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Introduction 1. The elliptic genus 2. Decomposing under extended SUSY 3. Interpretation in terms of Mathieu Moonshine

1. The elliptic genus of Calabi-Yau manifolds. . .

Let M denote a compact Calabi-Yau D-fold, T := T 1,0M,

Eq,−y := y−
D
2 Λ−yT

∗ ⊗
∞⊗

n=1

[
Λ−yqnT ∗ ⊗ Λ−y−1qnT ⊗ SqnT ∗ ⊗ SqnT

]
,

where for any bundle E→M, Λx E :=
∞L

m=0
xmΛmE , Sx E :=

∞L
m=0

xmSmE

Definition

With q := e2πiτ , y := e2πiz for τ, z ∈ C, Im(τ) > 0,

EM(τ, z) := χ(Eq,−y ) =

∫
M

Td(M) ch(Eq,−y )

is the elliptic genus of M.

For M: a K3 surface,
that is, a compact Calabi-Yau 2-fold with h1,0(M) = 0,

EK3(τ, z) = 8
(
ϑ2(τ,z)
ϑ2(τ,0)

)2
+ 8

(
ϑ3(τ,z)
ϑ3(τ,0)

)2
+ 8

(
ϑ4(τ,z)
ϑ4(τ,0)

)2
.
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1. . . . and for superconformal field theories

CFT elliptic genus
of an N = (2, 2) SCFT at central charges (c, c) with space-time SUSY and integral U(1) charges:

ECFT (τ, z) := sTrHR

(
yJ0qL0−c/24qL0−c/24

)
,

HR : Ramond sector,

J0, L0, L0: zero modes of the U(1)-current and Virasoro fields in the SCA

For every N = (2, 2) SCFT at central charges c = c = 6 with
space-time SUSY and integral U(1) charges, the CFT elliptic
genus ECFT (τ, z) either vanishes, or it agrees with EK3(τ, z).

The theory has N = (4, 4) SUSY.

Examples:
toroidal SCFTs, their orbifolds, Gepner models at c = c = 6

Definition
A K3 theory is an N = (4, 4) SCFT at c = c = 6 with space-
time SUSY, integral U(1) charges and CFT elliptic genus EK3(τ, z).
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2. Decomposing under N = (4, 4) supersymmetry

Assume: D = 2, i.e. c = c = 6 and N = (4, 4) supersymmetry.

3 types of N = 4 irreps H• with χ•(τ, z) = sTrH•
(
yJ0qL0−1/4

)
:

vacuum H0, massless matter Hm.m., massive matter Hh>0.

EK3(τ, z) = −2χ0(τ, z) + 20χm.m.(τ, z) +
∞∑

n=1
Anχn(τ, z)

=

∫
K3

Td(K3)ch(Eq,−y )

Conjecture [W13]
Let M=K3. There are polynomials pn for every n ∈ N, such that

Eq,−y = −OK3χ0(τ, z)⊕ (−T )χm.m.(τ, z)⊕
∞⊕

n=1
pn(T )χn(τ, z),

where An =
∫

K3 Td(K3)pn(T )= χ(pn(T )) for all n ∈ N.

proof: [Creutzig/W14]
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Introduction 1. The elliptic genus 2. Decomposing under extended SUSY 3. Interpretation in terms of Mathieu Moonshine

Decomposing the virtual bundle: Ideas of proof

Observation:

Eq,−y = y−
D
2 Λ−yT

∗⊗
∞⊗

n=1

[
Λ−yqnT ∗ ⊗ Λ−y−1qnT ⊗ SqnT ∗ ⊗ SqnT

]
is an SU(2) principal bundle under the holonomy representation.

holonomy distribution
=⇒ Eq,−y

∼=
∞⊕

n=1
Wn ⊗Mn,

Wn: SU(2) principal bundle for the n-dimensional irrep of SU(2),
Mn: multiplicity space

Conclusion (using [Malikov/Schechtman/Vaintrob99]):
Wn = Sn−1(T ) is invariant under the N = 4 SUSY action,

Eq,−y
∼=
∞⊕

n=1
Wn ⊗Mn =

∞⊕
n=1

Sn−1(T )κn(τ, z),

where each κn(τ, z) decomposes into N = 4 characters.

Katrin Wendland SUSY decomposes the bundle underlying the elliptic genus 5/7



Introduction 1. The elliptic genus 2. Decomposing under extended SUSY 3. Interpretation in terms of Mathieu Moonshine

Decomposing the virtual bundle: Ideas of proof

Observation:

Eq,−y = y−
D
2 Λ−yT

∗⊗
∞⊗

n=1

[
Λ−yqnT ∗ ⊗ Λ−y−1qnT ⊗ SqnT ∗ ⊗ SqnT

]
is an SU(2) principal bundle under the holonomy representation.

holonomy distribution
=⇒ Eq,−y

∼=
∞⊕

n=1
Wn ⊗Mn,

Wn: SU(2) principal bundle for the n-dimensional irrep of SU(2),
Mn: multiplicity space

Conclusion (using [Malikov/Schechtman/Vaintrob99]):
Wn = Sn−1(T ) is invariant under the N = 4 SUSY action,

Eq,−y
∼=
∞⊕

n=1
Wn ⊗Mn =

∞⊕
n=1

Sn−1(T )κn(τ, z),

where each κn(τ, z) decomposes into N = 4 characters.

Katrin Wendland SUSY decomposes the bundle underlying the elliptic genus 5/7



Introduction 1. The elliptic genus 2. Decomposing under extended SUSY 3. Interpretation in terms of Mathieu Moonshine

Decomposing the virtual bundle: Ideas of proof

Observation:

Eq,−y = y−
D
2 Λ−yT

∗⊗
∞⊗

n=1

[
Λ−yqnT ∗ ⊗ Λ−y−1qnT ⊗ SqnT ∗ ⊗ SqnT

]
is an SU(2) principal bundle under the holonomy representation.

holonomy distribution
=⇒ Eq,−y

∼=
∞⊕

n=1
Wn ⊗Mn,

Wn: SU(2) principal bundle for the n-dimensional irrep of SU(2),
Mn: multiplicity space (bigraded with respect to a SUSY action)

Conclusion (using [Malikov/Schechtman/Vaintrob99]):
Wn = Sn−1(T ) is invariant under the N = 4 SUSY action,

Eq,−y
∼=
∞⊕

n=1
Wn ⊗Mn =

∞⊕
n=1

Sn−1(T )κn(τ, z),

where each κn(τ, z) decomposes into N = 4 characters.

Katrin Wendland SUSY decomposes the bundle underlying the elliptic genus 5/7



Introduction 1. The elliptic genus 2. Decomposing under extended SUSY 3. Interpretation in terms of Mathieu Moonshine

Decomposing the virtual bundle: Ideas of proof

Observation:

Eq,−y = y−
D
2 Λ−yT

∗⊗
∞⊗

n=1

[
Λ−yqnT ∗ ⊗ Λ−y−1qnT ⊗ SqnT ∗ ⊗ SqnT

]
is an SU(2) principal bundle under the holonomy representation.

holonomy distribution
=⇒ Eq,−y

∼=
∞⊕

n=1
Wn ⊗Mn,

Wn: SU(2) principal bundle for the n-dimensional irrep of SU(2),
Mn: multiplicity space (bigraded with respect to a SUSY action)

Conclusion (using [Malikov/Schechtman/Vaintrob99]):
Wn = Sn−1(T ) is invariant under the N = 4 SUSY action,

Eq,−y
∼=
∞⊕

n=1
Wn ⊗Mn =

∞⊕
n=1

Sn−1(T )κn(τ, z),

where each κn(τ, z) decomposes into N = 4 characters.

Katrin Wendland SUSY decomposes the bundle underlying the elliptic genus 5/7



Introduction 1. The elliptic genus 2. Decomposing under extended SUSY 3. Interpretation in terms of Mathieu Moonshine

3. A conjecture of Eguchi, Ooguri and Tachikawa (2010)

EK3(τ, z) = −2χ0(τ, z) + 20χm.m.(τ, z) +
∞P

n=1
Anχn(τ, z), χ•(τ, z) = sTrH•

`
yJ0 qL0−1/4

´
Theorem [Gannon12] using results of Cheng, Duncan, Gaberdiel,

Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation Rn of M24 for every n ∈ N, s.th.

RGan. := (−2)H0 ⊕ 20 Hm.m. ⊕
∞⊕

n=1

Rn ⊗Hn

with E(g)
K3 (τ, z)=sTrRGan.

(
gyJ0qL0−1/4

)
,g ∈M24, “twisted genera”.

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,
then G is isomorphic to a subgroup of the Mathieu group M24,

and |G | ≤ 960� 244.823.040 = |M24|.

[Gaberdiel/Hohenegger/Volpato11]
M24 cannot act as symmetry group of a K3 theory.

[Creutzig/W14] For every n ∈ N, An = χ(pn(T )).
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Solving Mathieu Moonshine by Symmetry Surfing?

Conjecture [Taormina/W10-13]
In every geometric interpretation, we have HR � HR,gen, where

HR,gen
∼= (−2)H0 ⊕ Rm.m. ⊗Hm.m. ⊕

∞⊕
n=1
Rn ⊗Hn = RGan.

as a representation of the geometric symmetry group G ⊂ M24;
RGan. collects symmetries from distinct pts. of the moduli space.

We call this procedure symmetry surfing.

Results [Taormina/W11&12&13]
Restricting to the geometric Z2-orbifold CFTs on K3:
• The joint action of all geometric symmetry groups yields

the maximal subgroup (Z2)4 o A8 ⊂ M24.
Note: (Z2)4 o A8 is not a subgroup of M23.

• R1 arises as a space of common states with an action of
(Z2)4 o A8 induced from the 45⊕ 45 of M24.

Note: There is a twist in this action.
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Thank you
for your attention!
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