Quantisation of Littlewood-Richardson coefficients beyond type A

AMS-EMS joint meeting

University of Tours

Porto June 2015

I. Schur polynomials

$\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring in x_{1}, \ldots, x_{n}.
For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}$

$$
x^{\beta}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} .
$$

$\mathbb{Z}^{\text {sym }}\left[x_{1}, \ldots, x_{n}\right]$ the subring of symmetric polynomials.
Partition of depth d : a non increasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{Z}_{>0}^{d}$. For $n \geq d$,

$$
s_{\lambda}=\frac{\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(w) x^{\sigma(\lambda+\rho)-\rho}}{\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(w) x^{\sigma(\rho)-\rho}} \text { with } \rho=(n-1, \ldots, 0)
$$

is the Schur polynomial associated to λ.

Generalised LR-coefficients

Theorem

(1) s_{λ} is the character of the $f . d$. representation $V(\lambda)$ of $\mathfrak{g l}_{n}(\mathbb{C})$ of highest weight λ.
(2) $\left\{s_{\lambda} \mid \lambda \in \mathcal{P}_{n}\right\}$ is a basis of $\mathbb{Z}^{\text {sym }}\left[x_{1}, \ldots, x_{n}\right]$.

Let $\mu^{(1)}, \ldots, \mu^{(\ell)}$ be partitions and n s.t.

$$
n \geq d\left(\mu^{(1)}\right)+\cdots+d\left(\mu^{(\ell)}\right)
$$

Corollary

The generalised $L R$-coefficients are the structure constants s.t.

$$
s_{\mu^{(1)}} \cdots s_{\mu^{(\ell)}}=\sum_{\lambda \in \mathcal{P}_{n}} c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda} s_{\lambda} .
$$

Three algebraic interpretations

(1) We have

$$
V\left(\mu^{(1)}\right) \otimes \cdots \otimes V\left(\mu^{(\ell)}\right)=\bigoplus_{\lambda \in \mathcal{P}_{n}} V(\lambda)^{\oplus c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}}
$$

Three algebraic interpretations

(1) We have

$$
V\left(\mu^{(1)}\right) \otimes \cdots \otimes V\left(\mu^{(\ell)}\right)=\bigoplus_{\lambda \in \mathcal{P}_{n}} V(\lambda)^{\oplus c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}}
$$

(2) With $n=\sum_{k} d_{k}$, we have

$$
\operatorname{Res}_{\mathfrak{g l}_{d_{1}} \oplus \cdots \oplus \mathfrak{g l}_{d_{\ell}}}^{\mathfrak{g l}_{n}} V(\lambda)=\bigoplus_{\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right) \in \mathcal{P}_{d_{1}} \times \cdots \times \mathcal{P}_{d_{\ell}}} V\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right)^{\oplus c^{(1)}, \ldots, \mu^{(\ell)}}
$$

Three algebraic interpretations

(1) We have

$$
V\left(\mu^{(1)}\right) \otimes \cdots \otimes V\left(\mu^{(\ell)}\right)=\bigoplus_{\lambda \in \mathcal{P}_{n}} V(\lambda)^{\oplus c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}}
$$

(2) With $n=\sum_{k} d_{k}$, we have
$\operatorname{Res}_{\mathfrak{g}_{d_{1}} \oplus \cdots \oplus \mathfrak{g l}_{d_{\ell}}}^{\mathfrak{g l}_{n}} V(\lambda)=\bigoplus_{\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right) \in \mathcal{P}_{d_{1} \times \cdots \times \mathcal{P}_{d_{\ell}}}} V\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right)^{\oplus c^{(1)}, \ldots, \mu^{(\ell)}}$
(3) We have

$$
\psi_{\ell}\left(s_{\lambda}\right)=s_{\lambda}\left(x_{1}^{\ell}, \ldots, x_{n}^{\ell}\right)=\sum_{\mu \in \mathcal{P}_{n}} \varepsilon(\mu) c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda} s_{\mu}
$$

where $\mu^{(1)}, \ldots, \mu^{(\ell)}$ is the ℓ-quotient of μ and $\varepsilon(\mu) \in\{-1,0,1\}$.

Quantisation from affine crystals

Let $\lambda=\left(s^{r}\right)$ be a rectangular partition.

Example

A standard tableau of shape $(3,3)=\left(3^{2}\right)$.

1	2	4
3	3	5

$B_{r, s}$ the set of semistandard tableaux of shape $\left(s^{r}\right)$ has the structure of an affine type A KR crystal.
Any tensor product

$$
B:=B_{r_{1}, s_{1}} \otimes \cdots \otimes B_{r_{\ell}, s_{l}}
$$

has also the structure of an affine connected crystal.
B is graded by the energy D defined from the graph structure.

- D is constant on the classical components (forget the 0 arrows).
- The highest weight vertices are the sources vertices for the c. c.

The affine crystal $B=B_{1,1}^{\otimes 2}$

Definition

$$
C_{s_{1}^{r_{1}}, \ldots, s_{\ell}^{r_{\ell}}}^{\lambda}(q)=\sum_{v \text { of h.w. } \lambda} q^{D(v)}
$$

where D is the energy.
By construction

$$
C_{s_{1}^{1}, \ldots, s_{\ell}^{r_{\ell}}}^{\lambda}(q)=c_{s_{1}^{r_{1}}, \ldots, s_{\ell}^{r_{\ell}}}^{\lambda} .
$$

Example

For $B_{1,1}^{\otimes 2}$ we get

$$
C_{(1),(1)}^{(1,1)}=1 \text { and } C_{(1),(1)}^{(2)}=q .
$$

Quantisation from the partition function expression

Consider $d=\left(d_{1}, \ldots, d_{\ell}\right) \in \mathbb{N}^{\ell}$ with sum n.
Define $I_{k}=\left[d_{k}+1, d_{k+1}\right]$ for $k=1, \ldots, \ell-1$ and

$$
S=\left\{(i, j) \mid 1 \leq i<j \leq n \text { and } i, j \text { belongs to distincts } I_{k}\right\} .
$$

Set

$$
\prod_{(i, j) \in S} \frac{1}{1-q \frac{x_{j}}{x_{i}}}=\sum_{\beta \in \mathbb{Z}^{\ell}} \mathcal{P}_{q}^{(d)}(\beta) x^{-\beta}
$$

Definition

For $\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right) \in \mathcal{P}_{d_{1}} \times \cdots \times \mathcal{P}_{d_{\ell}}$ set

$$
\mathbf{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q)=\sum_{\sigma \in S_{n}} \varepsilon(\sigma) \mathcal{P}_{q}^{(d)}(\sigma(\lambda+\rho)-(\mu+\rho))
$$

where μ is the concatenation of $\mu^{(1)}, \ldots, \mu^{(\ell)}$.

Theorem

(1) We get

$$
\mathbf{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(1)=c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda} .
$$

Conjecture (Broer 1994): When $\mu^{(1)}, \ldots, \mu^{(\ell)} \mu$ is a partition,

$$
C_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q) \in \mathbb{N}[q] .
$$

Theorem

(1) We get

$$
\mathbf{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(1)=c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda} .
$$

(2) When $\mu^{(1)}, \ldots, \mu^{(\ell)}$ are rectangular and μ is a partition, $C_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q) \in \mathbb{N}[q]$ (Broer 1994).

Conjecture (Broer 1994): When $\mu^{(1)}, \ldots, \mu^{(\ell)} \mu$ is a partition,

$$
C_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q) \in \mathbb{N}[q] .
$$

Theorem

(1) We get

$$
\mathbf{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(1)=c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda} .
$$

(2) When $\mu^{(1)}, \ldots, \mu^{(\ell)}$ are rectangular and μ is a partition, $C_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q) \in \mathbb{N}[q]$ (Broer 1994).
(3) We have moreover $\mathbf{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q)=C_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q)$ (Shimozono 2002).

Conjecture (Broer 1994): When $\mu^{(1)}, \ldots, \mu^{(\ell)} \mu$ is a partition,

$$
C_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q) \in \mathbb{N}[q] .
$$

Quantisation from quantum groups at roots of 1

The polynomial s_{λ} is also the character of $V_{q}(\lambda)$ the f.d. $U_{q}\left(\mathfrak{g l}_{n}\right)$-module of h.w. λ.

Let $\xi=\exp \left(\frac{i \pi}{\ell}\right)$.
Then $V_{\S}(\lambda)$ is no longer irreducible but has an irreducible quotient $L(\lambda)$.

Theorem (Kazhdan-Lusztig, Kashiwara-Tanisaki)

We have

$$
\psi_{\ell}\left(s_{\lambda}\right)=\operatorname{char} L(\ell \lambda)
$$

and

$$
c_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}=P_{\mu+\rho, \ell \lambda+\rho}^{-}(1)
$$

where $P_{\mu+\rho, \ell \lambda+\rho}^{-}(q)$ is a parabolic K. L. polynomial.

Definition (LLT 1996)

We set

$$
\mathfrak{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q)=P_{\mu+\rho, \ell \lambda+\rho}^{-}(q) \in \mathbb{N}[q] .
$$

Theorem (Haiman-Grojnoswski 2007 preprint)

When $\mu^{(1)}, \ldots, \mu^{(\ell)}$ are rectangular and μ is a partition,

$$
\mathfrak{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q)=\mathbf{C}_{\mu^{(1)}, \ldots, \mu^{(\ell)}}^{\lambda}(q) .
$$

Beyond type A

For type B, C, D, quantisations of branching (or tensor products) coefficients also exist:

- C from the energy function on affine crystals (HKOTZ 1999),

Theorem (L-Okado-Shimozono 2012))
Polynomials C are special cases of polynomials C.

Conjecture: LLT polynomials defined in [L 2007] are special cases of LLT polynomials defined in [Haiman-Grojnowski 2007].

Beyond type A

For type B, C, D, quantisations of branching (or tensor products) coefficients also exist:

- C from the energy function on affine crystals (HKOTZ 1999),
- C from q-partition functions (Broer 1996 and L 2006),

Theorem (L-Okado-Shimozono 2012))

Polynomials C are special cases of polynomials C.

Conjecture: LLT polynomials defined in [L 2007] are special cases of LLT polynomials defined in [Haiman-Grojnowski 2007].

Beyond type A

For type B, C, D, quantisations of branching (or tensor products) coefficients also exist:

- C from the energy function on affine crystals (HKOTZ 1999),
- C from q-partition functions (Broer 1996 and L 2006),
- \mathfrak{C} from parabolic KL polynomials and plethysms on Weyl characters (L 2007).

Theorem (L-Okado-Shimozono 2012))

Polynomials C are special cases of polynomials C.

Conjecture: LLT polynomials defined in [L 2007] are special cases of LLT polynomials defined in [Haiman-Grojnowski 2007].

