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Backward Sto. Diff. Eq.

Backward SDE on [0,T ]:

Yt = ξ +

∫ T

t
f (Ys ,Zs)ds −

∫ T

t
ZsdWs

↪→ ξ ∈ L2(FT ) , f is a Lipschitz function,
↪→ (Y ,Z ) adapted solution.
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Non-linearity and finance

Example

The stock price is given by

Xt = X0 +

∫ t

0
µXsds +

∫ t

0
σXsdWs

The price of an european option with payoff g , assuming different rate
for borrowing (R) and lending (r) is given by

Yt = g(XT ) +

∫ T

t
(−rYs +

µ− r

σ
Zs + (R − r)[Ys −

Zs

σ
]−)ds −

∫ T

t
ZsdWs .

↪→ These are the dynamics of the value of the optimal hedging portfolio.

I Non-linearity coming from f (y , z) = −ry + µ−r
σ z + (R − r)[y − z

σ ]−
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Deriving the scheme

We are given an equidistant grid π = {0 = t0 < ... < ti < ... < tn = T},
define h = T/n.

I Start with: Yti +
∫ ti+1

ti
ZsdWs = Yti+1 +

∫ ti+1

ti
f (Ys ,Zs)ds (1)

I For the Y -part:

Take conditional expectation, Yti ' Eti

[
Yti+1 + hf (Yti ,Zti )

]
↪→ Yi := Eti[Yi+1 + hf (Yi ,Zi )]

I For the Z-part:

Multiply (1) by ∆Wi := Wti+1 −Wti , take conditional expectation:

Eti

[∫ ti+1

ti
Zsds

]
' Eti

[
∆WiYti+1

]
Say Eti

[∫ ti+1

ti
Zsds

]
' hZti , =⇒ hZti ' Eti[∆WiYi+1]

↪→ Zi := Eti[HiYi+1] with Hi := h−1∆Wi .
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Euler Scheme

I The Scheme: given the terminal condition Yn = ξ, the transition
from step i + 1 to i is

Yi := Eti[Yi+1 + hf (Yi ,Zi )]

Zi := Eti[HiYi+1]

↪→ need a good approximation of conditional expectations.

I Remark: for this scheme in Markovian framework, convergence has
been proved by Zhang and Bouchard - Touzi (2004) and
Gobet-Labart (2007).

I Goals: Understand the qualitative behaviour of the scheme in
practice.
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ODEs and BSDEs

I Things can go wrong already for ODEs: y ′ = f (y) with
f (y) = −ay , a > 0.

Explicit Euler scheme satisfies: yn = (1− ah)ny0

if h > 2
a and n is big, we get a NaN.

h̄ = 2
a is a critical value.

I What happens in the ’pure’ BSDEs setting?

↪→ We consider f (Z ) = bZ and dim(Y ) = dim(Z ) = 1.

↪→ The terminal condition is given by cos(ŴT ).

↪→ Ŵ is a (recombining) trinomial tree for the brownian motion W .
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f (Z ) = bZ , b = 5, T = 1
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f (Z ) = bZ , b = 1, T = 10
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f (Z ) = bZ , b = 5, T = 10, a lot of steps
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Framework

We will discuss the two following schemes:

I BTZ-scheme ’Implicit’ Euler:

Yi := Eti[Yi+1 + hf (Yi ,Zi )]

Zi := Eti[HiYi+1]

I ’Explicit’ Euler:

Yi := Eti[Yi+1 + hf (Yi+1,Zi )]

Zi := Eti[HiYi+1]

I Eti[Hi ] = 0, Eti

[
|Hi |2

]
≤ Λ, for some given Λ > 0.
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Remarks

The analysis covers various types of schemes:

I Theoretical ones given in the introduction and Hi := 1
h (Wti+1 −Wti ).

I Numerical scheme using trees e.g.

(i) Trinomial:

P(Hi = ± 3√
h

) =
1

6
, P(Hi = 0) =

2

3
.

(ii) Binomial:

P(Hi = ± 1√
h

) =
1

2
.

↪→ Hi is bounded.
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Assumptions

I f (0, 0) = 0 =⇒ (0, 0) is solution with terminal condition 0.

I f is Lipschitz continuous in Y (uniformly), i.e.

|f (y , z)− f (y ′, z)| ≤ LY |y − y ′| (Lip y)

and/or

yf (y , 0) ≤ −lY |y |2 (Mon)

where LY , lY are non-negative real numbers.

I We also assume that f is Lipschitz continuous in z (uniformly) i.e.

|f (y , z)− f (y , z ′)| ≤ LZ |z − z ′| . (Lip z)

A Richou Numerical Stability of the Euler scheme for BSDEs



Introduction
Numerical Stability

Further considerations

Definition
sufficient conditions

Assumptions

I f (0, 0) = 0 =⇒ (0, 0) is solution with terminal condition 0.

I f is Lipschitz continuous in Y (uniformly), i.e.

|f (y , z)− f (y ′, z)| ≤ LY |y − y ′| (Lip y)

and/or

yf (y , 0) ≤ −lY |y |2 (Mon)

where LY , lY are non-negative real numbers.

I We also assume that f is Lipschitz continuous in z (uniformly) i.e.

|f (y , z)− f (y , z ′)| ≤ LZ |z − z ′| . (Lip z)

A Richou Numerical Stability of the Euler scheme for BSDEs



Introduction
Numerical Stability

Further considerations

Definition
sufficient conditions

Assumptions

I f (0, 0) = 0 =⇒ (0, 0) is solution with terminal condition 0.

I f is Lipschitz continuous in Y (uniformly), i.e.

|f (y , z)− f (y ′, z)| ≤ LY |y − y ′| (Lip y)

and/or

yf (y , 0) ≤ −lY |y |2 (Mon)

where LY , lY are non-negative real numbers.

I We also assume that f is Lipschitz continuous in z (uniformly) i.e.

|f (y , z)− f (y , z ′)| ≤ LZ |z − z ′| . (Lip z)

A Richou Numerical Stability of the Euler scheme for BSDEs



Introduction
Numerical Stability

Further considerations

Definition
sufficient conditions

Behaviour of the true solution

Question: can we obtain sometimes a uniform bound (in T ) for Y ?

In our setting (Lip z + monotone y), if

I in the multidimensional case (for Y ): (LZ )2 ≤ 2lY , ‖ξ‖∞ <∞
I in the one-dimensional case (for Y ): simply ‖ξ‖∞ <∞

then

|Yt | ≤ ‖ξ‖∞ .

(remark: for all T .)
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Some Definitions

Let ξ be a bounded terminal condition (random).

I Numerical stability: We say that the scheme is numerically stable if
there exists h∗ > 0, such that for all h ≤ h∗

|Y0| ≤ ‖ξ‖∞.

I A-stability: if, moreover, h∗ =∞, then we say that the scheme is
A-stable.

↪→ In practice, we could expect 2 regimes for the scheme:

I h < h̄: scheme returns a ’reasonable’ value

I h > h̄: scheme is unstable
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Strict monotony (lY > 0) and multidimensional Y

Theorem
Assume that

1−

(
LY
√
h∗ + LZ

√
Λ
)2

2lY
≥ 0 (1)

then the pseudo-explicit scheme is numerically stable for the Y part.
Assume that

1

Λ
− |L

Z |2

2ly
≥ 0 , (2)

then the scheme is A-stable.
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Strict monotony (lY > 0) and one dimensional Y

Theorem
Assume that

1− h∗
|LY |2

2lY
− LZh∗max

i
|Hi | ≥ 0 (3)

then the pseudo-explicit scheme is numerically stable.
Assume that

1− LZh∗max
i
|Hi | ≥ 0 (4)

then the implicite scheme is numerically stable.
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Sketch of proof (dimension 1)

I Recall the scheme:Yi := Eti[Yi+1 + hf (Zi )] and Zi := Eti[HiYi+1]

I Use linearization:

Yi = Eti[Yi+1 + γiZi ] where γi := f (Zi )/Zi1Zi 6=0

= Eti[(1 + hγiHi )Yi+1]

I If (1 + hγiHi ) ≥ 0,

Yi ≤ Ẽti [Yi+1] =⇒ Yi ≤ Ẽti [ξ] ≤ ‖ξ‖∞ .

I Comparison Theorem in this case.
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Von Neumann Stability Analysis: f (y , z) = −ay + bz

I dim(Y ) = 1, Scheme given by time discretization only (i.e.
Hi = h−1(Wti+1 −Wti ) unbounded!).

I Definition: Scheme is ’VN stable’ if for all k ∈ R,

|Y0| ≤ 1 when ξ := e ikWT

I Necessary condition for numerical stability.
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Von Neumann Stability Analysis

Theorem

I Implicit scheme is VN stable if b2h ≤ 1 or b2h > 1 and

(1 + ah)− b2he
1

b2h
−1 ≥ 0

I Pseudo-explicit scheme is VN stable if b2h ≤ (1 + ah)2 and
h ≤ −2/a or b2h > (1 + ah)2 and

1− b2he
(1+ah)2

b2h
−1 ≥ 0.

A Richou Numerical Stability of the Euler scheme for BSDEs



Introduction
Numerical Stability

Further considerations

Von Neumann Stability
Non-linear case

VN stability region - Implicit Scheme - b=5
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VN stability region - Explicit Scheme - b=5
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Numerical illustration f (y , z) = −ay + bz , b = 5

Yellow = unstable, correct Y0 value ' 0.

A Richou Numerical Stability of the Euler scheme for BSDEs



Introduction
Numerical Stability

Further considerations

Von Neumann Stability
Non-linear case

Numerical illustration −ay + bz , b = 5

A Richou Numerical Stability of the Euler scheme for BSDEs



Introduction
Numerical Stability

Further considerations

Von Neumann Stability
Non-linear case

VN Stability - Empirical Scheme - Analysis, f (y , z) = bz

I For k ∈ R, ξ = e ikŴtn (binomial tree),

Yi = yie
ikŴti

with

yi = λyi+1 with λ := E
[
(1 + b∆Ŵi )e

ik∆Ŵi

]

I The scheme is VN stable iff |λ| ≤ 1 i.e. (after some computations)

h|b|2 ≤ 1 !

I Remark: observe that the dimension of b (so W ) impacts the
stability of the scheme.
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Numerical illustration f (z) = bz
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Numerical illustration f (z) = b|z |
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Numerical illustration f (z) = sin(bz)
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