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Backward SDE on [0, T]:

T T
Y, =&+ / f(Ye, Z)ds — / Z.dW,
t t

< &£ € L?(Fr), fis a Lipschitz function,
— (Y, Z) adapted solution.
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Example
The stock price is given by

t t
Xy = Xo+ / uXsds + / o XsdWs
0 0

The price of an european option with payoff g, assuming different rate
for borrowing (R) and lending (r) is given by

T n—r Zs 4
Yt:g(XT)Jr/ (rYs+UZs+(Rf)[YsU])d5/ ZsdWs
t t

— These are the dynamics of the value of the optimal hedging portfolio.
Non-linearity coming from f(y,z) = —ry + =2z + (R —r)[y — 2]
-~ ARichou |
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We are given an equidistant grid r={0=t) < ... < t; < ... < t, = T},
define h= T /n.

Start with: Yy, + f;’“ ZdWs >~ Yy, + hf(Yy, Zy) (1)

For the Y -part:

Take conditional expectation, Yt ~ E¢[Ys,,, + hf( Yy, Zt,)]

— Y= E[Yig1 + hf(Yi, Z)]

For the Z-part:
Multiply (1) by AW, := W;,,, — W,,, take conditional expectation:

E, [ [in zsds} ~ By [AW; Yy, ]

i
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We are given an equidistant grid r={0=t) < ... < t; < ... < t, = T},
define h= T /n.

Start with: Yy, + f;’“ ZdWs >~ Yy, + hf(Yy, Zy) (1)

For the Y -part:

Take conditional expectation, Yt ~ E¢[Ys,,, + hf( Yy, Zt,)]

— Y= E[Yig1 + hf(Yi, Z)]

For the Z-part:
Multiply (1) by AW, := W;,,, — W,,, take conditional expectation:

Et,[ fat sts} ~ By [AW; Yy, ]
Say Et,[ e sts} ~ hZ,, = hZ, ~EJAW,Yi 1]
—  Z:=EH; Y] with Hi:=h AW, .
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The Scheme: given the terminal condition Y, = £, the transition
from step i+ 1 to i is

Yi = E¢[Yip1 + hf (Y, Z))]
Zi = EH, Y]

— need a good approximation of conditional expectations.

Remark: for this scheme in Markovian framework, convergence has
been proved by Zhang and Bouchard - Touzi (2004) and
Gobet-Labart (2007).

Goals: Understand the qualitative behaviour of the scheme in
practice.
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Explicit Euler scheme satisfies: y, = (1 — ah)"yp

if h> % and n is big, we get a NalV.

h= % is a critical value.
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Things can go wrong already for ODEs: y’ = f(y) with
f(y) =—ay, a>0.

Explicit Euler scheme satisfies: y, = (1 — ah)"yp

if h> % and n is big, we get a NalV.

h= % is a critical value.

What happens in the 'pure’ BSDEs setting?
— We consider f(Z) = bZ and dim(Y) = dim(Z) = 1.
— The terminal condition is given by cos(WT).

— W is a (recombining) trinomial tree for the brownian motion W.
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We will discuss the two following schemes:

BTZ-scheme 'Implicit’ Euler:

Yi = E¢Yit1 + hf (Y, Zi)]
Zi = E¢[H; Yii]

"Explicit’ Euler:

Yi i =E[Yit1 + hf (Yip1, Zi)]
Z;i = E¢[H;Yij1]

E¢[Hi] = 0, E¢[|Hi|?] < A, for some given A > 0.
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The analysis covers various types of schemes:

Theoretical ones given in the introduction and H; := %(th.+1

Numerical scheme using trees e.g.

Trinomial:
3 1 2
P(H=x—)=-, P(H;=0) = =
Binomial:
1 1
P(H=+—)=-.
=+ =2

< H; is bounded.

- Wfi)-
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f(0,0) =0 = (0,0) is solution with terminal condition 0.

f is Lipschitz continuous in Y (uniformly), i.e.
fly,2) = (/" 2)| < LYy —y'| (Lipy)
and/or
yf(y,0) < =I"|y>  (Mon)

where LY, IV are non-negative real numbers.

We also assume that f is Lipschitz continuous in z (uniformly) i.e.

|f(y’z)—f(y’zl)| < LZ‘Ziz,’ : (Lip Z)
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Question: can we obtain sometimes a uniform bound (in T) for Y 7

In our setting (Lip z + monotone y), if
in the multidimensional case (for Y): (L%)? < 2/Y, [|€]|eo < 0
in the one-dimensional case (for Y): simply ||{||cc < o0

then

Vel < fl€loo -

(remark: for all T.)
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Let £ be a bounded terminal condition (random).

Numerical stability: We say that the scheme is numerically stable if
there exists h* > 0, such that for all h < h*

[ Yol < [I€]loo-

A-stability: if, moreover, h* = oo, then we say that the scheme is
A-stable.

— In practice, we could expect 2 regimes for the scheme:
h < h: scheme returns a 'reasonable’ value

h > h: scheme is unstable
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Assume that

(LY VA + L2VR)’
1- A >0 (1)

then the pseudo-explicit scheme is numerically stable for the Y part.
Assume that

L7
21y

>0, (2)

>

then the scheme is A-stable.
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Assume that

LY}

1—h"
21Y

— L#h* max|H;| >0

then the pseudo-explicit scheme is numerically stable.

Assume that
1— L%h* max|H;| >0

then the implicite scheme is numerically stable.
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Recall the scheme:Y; := E[Yi11 + hf(Z;)] and Z; := E[H,;Yit1]

Use linearization:

Yi = E[Yit1 +7iZi] where v; = f(Z;)/Zilz+0
= Eg[(1 + hyiH;)Yiga]

If (1+ hyiH;) >0,
Y <Ee [Yiea] = Y <Eg [€] < 11l -

Comparison Theorem in this case.
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dim(Y) =1, Scheme given by time discretization only (i.e.
H; = h=Y(W4,,, — W,,) unbounded!).
Definition: Scheme is "VN stable’ if for all kK € R,

|Yo| <1 when ¢:= elkWr

Necessary condition for numerical stability.
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Implicit scheme is VN stable if b>h < 1 or b°h > 1 and
(1+ ah) — bhen * >0

Pseudo-explicit scheme is VN stable if b>h < (1 + ah)? and
h < —2/aor b>h > (1 + ah)? and

2
(14ah) _1

1 — b’he > 0.
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Unstability region

Stability region
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Yellow = unstable, correct Yy value ~ 0.

0.5 . . . . . . . . .
Euler

0]

-0.5

coefy
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wvalue h
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Euler
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For k € R, € = e*We (binomial tree),
Yi= )/ieikwt"
with
Vi = Ayip1 with A= E[(1 + bAW;)elkAW
The scheme is VN stable iff [\| < 1 i.e. (after some computations)
hlb?2 <11

Remark: observe that the dimension of b (so W) impacts the
stability of the scheme.
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