Xm—1),
f € (X1, vey Xn),

fo € C.

HF(f) = (1,m,m,1),
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A general cubic form F € S = C|xo, . .., Xa], with odd local cactus rank

2m+ 1, m < n is projectively equivalent to some

F =+ XmXi + Xof2 4+ x0Xp + X3 i + X3 fo

fz € Clxa, - -y Xm—1]3,

fr € (X1, eey Xn) * (XL, vey Xm—1),

f € (X1, vey Xn),

fo € C.
HF(f) = (1, m, m,1), while g = x{ 4 f has the same degree 3 tails of f so g*
defines a local apolar scheme that belongs to F and

HF(g) = (1,m—1,m —1,1,1) whose length is smaller than the length of
(1,m, m,1). (NB: degg =4 > 3 =degf).
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A general cubic form F € S = C|xo, . .., Xa], with odd local cactus rank

2m+ 1, m < n is projectively equivalent to some

F =+ XmXi + Xof2 4+ x0Xp + X3 i + X3 fo

f; € (C[X1,...,Xm,1]3,
fr € (X1, eey Xn) * (XL, vey Xm—1),
f € (X1, vey Xn),

fo € C.

HF(f) = (1, m, m,1), while g = x{ 4 f has the same degree 3 tails of f so g*
defines a local apolar scheme that belongs to F and

HF(g) = (1,m—1,m —1,1,1) whose length is smaller than the length of
(1,m, m,1). (NB: degg =4 > 3 =degf).

The forms of local cactus rank 2n+1,n > 3 form a family of codimension

("3%) — 1 in the space of cubic forms C[xo, . . . , Xas.
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THANKS!




