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There exist automaton groups with unsolvable conjugacy problem.

It is a direct consequence of...

Theorem (Sunic-V.)

LetT < GLy(Z) be f.g. Then, Z9 x T is an automaton group.

Theorem (Bogopolski-Martino-V.)

There exists T < GL4(Z) f.g. such that Z9 x T has unsolvable
conjugacy problem.
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Let X be an alphabet on k letters, and let X* be the free monoid on
X, thought as a rooted k-ary tree:

AL )

00

N\

11

Definition

@ Every tree automorphism g decomposes as a root permutation
mg: X = X, and k sections gy, for x € X:

glxw) = mg(x)g|x(w).
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Automaton groups

Definition
@ A set of tree automorphisms is self-similar if it contains all
sections of all of its elements.

@ The group G(.A) of tree automorphisms generated by a finite
self-similar set A is called an automaton group.

The Grigorchuk group: G = (1, a, 5, v, §), where

a=0c(1,1), B=1a,y), v=1(a,9), 6=1(1,5).
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Definition

Let M = {M;,...,Mp} be integral d x d matrices with non-zero
determinants. Let p > 2 be a prime not dividing any of these
determinants (thus, M; is invertible over the ring Z, of p-adic
integers).
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Affinities of p-adic integers

Definition

Let M = {M;,...,Mp} be integral d x d matrices with non-zero
determinants. Let p > 2 be a prime not dividing any of these
determinants (thus, M; is invertible over the ring Z, of p-adic
integers).

For an integral d x d matrix M and v € Z9, consider the invertible
affine transformation yM: 23 — 73, yM(u) = v + Mu.

p’ v
Let

Grmp = ({WM|Me M, veZ}) < Affy(Zp).

If, in addition, det M; = £1, then G p = Z9 x T, where
r=(M,...,Mp) <GLy(Z).
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Affinities of p-adic integers

Proof. Denote the translation by 7, : Z3 — 73, u — u+ V.
Since yM = 1, oM, we have G, , generated by oM for M € M, and
Te;, Where the e;’s are the canonical vectors.

ItM € GL4(Z), then yM € Affy(Zy) restricts to an integral bijective
affine transformation yM € Affy(Z); hence, we can view
Gmp < Affy(Z) (and is independent from p; let’s denote it by Ga).

They get multiplied as
MM :u— VvV + Mu— v+ MV +Mu) =
(Vv+MV')+ MM'u =
vimv (MM')(u).

S0, Gpm =79 x T, whereT = (My, ..., M) < GL4(Z).
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G is an automaton group

So, we have the groups G (with M = {My, ..., Mn} as before) and
detM=+1 = Gy =Z9xT,

where T = (My, ..., Mp) < GL4(Z).

It only remains to prove that:

Proposition
G ,p is an automaton group.
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G is an automaton group

Definition
Elements in Z, may be (uniquely) represented as right infinite words
over Y, ={0,...,p—1}:

ViYoYa- = Yi+P- Yo+ Yot

Similarly, elements of Zg (the free d-dimensional module, viewed as
column vectors), may be (uniquely) represented as right infinite words

over Xp = Y& ={(V1.--- . Ya)" | ¥i € Yp}:

X1XoX3::: < X1—|—p-x2—|-p2.x3_|_..._

Note that | Y| = p and | X,| = p“.




2. Automaton groups
000000@00

G is an automaton group

Definition

Forv € 79, define vectors Mod(v) € X, and Div(v) € Z s.t.
v = Mod(v) + p - Div(v).




2. Automaton groups
000000@00

G is an automaton group

Forv € 79, define vectors Mod(v) € X, and Div(v) € Z s.t.
v = Mod(v) + p - Div(v).

V.
Lemma

For everyv € 79, M € Maty(Z), and X;XoX3 - - - € Zg, we have

VM(X1 XoXg - - - ) = MOd(V aF MX1) =+ P Div(v+Mx;) M(X2X3X4 s )




2. Automaton groups
000000@00

G is an automaton group

Forv € 79, define vectors Mod(v) € X, and Div(v) € Z s.t.
v = Mod(v) + p - Div(v).

Lemma

For everyv € 79, M € Maty(Z), and X;XoX3 - - - € Zg, we have

VM(X1 XoXg - - - ) = MOd(V aF MX1) =+ P Div(v+Mx;) M(X2X3X4 s )

Proof.

vM(XiX2---) = V+MxiXo---=V+MX; +p-(XoX3---))

V+ Mxq+p- MxoXs---

= Mod(v + Mx1) + p - Div(v + Mx1) + pMxoXs3 - - -
= Mod(v+ Mx1) + p - (Div(v + Mx1) + MXoX3 - - -)
= MOd(V+MX1)+p'DiV(V+MX1) M(X2X3-~-). O
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between —||M|| and ||M|| — 1 (note that | V| = (2||M||)?).
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G is an automaton group

vM(X1X2X3 - - - ) = Mod(V + MX1) + P -piv(v+mx,) M(X2X3Xq - - - ).

For M € M, let V), be the set of integral vectors with coordinates
between —||M|| and ||M|| — 1 (note that | V| = (2||M||)?).

Construct the automaton Ay p:
@ Alphabet: X,.
@ States: my forv € V), with root permutation and sections

my(x) = Mod(v + Mx), and my|x = Mpiyv-4mx)-

@ Straightforward to see that sections are again states.

N,
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G is an automaton group

Observation

The state my € Ay p acts on a vectoru = X{XoXs - - - € Zg as
my(u) = yM(u).
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The state my € Ay p acts on a vectoru = X{XoXs - - - € Zg as
my(u) = yM(u).

Definition
Construct the automaton A, as the disjoint union of the automata
.«4/\//1 N IRRE ;AMm,p-

@ Alphabet: X,,

@ lthas29y ", |[M||? states.
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G is an automaton group

The state my € Ay p acts on a vectoru = X{XoXs - - - € Zg as
my(u) = yM(u).

Definition
Construct the automaton A, as the disjoint union of the automata
.«4/\//1 N IRRE ;AMm,p-

@ Alphabet: X,,

@ lthas29y ", |[M||? states.

| \

Proposition

Gm,p s an automaton group generated by the automaton A, (over
an alphabet of size p?, and having 29 3"7", || M;||? states).
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Orbit decidability

Theorem (Bogopolski-Martino-V.)

There exists I < GL4(Z) f.g. such that Z9 x T has unsolvable
conjugacy problem.

Definition

Let G be a f.g. group. A subgroup T < Aut(G) is said to be orbit
decidable (O.D.) if there is an algorithm to decide, given u,v € G,
whether v = a(u) forsome o € T.

Observation (folklore)
The full group Aut(Z9) = GL4(Z) is orbit decidable.

Proof. For u,v c 79, there exists A € GL4(Z) such that v = Au if and
only ifged(uy, . .., Uug) = ged(vi, . .., Vqg).
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subgroups of GL4(Z)

Proposition (Bogopolski-Martino-V., 08)
Every finitely index subgroup of GLy4(Z) is O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GLy(Z) is O.D.

Does there exist an orbit undecidable subgroup of GL3(Z) ?

Proposition (Bogopolski-Martino-V., 08)

For d > 4, there exist f.g., orbit undecidable, subgroups ' < GL4(Z).
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Connection to semidirect products

Observation (B-M-V)

LetH be f.g., andT < Aut(H) f.g. If H x T has solvable CP, then
I < Aut(H) is orbit decidable.

Proof. G = H x T contains elements (h, v) € H x T operated like
(M, 1) - (h2, 72) = (h171(h2), v172)
(h N =071, Y.
For hy, ho € H< G, we have hy ~g ho < 3(h,v) € HxT s.t.

(ho, Id) = (h, )" (hy, Id) - (h, ~)
(YN (A, 7 - (b, )
(v-1(h~"h h), Id).

Hence, hy ~g ho < 3ycTandhec Hs.t hy = hy(h)h='. O
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Let G be a group, and let A < B < Aut(G) and v € G be such that
Bn Stab(v) = 1. Then,

OD(A) solvable = MP(A, B) solvable.
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Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let A < B < Aut(G) and v € G be such that
Bn Stab(v) = 1. Then,

OD(A) solvable = MP(A, B) solvable.

Proof. Given ¢ € B < Aut(G), let w = vy and
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Connection with Mihailova’s construction

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let A < B < Aut(G) and v € G be such that
Bn Stab(v) = 1. Then,

OD(A) solvable = MP(A, B) solvable.

Proof. Given ¢ € B < Aut(G), let w = vy and
{p € B|vp=w}=Bn(Stab(v) - ¢) = (BN Stab(v)) - ¢ = {¢}.

So, deciding whether v can be mapped to w by somebody in A, is the
same as deciding whether ¢ belongs to A. Hence,

OD(A) = MP(A B). O
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Proof.

@ Take a copy of F, = (P, Q) inside GLy(Z).
Take Fo x Fo ~ B < GL4(Z).
The existence of v is technical.
Take A < B ~ F, x F, with unsolvable membership problem.
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Conclusion

Proposition (Bogopolski-Martino-V., 08)
For d > 4, there exist f.g., orbit undecidable, subgroups ' < GL4(Z).

Corollary (Bogopolski-Martino-V.)

There exists T < GLq(Z) f.g. such that Z9 x T has unsolvable
conjugacy problem.

Corollary (Sunic-V.)
There exist automaton groups with unsolvable conjugacy problem.
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