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1. The elliptic genus
[ ]

1. The elliptic genus of Calabi-Yau manifolds. ..

Let M denote a compact Calabi-Yau D-fold, T := T1OM,
(o]
Eqy =y AT @@ [AygT* @Ay 10T © SqnT* © SgaT]

n=1 oo oo
where for any bundle E—=M, A E:= @ x"A"E, Sy E:=& x"S™E

m=0 m=0

Definition
With g := e27ri7', y = e2™iz for T,z € C, Im(T) > 0,

Em(T,z) == x(Eq,—y) = /MTd(/\/l) ch(Eq,—y)

is the ELLIPTIC GENUS of M.
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1. The elliptic genus of Calabi-Yau manifolds. ..

Let M denote a compact Calabi-Yau D-fold, T := T1OM,
(o]
Eqy =y AT @@ [AygT* @Ay 10T © SqnT* © SgaT]

n=1 oo oo
where for any bundle E—=M, A E:= @ x"A"E, Sy E:=& x"S™E

m=0 m=0

Definition
With g := 627”'7', y = e2™iz for T,z € C, Im(T) > 0,

Em(T,z) == x(Eq,—y) = /MTd(/\/l) ch(Eq,—y)

is the ELLIPTIC GENUS of M.

For M: a K3 surface,
that is, a compact Calabi-Yau 2-fold with h19(M) = 0,

ealr2) = 8 (32428) + 8 (428) "+ 8 (%68
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1. The elliptic genus
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1. ... and for superconformal field theories

CFT ELLIPTIC GENUS
of an N = (2,2) SCFT at central charges (c, €) with space-time SUSY and integral U(1) charges:

. Jo nLo—c/24=Lo—C/24
Ecrr(m,2) = sTrHR(y b glo—c/24gLo—¢/ ),
Hg: Ramond sector,
Jo, Lo, Lo: zero modes of the U(1)-current and Virasoro fields in the SCA

For every N = (2,2) SCFT at central charges ¢ = ¢ = 6 with
space-time SUSY and integral U(1) charges, the CFT elliptic
genus Ecrr (T, 2) either vanishes, or it agrees with Exs(T, z).

The theory has N = (4,4) SUSY.

Examples:
toroidal SCFTs, their orbifolds, Gepner models at c=¢ =16
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CFT ELLIPTIC GENUS
of an N = (2,2) SCFT at central charges (c, €) with space-time SUSY and integral U(1) charges:

. Jo nLo—c/24=Lo—C/24
Ecrr(m,2) = sTrHR(y b glo—c/24gLo—¢/ ),
Hg: Ramond sector,
Jo, Lo, Lo: zero modes of the U(1)-current and Virasoro fields in the SCA

For every N = (2,2) SCFT at central charges ¢ = ¢ = 6 with
space-time SUSY and integral U(1) charges, the CFT elliptic
genus Ecrr (T, 2) either vanishes, or it agrees with Exs(T, z).

The theory has N = (4,4) SUSY.

Examples:
toroidal SCFTs, their orbifolds, Gepner models at c=¢ =16

Definition
A K3 THEORY is an N = (4,4) SCFT at ¢ = ¢ = 6 with space-
time SUSY, integral U(1) charges and CFT elliptic genus ks (T, z).
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2. Decomposing under extended SUSY
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2. Decomposing under N = (4,4) supersymmetry

Assume: D =2,ie. c =¢ =06 and N = (4,4) supersymmetry.

3 types of N = 4 irreps He with xe(7,2) = sTry, (yJOqL0—1/4);
VACUUM Hp, MASSLESS MATTER My, m., MASSIVE MATTER Hp~0.

gK3(T7 Z) = *2X0(7-7 Z) + 20Xm.m.(7-a Z) + Z Aan(T7 Z)

n=1
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2. Decomposing under N = (4,4) supersymmetry

Assume: D =2,ie. c =¢ =06 and N = (4,4) supersymmetry.

3 types of N = 4 irreps H, with xo(7,2) = sTry, (yJOqL0—1/4);
VACUUM Hp, MASSLESS MATTER My, m., MASSIVE MATTER Hp~0.

gK3(T7 Z) = *2X0(7-7 Z) + 20Xm.m.(7'7 Z) + ZlAan(T7 Z)
n—=
- / Td(K3)ch(E,,_,)
K3

Conjecture [W13]
Let M=K3. There are polynomials p, for every n € N, such that
E%*y = _OK3X0(7—7 Z) D (_ T)Xm.m.(Tv Z) S @ pn( T)Xn(Tv 2)7

n=1

where A, = [,.3 Td(K3)p,(T)= x(pa(T)) for all n € N.
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2. Decomposing under N = (4,4) supersymmetry

Assume: D =2,ie. c =¢ =06 and N = (4,4) supersymmetry.

3 types of N = 4 irreps H, with xo(7,2) = sTry, (yJOqL0—1/4);
VACUUM Hp, MASSLESS MATTER My, m., MASSIVE MATTER Hp~0.

gK3(T7 Z) = *2X0(7-7 Z) + 20Xm.m.(7'7 Z) + ZlAan(T7 Z)
n—=
- / Td(K3)ch(E,,_,)
K3

Conjecture [W13]
Let M=K3. There are polynomials p, for every n € N, such that
E%*y = _OK3X0(7—7 Z) D (_ T)Xm.m.(Tv Z) S @lpn( T)Xn(Tv 2)7
n—=
where A, = [,.3 Td(K3)p,(T)= x(pa(T)) for all n € N.
proof: [Creutzig/W14]
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Decomposing the virtual bundle: Ideas of proof

Observation:
o0

Eqy =y ZAL,T*@® [A_ygrT* ® A_y-1g0T ® SgnT* ® SgaT]
n=1

is an SU(2) principal bundle under the holonomy representation.
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is an SU(2) principal bundle under the holonomy representation.

holonomy distribution
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IE(%}/—@W@M,—,,

W,: SU(2) principal bundle for the n- dlmen5|ona| irrep of SU(2),
M,,: multiplicity space
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Decomposing the virtual bundle: Ideas of proof

Observation:
o0

Eqy =y ZAL,T*@® [A_ygrT* ® A_y-1g0T ® SgnT* ® SgaT]
n=1

is an SU(2) principal bundle under the holonomy representation.

holonomy distribution
—

IE(%}/—@W@M,-,,

W,: SU(2) principal bundle for the n- dlmen5|ona| irrep of SU(2),
M,: multiplicity space (bigraded with respect to a SUSY action)

Conclusion (using [Malikov/Schechtman/Vaintrob99]):
W, =S""1(T)is invariant under the N = 4 SUSY action,
Bg—y = @ Wh @ M, = 69 ST H(T)n(T, 2),

=1
where each /@,,(T, z) decomposes into N = 4 characters.
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3. Interpretation in terms of Mathieu Moonshine
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3. A conjecture of Eguchi, Ooguri and Tachikawa (2010)

Eks(T,2) = —2x0(7, 2) + 20X m.m. (7, 2) + 3_ Anxn(T, 2), Xe(T,2) = sTr 4, (yJOqLO’l/“)
n=1

Theorem [Gannonl2]  using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of My, for every n € N, s.th.

Raan. = (~2)Ho & 20 Hum & PR @H,

n=1
with S;(é)(r, 2)=sTrr,, (gy*qlo~1/*), g € Mas, “twisted genera”.
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with S;(é)(r, 2)=sTrr,, (gy*qlo~1/*), g € Mas, “twisted genera”.

WHY?
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3. A conjecture of Eguchi, Ooguri and Tachikawa (2010)

Eks(T,2) = —2x0(7, 2) + 20X m.m. (7, 2) + 3_ Anxn(T, 2), Xe(T,2) = sTr 4, (yJOqLO’l/“)
n=1

Theorem [Gannon12]

using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of My, for every n € N, s.th.
o
Raan. = (—2)Ho & 20 Hnm & PRy H,
n=1
with S,(<g3)(r, 2)=sTrr,, (gy*qlo~1/*), g € Mas, “twisted genera”.

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkahler structure of M,
then G is isomorphic to a subgroup of the Mathieu group Moy,

and |G| <960 < 244.823.040 = | Ma4].
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3. A conjecture of Eguchi, Ooguri and Tachikawa (2010)
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n=1

Theorem [Gannonl2]  using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of My, for every n € N, s.th.
o
Raan. = (—2)Ho & 20 Hnm & PRy H,

n=1
with S,(<g3)(r, 2)=sTrr,, (gy*qlo~1/*), g € Mas, “twisted genera”.

Theorem [Mukai88]

If G is a symmetry group of a K3 surface M,

then G is isomorphic to a subgroup of the Mathieu group Moy,
and |G| < 960 < 244.823.040 = |Myy]|.

TGaberdieI/Hohenegger/VoIpatol 1]
M4 cannot act as symmetry group of a K3 theory.
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3. A conjecture of Eguchi, Ooguri and Tachikawa (2010)

Eks(T,2) = —2x0(7, 2) + 20X m.m. (7, 2) + 3_ Anxn(T, 2), Xe(T,2) = sTr 4, (yJOqLO’l/“)
n=1

Theorem [Gannonl2]  using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of My, for every n € N, s.th.
o
Raan. = (—2)Ho & 20 Hnm & PRy H,

n=1
with S,(<g3)(r, 2)=sTrr,, (gy*qlo~1/*), g € Mas, “twisted genera”.

Theorem [Mukai88]

If G is a symmetry group of a K3 surface M,

then G is isomorphic to a subgroup of the Mathieu group Moy,
and |G| < 960 < 244.823.040 = |Myy]|.

TGaberdieI/Hohenegger/VoIpatol 1]
M4 cannot act as symmetry group of a K3 theory.

[Creutzig/W14] For every n € N, A, = x(pn(T)).

LETIRVEIGIELSM SUSY decomposes the bundle underlying the elliptic genus  6/7 ‘




3. Interpretation in terms of Mathieu Moonshine
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Solving Mathieu Moonshine by Symmetry Surfing?

Conjecture [Taormina/W10-13]

In every geometric interpretation, we have Hgr — HRg gen, Where
o

HR,gen = (_2)HO & 7zm.m. ® 7_‘m.m. S @ Rn ® 7_(n — RGan.
n=1

as a representation of the geometric symmetry group G C Myy;

RGan. collects symmetries from distinct pts. of the moduli space.

| We call this procedure SYMMETRY SURFING. |
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Solving Mathieu Moonshine by Symmetry Surfing?

Conjecture [Taormina/W10-13]
In every geometric interpretation, we have Hgr — HRg gen, Where

HR,gen = (_2)H0 & Rm.m. ® 7—(m.m. @D @ Rn ® Hn = RGan.

n=1
as a representation of the geometric symmetry group G C Moy,

RGan. collects symmetries from distinct pts. of the moduli space.
| We call this procedure SYMMETRY SURFING. |

Results [Taormina/W11&12&13]
Restricting to the geometric Zy-orbifold CFTs on K3:
e The joint action of all geometric symmetry groups yields
the maximal subgroup (Z»)* x Ag C May.
Note:  (Z3)* x Ag is not a subgroup of Mas.
e Rq arises as a space of common states with an action of
(Z3)* x Ag induced from the 45 @ 45 of May.
Note: There is a twist in this action.
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SUPERSYMMETRY DECOMPOSES THE VIRTUAL BUNDLE THAT UNDERLIES THE ELLIPTIC GENUS

THANK YOU
FOR YOUR ATTENTION!
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