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Waring rank

F ∈ Sd = K [x0, . . . , xn]d homog. of deg d (charK 6= 2, 3)

Definition

Waring rank: min r ∈ N s.t. F = Ld
1 + · · ·+ Ld

r with Li ∈ S1

Veronese: νd : P(S1)→ P(Sd), [L] 7→ [Ld ]

• min r ∈ N s.t. [F ] ∈ r -th secant space to νd(P(S1)) := Xd,n

• The shortest length of a smooth finite scheme Γ ⊂ P(S1) s.t.

[F ] ∈ 〈νd(Γ)〉, Γ = {[L1], . . . , [Lr ]}
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Cactus rank–Definition

Remove “smooth”

Definition

Cactus Rank: min r ∈ N s.t. ∃ finite (Gor.) scheme Γ of length r s.t.

[F ] ∈ 〈νd(Γ)〉

Secr (Xd,n) = ∪Γ∈HilbrP(S1),Γsmooth〈νd(Γ)〉 Secant variety to Veronese

Cactusr (Xd,n) = ∪Γ∈HilbrP(S1)〈νd(Γ)〉 Cactus variety
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Cactus rank–History

1999 Iarrobino and Kanev: scheme length.

2010 Buczyńska, Buczyński:

• Definition of Cactus variety;

• Study its relation with Secant variety,

• if d ≥ 2r and r ≤ i ≤ d − r the cactus rank = maximal rank of a

catalecticant matrix of order i ([B,Brachat, Mourrain]–2014) =

differential length in [IK], catalecticant rank in [BBM].

2014 B, Brachat, Mourrain: catus rank = generalized rank.

2012 B, Ranestad: the general cubic form in n + 1 variables has cactus rank at

most 2n + 2.

2014 Casnati, Jelisiejew, Notari: local Gor. scheme of length ≤ 13 is

smoothable ⇒ Cactusr (X3,n) = Secr (X3,n) when r ≤ 13.
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Theorem

We focus on CUBIC forms

Theorem

When r ≤ 17, then

dimCactusr (X3,n) = dimSecr (X3,n).

When 18 ≤ r ≤ 2n + 2, then

dimCactusr (X3,n) = dim Wr (X3,n) > dim Secr (X3,n) and

dimCactusr (X3,n) =

=

min
{

1
48

r 3 − 3
8
r 2 + rn + 5

3
r − 2,

(
n+3

3

)
− 1
}
, if r ≥ 18 even,

min
{

1
48

r 3 − 7
16

r 2 + rn + 119
48

r − 65
16
,
(
n+3

3

)
− 1
}
, if r ≥ 18 odd.
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Apolarity

S = K [x0, . . . , xn], T = K [y0, . . . , yn]

yα
(
x [β]
)

=

x [β−α] if β ≥ α,

0 otherwise.

S1 and T1 are dual spaces.

T is naturally the coordinate ring of P(S1).

Definition

f ∈ S . Apolar ideal: f ⊥ = {ϕ ∈ T |ϕ(f ) = 0}.

Γ ⊂ P(S1) is apolar to F ∈ S if IΓ ⊂ F⊥ ⊂ T .

Lemma (Apolarity Lemma)

Γ ⊂ P(S1) is apolar to F ∈ Sd iff [F ] ∈ 〈νd(Γ)〉 ⊂ P(Sd).
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Apolarity

• crk(F ) = min r ∈ N s.t. ∃ Γ ∈ Hilbr (P(S1)) : [F ] ∈ 〈νd(Γ)〉

• crk(F ) = min r ∈ N s.t. ∃ Γ ∈ Hilbr (P(S1)) : Γ is apolar to F

• crk(F ) = min r ∈ N s.t. ∃ Γ ∈ Hilbr (P(S1)) : IΓ ⊂ F⊥

We start with F ∈ Sd , we can compute F⊥ ⊂ T , then we want to

describe the minimal Γ ⊂ Hilbr (P(S1)) : IΓ ⊂ F⊥.
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Local apolar scheme

In order to study the ideals contained in F⊥ ⊂ T , the first natural ring to

study is T/F⊥:

Properties: Tf := T/f ⊥ local Artinian Gorenstein ring ([IK]):

• Local: The image of T1 in Tf generates the only max ideal m;

• Artinian: Tf is finitely generated as K -mod;

• Gor: Tf has 1-dim’l socle (the annihilator of the max ideal).

If F is homog. ⇒ T/F⊥ graded.
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Local apolar scheme

F ∈ Sd ⇒ Γ apolar scheme locally Gor. ⇒

Γ = Γ1 ∪ · · · ∪ Γs , with Γi local A.G.

F = F1 + · · ·+ Fs s.t. Γi apolar to Fi
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Local cactus rank

lcr(F ) =Local cactus rank of F = minr∈N s.t. ∃ local Γ ∈ Hilbr (P(S1)):

[F ] ∈ 〈νd(Γ)〉

⇔ Γ is apolar to F ⇔ IΓ ⊂ F⊥

Wr (Xd,n) := {[F ] ∈ P(Sd) | lcr(F ) = r} : r -local cactus variety

Cactusr (Xd,n) = {[F ] ∈ P(Sd) | cr(F ) = r} =

=
⋃

r1+···+rs=r

J(Wr1 (Xd,n), . . . ,Wrs (Xd,n))

dim Wri (Xd,n)⇒ dimCactusr (Xd,n)
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Local cactus rank

Theorem

If 18 ≤ r ≤ 2n + 2 and n ≥ 8, then

dimCactusr (X3,n) = dim Wr (X3,n)

So the cactus rank of a general cubic form can be computed locally.

1 dim Wr (Xd,n) =?

2 How to compute the local cactus rank?
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Wr (Xd,n) the r -local cactus variety

Cr,l =
⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉

Wr (Xd,n) =
⋃

l∈S1
Cr,l

dim Cr,l ⇒ dim Wr (Xd,n)⇒ dimCactusr (Xd,n).

So we want to study Cr,l , i.e we want to parameterize the polynomials whose

local apolar scheme has given length.

Any Local AG scheme Γ is the AFFINE apolar scheme of a poly g ∈ S (unique

up to a unit in the ring of diff. operators): for any LAG

T 0/I , ∃ g ∈ S0s.t.I = g⊥.
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Which is the link between F having Γ as minimal apolar local scheme and

g being the AFFINE polynomial defining Γ?

g = g (0) + · · ·+ g (d)︸ ︷︷ ︸
deg d tail of g

+g (d+1) + · · ·+ g (l), deg(g (i)) = i .

Proposition

F ∈ Sd , f = F (1, x1, . . . , xn). Let Γ be a scheme of minimal length

among local schemes supported at [l ] = [1 : 0 : . . . : 0] that are apolar to

F ⇒ Γ is the AFFINE apolar scheme to a poly g ∈ K [x1, . . . , xn] whose

deg d tail equals f .

So g may be chosen s.t. f is its tail (: Γ is also defined by many g ’s that

does not have f as a tail).
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Proof of the Thm

Cactusr (Xd,n) =
⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

Wr,n =
⋃

l∈S1
Cr,l the r -local cactus variety

Cr,l =
⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉

Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine local apolar

scheme has given length.
Propostion⇐⇒ Parameterize the family of cubic tails

f ∈ K [x1, . . . , xn] of g ’s.

Cr,l={[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}
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Proof of the Thm

Cr ,l =
⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉 =

= {[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Parameterize the family of cubic tails f ∈ K [x1, . . . , xn] of g ’s.

Find a discrete invariant for LAG schemes, parameterize the cubic tails of

all polynomials that define a scheme with given invariant.

The Hilbert function is not good: Ex.:

g1 = x4 + y 3x + z2 + t2

g2 = x4 + y 4 + z3 + t2

They have the same HF:[ 1 4 3 2 1 ] but different degree 3 tails.
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Proof of the Thm

The HF symmetric decomposition is the good invariant (Iarrobino [Memoirs]):

g1 = x4 + y 3x + z2 + t2:

H = 1 4 3 2 1

∆0 =

∆1 =

∆2 =

Partials of order 0: g1 = x4 + y 3x + z2 + t2

It has deg 4 (so it will contribute to the last column)

It is the only one partial of degree 4 (so we have to put a 1 in the last column)

order 0+ degree 4 + i = deg(g1) = 4 where i is for ∆i (so i = 0⇒ 1 in the

row of ∆0)
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Proof of the Thm

The HF symmetric decomposition is the good invariant (Iarrobino [Memoirs]):

g1 = x4 + y 3x + z2 + t2:

H = 1 4 3 2 1

∆0 = 1 2 3 2 1

∆1 = 0 0 0 0

∆2 = 0 2 0

Order 0: g1 = x4 + y 3x + z2 + t2, (0 + 4 = 4⇒ ∆0)

Order 1: ∂x = 4x3 + y 3, ∂y = 3xy 2, (1 + 3 = 4⇒ ∆0)

∂z = 2z , ∂t = 2t (1 + 1 = 2⇒ ∆2)

Order 2: ∂xx = 12x2, ∂xy = 3y 2, ∂yy = 6xy , (2 + 2 = 4⇒ ∆0) ∂zz = ∂tt = 2

Order 3: ∂xxx = 24x ∼ ∂yyy = 6x , ∂xyy = 6y (3 + 1 = 4⇒ ∆0)

Order 4: 1 (4 + 0 = 4⇒ ∆0).
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Proof of the Thm

g1 = x4 + y 3x + z2 + t2:

H = 1 4 3 2 1

∆0 = 1 2 3 2 1

∆1 = 0 0 0 0

∆2 = 0 2 0

g2 = x4 + y 4 + z3 + t2:

H = 1 4 3 2 1

∆0 = 1 2 2 2 1

∆1 = 0 1 1 0

∆2 = 0 1 0
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Proof of the Thm

g ∈ S , deg(g) = d , g⊥ ⊂ T , Tg := T/g⊥ ' Diff (g) = {ψ(g) |ψ ∈ T}

Iarrobino

Tf is local ⇒ one max ideal m.

• m-adic filtration:

Tf = m0 ⊃ · · · ⊃ md+1 = 0

T ∗f =
⊕d

i=0
mi

mi+1

• Löewy filtration:

Tf = (0 : md+1) ⊃ · · · ⊃ (0 :

m) ⊃ 0

Interpr. in terms of partial of f

• mi τ7→Partial of order at least i

of f (deg ≤ d − i) (Order of a

partial f ′ of f = largest order

of ψ ∈ T s.t. f ′ = ψ(f ))

• (0 : mi )
τ7→

Diff (f )i−1 =partials of deg at

most i − 1 of f
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Proof of the Thm

Order filtration: Diff (f ) = Diff (f )0 ⊇ Diff (f )1 ⊇ · · · ⊇ Diff (f )d

Degree filtration: Diff (f ) = Diff (f )d ⊇ Diff (f )d−1 ⊇ · · · ⊇ Diff (f )0

Different filtrations (f not homog)

but

(0 : mi )

(0 : mi−1)
∼=
(

mi−1

mi

)∨ Diff (f )i+1

Diff (f )i
' Diff (f )i+1

Diff (f )i

In particular

Hf (i) = dimK (Diff (f ))i − dimK (Diff (f )i−1)

has symmetric decomposition:

H =
∑
a≥0

∆a

each ∆a symm. around (d − a)/2, i.e. ∆a(i) = ∆a(d − a− i)
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Proof of the Thm

Cactusr (Xd,n) =
⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

Wr ,n =
⋃

l∈S1
Cr ,l the r -local cactus variety

Cr ,l =
⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉 =

= {[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Found an invariant to stratify poly’s with the same degree 3-tail i.e. for

poly’s with loc. apolar scheme with given length.

Then: Compute the dimension of all the poly’s with a given HF

decomposition (i.e. of Cr ,l)

V (3,∆, n) = {f≤3 | f ∈ K [x1, . . . , xn],∆f = ∆}

Cr ,l =
⋃

l(∆)≤r

V (3,∆, n)

22 / 26



Proof of the Thm

Cactusr (Xd,n) =
⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

Wr ,n =
⋃

l∈S1
Cr ,l the r -local cactus variety

Cr ,l =
⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉 =

= {[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Found an invariant to stratify poly’s with the same degree 3-tail i.e. for

poly’s with loc. apolar scheme with given length.

Then: Compute the dimension of all the poly’s with a given HF

decomposition (i.e. of Cr ,l)

V (3,∆, n) = {f≤3 | f ∈ K [x1, . . . , xn],∆f = ∆}

Cr ,l =
⋃

l(∆)≤r

V (3,∆, n)

22 / 26



Proof of the Thm

Proposition

r ≥ 7, v(3,∆, n) attains its max for
HF = (1,m − 1,m − 1, 1),∆ = (1,m − 1,m − 1, 1), r = 2m,

HF = (1,m − 1,m − 1, 1, 1),∆ =

 1 1 1 1 1

0 m − 2 m − 2 0 0

 , r = 2m + 1

and

dim V (3,∆, n) =

 Me :=
(
m+2

3

)
+ 2m(n −m) + 3m − n − 1, r = 2m,

Mo :=
(
m+2

3

)
+ 2m(n −m) + 3m − 2, r = 2m + 1.
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Proof of the Thm

A general cubic form F ∈ S = C[x0, . . . , xn] with even local cactus rank

2m,m ≤ n is projectively equivalent to some

F = f3 + x0f2 + x2
0 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

HF (f ) = (1,m − 1,m − 1, 1)

The forms of local cactus rank 2n form a family of codimension
(
n−1

2

)
+ 1 in

the space of cubic forms C[x0, . . . , xn]3.
24 / 26



Proof of the Thm

A general cubic form F ∈ S = C[x0, . . . , xn] with even local cactus rank

2m,m ≤ n is projectively equivalent to some

F = f3 + x0f2 + x2
0 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

HF (f ) = (1,m − 1,m − 1, 1)

The forms of local cactus rank 2n form a family of codimension
(
n−1

2

)
+ 1 in

the space of cubic forms C[x0, . . . , xn]3.
24 / 26



Proof of the Thm

A general cubic form F ∈ S = C[x0, . . . , xn] with even local cactus rank

2m,m ≤ n is projectively equivalent to some

F = f3 + x0f2 + x2
0 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

HF (f ) = (1,m − 1,m − 1, 1)

The forms of local cactus rank 2n form a family of codimension
(
n−1

2

)
+ 1 in

the space of cubic forms C[x0, . . . , xn]3.
24 / 26



A general cubic form F ∈ S = C[x0, . . . , xn], with odd local cactus rank

2m + 1,m ≤ n is projectively equivalent to some

F = f3 + xmx2
1 + x0f2 + x0x2

m + x2
0 f1 + x3

0 f0

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

HF (f ) = (1,m,m, 1), while g = x4
1 + f has the same degree 3 tails of f so g⊥

defines a local apolar scheme that belongs to F⊥ and

HF (g) = (1,m − 1,m − 1, 1, 1) whose length is smaller than the length of

(1,m,m, 1). (NB: deg g = 4 > 3 = deg f ).

The forms of local cactus rank 2n + 1, n > 3 form a family of codimension(
n−2

2

)
− 1 in the space of cubic forms C[x0, . . . , xn]3.
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THANKS!
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