

# Stage-Structured Model for *Aedes Aegypti* and *Wolbachia* Interaction

HELIO SCHECHTMAN<sup>1</sup> Daniel Villela<sup>1</sup> Max O Souza<sup>2</sup>

<sup>1</sup>Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

<sup>2</sup>Departamento de Matemática Aplicada, Universidade Federal Fluminense, Niterói, RJ, Brazil

June 2015

#### THE MOSQUITO

Aedes (Stegomyia) aegypti (Diptera: Culicidae) (Linnaeus)

Tropical Areas Sub-Tropical Areas Worldwide



#### **GEOGRAPHICAL DISTRIBUTION**

#### Mosquito



#### MOSQUITO BIOLOGY



#### PUBLIC HEALTH ISSUE

#### Aedes aegypti is a vector for:

- Dengue
- Yellow Fever
- Chikungunya
- Etc.

#### DENGUE ELIMINATION

#### Prophylaxis

- No vaccine
- Mosquito population control

### • Wolbachia-infected mosquitoes

#### POPULATION DYNAMICS MODEL



#### SYSTEM ODE

$$\begin{cases} \dot{Y}_{1,j} &= B(j, Y_{5,\cdot}) - \left(\tau_1^j(t) + d_1^j\right) Y_{1,j} \\ \dot{Y}_{2,j} &= \tau_1^j(t) Y_{1,j} - \left(\tau_2^j(t) + d_2^j + s^j \sum_{l=1}^4 Y_{2,l}\right) Y_{2,j} \\ \dot{Y}_{3,j} &= \tau_2^j(t) Y_{2,j} - \left(\tau_3^j(t) + d_3^j\right) Y_{3,j} \\ \dot{Y}_{4,j} &= \tau_3^j(t) Y_{3,j} - \left(\tau_4^j + d_4^j\right) Y_{4,j} \\ \dot{Y}_{5,j} &= \tau_4^j Y_{4,j} - d_5^j Y_{5,j} \end{cases}$$

where *t* is measured in days, and  $Y_{i,j}$  denotes stage *i* within infected/uninfected female/male j = 1, 2, 3, 4. For instances, parous infected female  $Y_{5,1}$  and parous uninfected male  $Y_{5,4}$ .

#### **BIRTH FUNCTION**

$$\begin{split} \mathcal{B}(j,Y_{5,\cdot}) &= Y_{5,1}\left(\frac{Y_{5,2}}{\sum_{k=1}^{2}Y_{5,2k}}\right)(SR_{1,j})(br_1)(1-cbr_1)(VT_{1,j})(1-ci_1)\\ &+ Y_{5,1}\left(\frac{Y_{5,4}}{\sum_{k=1}^{2}Y_{5,2k}}\right)(SR_{2,j})(br_2)(1-cbr_2)(VT_{2,j})(1-ci_2)\\ &+ Y_{5,3}\left(\frac{Y_{5,2}}{\sum_{k=1}^{2}Y_{5,2k}}\right)(SR_{3,j})(br_3)(1-cbr_3)(VT_{3,j})(1-ci_3)\\ &+ Y_{5,3}\left(\frac{Y_{5,4}}{\sum_{k=1}^{2}Y_{5,2k}}\right)(SR_{4,j})(br_4)(1-cbr_4)(VT_{4,j})(1-ci_4) \end{split}$$

where

$$(SR_n, j) = (sr_n, j)$$
 for  $j = 1, 3$ ;  
 $(SR_n, j) = (1 - sr_n, j)$  for  $j = 2, 4$ .  
 $(VT_n, j) = (vt_n, j)$  for  $j = 1, 2$ ;  
 $(VT_n, j) = (1 - vt_n, j)$  for  $j = 3, 4$ .  
 $br_n = 4$ 

#### ESTABLISHMENT OF BASIC INITIAL CONDITIONS

#### Assume the following non-infected population distribution:

| Quantity       | Value      | Fraction of Total | Description              |
|----------------|------------|-------------------|--------------------------|
| Y <sub>1</sub> | 39,160,000 | 0.979             | Total number of eggs     |
| Y <sub>2</sub> | 240,000    | 0.006             | Total number of larvae   |
| Y <sub>3</sub> | 40,000     | 0.001             | Total number of pupae    |
| $Y_4$          | 280,000    | 0.007             | Total number of non-     |
|                |            |                   | parous winged mosquitoes |
| Y <sub>5</sub> | 280,000    | 0.007             | Total number of parous   |
|                |            |                   | winged mosquitoes        |

Evolve non-infected population through  $4,384\ \mbox{days}$  or  $12\ \mbox{years}$  and  $1\ \mbox{day}.$ 

#### BASIC INITIAL CONDITION (BIC) POPULATION

| Quantity       | Value       | Fraction of Total | Description              |
|----------------|-------------|-------------------|--------------------------|
| Y <sub>1</sub> | 106,380,800 | 0.9743            | Total number of eggs     |
| Y <sub>2</sub> | 949,598     | 0.0087            | Total number of larvae   |
| Y <sub>3</sub> | 155,330     | 0.0014            | Total number of pupae    |
| Y4             | 423,110     | 0.0039            | Total number of non-     |
|                |             |                   | parous winged mosquitoes |
| $Y_5$          | 1,279,318   | 0.0117            | Total number of parous   |
|                |             |                   | winged mosquitoes        |

\* assume sex-ratio of 1/2

#### ESTABLISHMENT POPULATION THRESHOLD

Apply same sex-ratio to BIC for infected and uninfected mosquitoes

#### ESTABLISHMENT POPULATION THRESHOLD

- Apply same sex-ratio to BIC for infected and uninfected mosquitoes
- Apply same share proportion for all stages to infected and uninfected population, for instances 0.85 uninfected and 0.15 infected

#### ESTABLISHMENT POPULATION THRESHOLD

- **1** Apply same sex-ratio to BIC for infected and uninfected mosquitoes
- Apply same share proportion for all stages to infected and uninfected population, for instances 0.85 uninfected and 0.15 infected
- Verify if Wolbachia-infected mosquitoes prevail
- If invaded, reduce share proportion of Wolbachia-infected
- If not invaded, increase share proportion of Wolbachia-infected
- Service 3 to 5 until desired accuracy

#### **TYPICAL RUN - POPULATION THRESHOLD**



#### EXPERIMENTAL PROCEDURE - MOSQUITO RELEASE

• Apply sex-ratio to BIC for purely uninfected mosquitoes population

#### EXPERIMENTAL PROCEDURE - MOSQUITO RELEASE

- Apply sex-ratio to BIC for purely uninfected mosquitoes population
- Release infected mosquitoes at desired stage and proportion at specified frequency, for instances 0.15 of Parous BIC population at weekly intervals for one year for a given density dependent death

#### EXPERIMENTAL PROCEDURE - MOSQUITO RELEASE

- Apply sex-ratio to BIC for purely uninfected mosquitoes population
- Release infected mosquitoes at desired stage and proportion at specified frequency, for instances 0.15 of Parous BIC population at weekly intervals for one year for a given density dependent death
- Solution Verify if Wolbachia-infected mosquitoes prevail
- If invaded, reduce share proportion of Wolbachia-infected
- If not invaded, increase share proportion of Wolbachia-infected
- Service 3 to 5 until desired accuracy

#### MOSQUITO RELEASES

#### 3 stages: Eggs; or

Larvae; or

Parous winged mosquitoes

#### Periodicity

Single release at 1st January; or 52 weekly releases for a year

#### **TYPICAL RUN - MOSQUITO RELEASE**



## RESULTS

#### POPULATION THRESHOLD

- 0.0089416505  $\approx$  1% FI
- 0.0089416505  $\approx 1\%$  MI
- 0.49105835  $\approx$  49% FU
- 0.49105835 ≈ 49% MU

#### SINGLE RELEASE - PERCENTAGE



SINGLE RELEASE

#### SINGLE RELEASE - ABSOLUTE NUMBERS



.....

#### WEEKLY RELEASE - PERCENTAGE



#### WEEKLY RELEASE - ABSOLUTE NUMBERS



WEEKLY RELEASE

#### DENSITY DEPENDENT DEATH EFFECTS



#### **DISCUSSION** - Density Dependent Death

- SCALING parameter for Total Population and Release
- Fast effect

#### **DISCUSSION** - Minimum Percentage for Invasion

# for SINGLE Release 3 % of EGGS sub-population 8 % of PAROUS sub-population 126 % of LARVAE sub-population

#### **DISCUSSION** - Minimum Percentage for Invasion

# for WEEKLY Releases 0.1 % of EGGS sub-population 0.2 % of PAROUS sub-population 4 % of LARVAE sub-population

#### **DISCUSSION** - Practical Implementation

- Different difficulties for each stage
- POPULATION SIZE UNKNOWN
- FIOCRUZ can produce 30,000 parous mosquitoes per week
- for SINGLE Release 50,930 individuals of PAROUS sub-population
- for WEEKLY Releases

454 individuals of PAROUS sub-population

#### **DISCUSSION** - in summary

- Invasion is possible
- Feasible with existent means
- Different "efforts"

### Thank You!!!!

