Automaton groups with unsolvable conjugacy problem

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunva

AMS/EMS/SPM International meeting

Porto

June 13th, 2015.

(Joint work Z. Sunic)

Outline

Main result

- 2 Automaton groups
- Unsolvability of CP and orbit undecidability

Outline

Main result

- Automaton groups
- Unsolvability of CP and orbit undecidability

Main result

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

It is a direct consequence of...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \mathsf{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d
times \Gamma$ is an automaton group.

Theorem (Bogopolski-Martino-V.

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Main result

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

It is a direct consequence of...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

Theorem (Bogopolski-Martino-V.

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Main result

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

It is a direct consequence of...

Theorem (Sunic-V.)

Let $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Outline

Main result

- 2 Automaton groups
- 3 Unsolvability of CP and orbit undecidability

1. Main result

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

• Every tree automorphism g decomposes as a root permutation

$$g(xw) = \pi_g(x)g|_{x}(w)$$

Tree automorphisms

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Definition

 Every tree automorphism g decomposes as a root permutation $\pi_q: X \to X$, and k sections $g|_X$, for $X \in X$:

$$g(xw) = \pi_q(x)g|_{x}(w).$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- The group G(A) of tree automorphisms generated by a finite self-similar set A is called an automaton group.

The Grigorchuk group: $G = \langle 1, \alpha, \beta, \gamma, \delta \rangle$, where

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta)$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- The group G(A) of tree automorphisms generated by a finite self-similar set A is called an automaton group.

The Grigorchuk group: $G = \langle 1, \alpha, \beta, \gamma, \delta \rangle$, where

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta).$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- The group G(A) of tree automorphisms generated by a finite self-similar set A is called an automaton group.

The Grigorchuk group: $G = \langle 1, \alpha, \beta, \gamma, \delta \rangle$, where

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha, \gamma), \quad \gamma = 1(\alpha, \delta), \quad \delta = 1(1, \beta).$$

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $p \geqslant 2$ be a prime not dividing any of these determinants (thus, M_i is invertible over the ring \mathbb{Z}_p of p-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d, \ _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},p} = \langle \{_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_p).$$

emma

If, in addition, $\det M_i = \pm 1$, then $G_{\mathcal{M},p} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $p \ge 2$ be a prime not dividing any of these determinants (thus, M_i is invertible over the ring \mathbb{Z}_p of p-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M: \mathbb{Z}_{p}^{d} \to \mathbb{Z}_{p}^{d}, \ _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}.$

$$G_{\mathcal{M},p} = \langle \{_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_p)$$

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $p \geqslant 2$ be a prime not dividing any of these determinants (thus, M_i is invertible over the ring \mathbb{Z}_p of p-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d, \ _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},p} = \langle \{_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_p).$$

Lemma

If, in addition, $\det M_i = \pm 1$, then $G_{\mathcal{M},p} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $p \geqslant 2$ be a prime not dividing any of these determinants (thus, M_i is invertible over the ring \mathbb{Z}_p of p-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d, \ _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},p} = \langle \{_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_p).$$

Lemma

If, in addition, $\det M_i = \pm 1$, then $G_{\mathcal{M},p} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$.

Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},p}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in \operatorname{GL}_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in \operatorname{Aff}_d(\mathbb{Z}_p)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in \operatorname{Aff}_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},p} \leqslant \operatorname{Aff}_d(\mathbb{Z})$ (and is independent from p; let's denote it by $G_{\mathcal{M}}$)

They get multiplied as

$$\mathbf{v} M_{\mathbf{v}'} M' : \mathbf{u} \longrightarrow \mathbf{v}' + M' \mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M' \mathbf{u}) =$$
 $(\mathbf{v} + M \mathbf{v}') + M M' \mathbf{u} =$
 $\mathbf{v} + M \mathbf{v}' (M M')(\mathbf{u}).$

So,
$$G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$$
, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},p}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then $_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_p)$ restricts to an integral bijective affine transformation $_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},p} \leqslant Aff_d(\mathbb{Z})$ (and is independent from p; let's denote it by $G_{\mathcal{M}}$)

They get multiplied as

$$\mathbf{v} M_{\mathbf{v}'} M' : \mathbf{u} \longrightarrow \mathbf{v}' + M' \mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M' \mathbf{u}) =$$
 $(\mathbf{v} + M \mathbf{v}') + M M' \mathbf{u} =$
 $\mathbf{v} + M \mathbf{v}' (M M')(\mathbf{u}).$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},p}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then $_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_p)$ restricts to an integral bijective affine transformation $_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},p} \leqslant Aff_d(\mathbb{Z})$ (and is independent from p; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v} M_{\mathbf{v}'} M' : \mathbf{u} \longrightarrow \mathbf{v}' + M' \mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M' \mathbf{u}) =$$
 $(\mathbf{v} + M \mathbf{v}') + M M' \mathbf{u} =$
 $\mathbf{v} + M \mathbf{v}' (M M') (\mathbf{u}).$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_p^d \to \mathbb{Z}_p^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},p}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then $_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_p)$ restricts to an integral bijective affine transformation $_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},p} \leqslant \mathsf{Aff}_d(\mathbb{Z})$ (and is independent from p; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v} M_{\mathbf{v}'} M' : \mathbf{u} \longrightarrow \mathbf{v}' + M' \mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M' \mathbf{u}) =$$
 $(\mathbf{v} + M \mathbf{v}') + M M' \mathbf{u} =$
 $\mathbf{v} + M \mathbf{v}' (M M') (\mathbf{u}).$

So,
$$G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$$
, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

So, we have the groups $G_{\mathcal{M}}$ (with $\mathcal{M} = \{M_1, \dots, M_m\}$ as before) and

$$\det M_i = \pm 1 \ \Rightarrow \ G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma,$$

where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

It only remains to prove that:

Proposition

 $G_{M,n}$ is an automaton group.

So, we have the groups $G_{\mathcal{M}}$ (with $\mathcal{M} = \{M_1, \dots, M_m\}$ as before) and

$$\det M_i = \pm 1 \ \Rightarrow \ G_M \cong \mathbb{Z}^d \rtimes \Gamma.$$

where
$$\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$$
.

It only remains to prove that:

Proposition

 $G_{M,p}$ is an automaton group.

Definition

Elements in \mathbb{Z}_p may be (uniquely) represented as right infinite words over $Y_p = \{0, \dots, p-1\}$:

$$y_1y_2y_3\cdots \longleftrightarrow y_1+p\cdot y_2+p^2\cdot y_3+\cdots$$

Similarly, elements of \mathbb{Z}_p^d (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_p = Y_p^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_p\}$:

$$\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots \longleftrightarrow \mathbf{x}_1+p\cdot\mathbf{x}_2+p^2\cdot\mathbf{x}_3+\cdots$$

Note that $|Y_p| = p$ and $|X_p| = p^d$.

Definition

Elements in \mathbb{Z}_p may be (uniquely) represented as right infinite words over $Y_p = \{0, \dots, p-1\}$:

$$y_1y_2y_3\cdots \longleftrightarrow y_1+p\cdot y_2+p^2\cdot y_3+\cdots$$

Similarly, elements of \mathbb{Z}_p^d (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_p = Y_p^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_p\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \longleftrightarrow \mathbf{x}_1 + p \cdot \mathbf{x}_2 + p^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_p| = p$ and $|X_p| = p^d$.

Definition

Elements in \mathbb{Z}_p may be (uniquely) represented as right infinite words over $Y_p = \{0, \dots, p-1\}$:

$$y_1y_2y_3\cdots \longleftrightarrow y_1+p\cdot y_2+p^2\cdot y_3+\cdots$$

Similarly, elements of \mathbb{Z}_p^d (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_p = Y_p^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_p\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \longleftrightarrow \mathbf{x}_1 + p \cdot \mathbf{x}_2 + p^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_p| = p$ and $|X_p| = p^d$.

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $\mathsf{Mod}(\mathbf{v}) \in X_p$ and $\mathsf{Div}(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = \mathsf{Mod}(\mathbf{v}) + p \cdot \mathsf{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, $M \in Mat_d(\mathbb{Z})$, and $\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots \in \mathbb{Z}_p^d$, we have

$$_{\mathbf{v}}M(\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\cdots)=\mathsf{Mod}(\mathbf{v}+M\mathbf{x}_{1})+p\cdot_{\mathsf{Div}(\mathbf{v}+M\mathbf{x}_{1})}M(\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\cdots).$$

Proof

```
\mathbf{v}M(\mathbf{x}_{1}\mathbf{x}_{2}\cdots) = \mathbf{v} + M\mathbf{x}_{1}\mathbf{x}_{2}\cdots = \mathbf{v} + M(\mathbf{x}_{1} + p \cdot (\mathbf{x}_{2}\mathbf{x}_{3}\cdots))

= \mathbf{v} + M\mathbf{x}_{1} + p \cdot M\mathbf{x}_{2}\mathbf{x}_{3}\cdots

= Mod(\mathbf{v} + M\mathbf{x}_{1}) + p \cdot Div(\mathbf{v} + M\mathbf{x}_{1}) + pM\mathbf{x}_{2}\mathbf{x}_{3}\cdots

= Mod(\mathbf{v} + M\mathbf{x}_{1}) + p \cdot (Div(\mathbf{v} + M\mathbf{x}_{1}) + M\mathbf{x}_{2}\mathbf{x}_{3}\cdots)

= Mod(\mathbf{v} + M\mathbf{x}_{1}) + p \cdot Div(\mathbf{v} + M\mathbf{x}_{1}) + M(\mathbf{x}_{2}\mathbf{x}_{3}\cdots). \square
```

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $\mathsf{Mod}(\mathbf{v}) \in X_p$ and $\mathsf{Div}(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = \mathsf{Mod}(\mathbf{v}) + p \cdot \mathsf{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, $M \in Mat_d(\mathbb{Z})$, and $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_p^d$, we have

$$_{\boldsymbol{v}}\textit{M}(\boldsymbol{x}_{1}\boldsymbol{x}_{2}\boldsymbol{x}_{3}\cdots)=\textit{Mod}(\boldsymbol{v}+\textit{M}\boldsymbol{x}_{1})+\rho\cdot_{\textit{Div}(\boldsymbol{v}+\textit{M}\boldsymbol{x}_{1})}\textit{M}(\boldsymbol{x}_{2}\boldsymbol{x}_{3}\boldsymbol{x}_{4}\cdots).$$

Proof

```
\begin{array}{rcl}
\mathbf{v}M(\mathbf{x}_{1}\mathbf{x}_{2}\cdots) & = & \mathbf{v}+M\mathbf{x}_{1}\mathbf{x}_{2}\cdots=\mathbf{v}+M(\mathbf{x}_{1}+p\cdot(\mathbf{x}_{2}\mathbf{x}_{3}\cdots)) \\
 & = & \mathbf{v}+M\mathbf{x}_{1}+p\cdot M\mathbf{x}_{2}\mathbf{x}_{3}\cdots \\
 & = & \operatorname{Mod}(\mathbf{v}+M\mathbf{x}_{1})+p\cdot\operatorname{Div}(\mathbf{v}+M\mathbf{x}_{1})+pM\mathbf{x}_{2}\mathbf{x}_{3}\cdots \\
 & = & \operatorname{Mod}(\mathbf{v}+M\mathbf{x}_{1})+p\cdot(\operatorname{Div}(\mathbf{v}+M\mathbf{x}_{1})+M\mathbf{x}_{2}\mathbf{x}_{3}\cdots) \\
 & = & \operatorname{Mod}(\mathbf{v}+M\mathbf{x}_{1})+p\cdot\operatorname{Div}(\mathbf{v}+M\mathbf{x}_{1})+M(\mathbf{x}_{2}\mathbf{x}_{3}\cdots). \quad \Box
\end{array}
```

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $\mathsf{Mod}(\mathbf{v}) \in X_p$ and $\mathsf{Div}(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = \mathsf{Mod}(\mathbf{v}) + p \cdot \mathsf{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, $M \in Mat_d(\mathbb{Z})$, and $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_p^d$, we have

$$_{\boldsymbol{v}}\textit{M}(\boldsymbol{x}_{1}\boldsymbol{x}_{2}\boldsymbol{x}_{3}\cdots)=\textit{Mod}(\boldsymbol{v}+\textit{M}\boldsymbol{x}_{1})+\rho\cdot_{\textit{Div}(\boldsymbol{v}+\textit{M}\boldsymbol{x}_{1})}\textit{M}(\boldsymbol{x}_{2}\boldsymbol{x}_{3}\boldsymbol{x}_{4}\cdots).$$

Proof.

```
\mathbf{v}M(\mathbf{x}_{1}\mathbf{x}_{2}\cdots) = \mathbf{v} + M\mathbf{x}_{1}\mathbf{x}_{2}\cdots = \mathbf{v} + M(\mathbf{x}_{1} + p \cdot (\mathbf{x}_{2}\mathbf{x}_{3}\cdots)) 

= \mathbf{v} + M\mathbf{x}_{1} + p \cdot M\mathbf{x}_{2}\mathbf{x}_{3}\cdots 

= Mod(\mathbf{v} + M\mathbf{x}_{1}) + p \cdot Div(\mathbf{v} + M\mathbf{x}_{1}) + pM\mathbf{x}_{2}\mathbf{x}_{3}\cdots 

= Mod(\mathbf{v} + M\mathbf{x}_{1}) + p \cdot (Div(\mathbf{v} + M\mathbf{x}_{1}) + M\mathbf{x}_{2}\mathbf{x}_{3}\cdots) 

= Mod(\mathbf{v} + M\mathbf{x}_{1}) + p \cdot Div(\mathbf{v} + M\mathbf{x}_{1}) M(\mathbf{x}_{2}\mathbf{x}_{3}\cdots). \square
```

$$_{\mathbf{v}}M(\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\cdots)=\mathsf{Mod}(\mathbf{v}+M\mathbf{x}_{1})+
ho\cdot_{\mathsf{Div}(\mathbf{v}+M\mathbf{x}_{1})}M(\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\| - 1$ (note that $|V_M| = (2\|M\|)^d$).

Definition

Construct the automaton $A_{M,p}$

- Alphabet: X_p.
- States: $m_{\mathbf{v}}$ for $\mathbf{v} \in V_M$, with root permutation and sections

$$m_{\mathbf{v}}(\mathbf{x}) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}), \quad and \quad m_{\mathbf{v}}|_{\mathbf{x}} = m_{\mathsf{Div}(\mathbf{v} + M\mathbf{x})}.$$

• Straightforward to see that sections are again states.

$$_{\mathbf{v}}M(\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\cdots)=\mathsf{Mod}(\mathbf{v}+M\mathbf{x}_{1})+
ho\cdot_{\mathsf{Div}(\mathbf{v}+M\mathbf{x}_{1})}M(\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\| - 1$ (note that $|V_M| = (2\|M\|)^d$).

Definition

Construct the automaton $A_{M,p}$

- Alphabet: X_p.
- States: $m_{\mathbf{v}}$ for $\mathbf{v} \in V_M$, with root permutation and sections

$$m_{\mathbf{v}}(\mathbf{x}) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}), \quad and \quad m_{\mathbf{v}}|_{\mathbf{x}} = m_{\mathsf{Div}(\mathbf{v} + M\mathbf{x})}.$$

• Straightforward to see that sections are again states.

$$_{\mathbf{v}}M(\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\cdots)=\mathsf{Mod}(\mathbf{v}+M\mathbf{x}_{1})+
ho\cdot_{\mathsf{Div}(\mathbf{v}+M\mathbf{x}_{1})}M(\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\| - 1$ (note that $|V_M| = (2\|M\|)^d$).

Definition

Construct the automaton $A_{M,p}$:

- Alphabet: X_p.
- States: m_v for $v \in V_M$, with root permutation and sections

$$m_{\mathbf{v}}(\mathbf{x}) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}), \quad and \quad m_{\mathbf{v}}|_{\mathbf{x}} = m_{\mathsf{Div}(\mathbf{v} + M\mathbf{x})}.$$

Straightforward to see that sections are again states.

$$_{\mathbf{v}}M(\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\cdots)=\mathsf{Mod}(\mathbf{v}+M\mathbf{x}_{1})+
ho\cdot_{\mathsf{Div}(\mathbf{v}+M\mathbf{x}_{1})}M(\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\| - 1$ (note that $|V_M| = (2\|M\|)^d$).

Definition

Construct the automaton $A_{M,p}$:

- Alphabet: X_p.
- States: $m_{\mathbf{v}}$ for $\mathbf{v} \in V_M$, with root permutation and sections

$$m_{\mathbf{v}}(\mathbf{x}) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}), \quad and \quad m_{\mathbf{v}}|_{\mathbf{x}} = m_{\mathsf{Div}(\mathbf{v} + M\mathbf{x})}.$$

Straightforward to see that sections are again states.

$$_{\mathbf{v}}M(\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\cdots)=\mathsf{Mod}(\mathbf{v}+M\mathbf{x}_{1})+
ho\cdot_{\mathsf{Div}(\mathbf{v}+M\mathbf{x}_{1})}M(\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\| - 1$ (note that $|V_M| = (2\|M\|)^d$).

Definition

Construct the automaton $A_{M,p}$:

- Alphabet: X_p.
- States: $m_{\mathbf{v}}$ for $\mathbf{v} \in V_M$, with root permutation and sections

$$m_{\mathbf{v}}(\mathbf{x}) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}), \quad and \quad m_{\mathbf{v}}|_{\mathbf{x}} = m_{\mathsf{Div}(\mathbf{v} + M\mathbf{x})}.$$

Straightforward to see that sections are again states.

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,p}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_p^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},p}$ as the disjoint union of the automata $A_{\mathcal{M}_1,p},\ldots,A_{\mathcal{M}_m,p}$.

- Alphabet: X_p,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},p}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},p}$ (over an alphabet of size p^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,p}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_p^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},p}$ as the disjoint union of the automata $A_{\mathcal{M},p},\ldots,A_{\mathcal{M}_{m},p}$.

- Alphabet: X_p,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},p}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},p}$ (over an alphabet of size p^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,p}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_p^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},p}$ as the disjoint union of the automata $A_{\mathcal{M},p},\ldots,A_{\mathcal{M}_{m},p}$.

- Alphabet: X_p,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},p}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},p}$ (over an alphabet of size p^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

Outline

Main result

- Automaton groups
- Unsolvability of CP and orbit undecidability

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Definitior

Let G be a f.g. group. A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm to decide, given $u, v \in G$ whether $v = \alpha(u)$ for some $\alpha \in \Gamma$.

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm to decide, given $u, v \in G$, whether $v = \alpha(u)$ for some $\alpha \in \Gamma$.

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm to decide, given $u, v \in G$, whether $v = \alpha(u)$ for some $\alpha \in \Gamma$.

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm to decide, given $u, v \in G$, whether $v = \alpha(u)$ for some $\alpha \in \Gamma$.

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proposition (Bogopolski-Martino-V., 08)

Every finitely index subgroup of $GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $\mathsf{GL}_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Proposition (Bogopolski-Martino-V., 08)

Every finitely index subgroup of $GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $\mathsf{GL}_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$.

Proposition (Bogopolski-Martino-V., 08)

Every finitely index subgroup of $GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)

Every finitely index subgroup of $GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \times \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1h), Id).$$

Hence, $h_1 \sim_G h_2 \iff \exists \gamma \in \Gamma \text{ and } h \in H \text{ s.t. } h_1 = h\gamma(h_2)h^{-1}$. \square

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \iff \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma)$$

$$(\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma)$$

$$(\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$.

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \iff \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma \text{ and } h \in H \text{ s.t. } h_1 = h\gamma(h_2)h^{-1}$.

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma$ s.t.

$$(h_2, Id) = (h, \gamma)^{-1} \cdot (h_1, Id) \cdot (h, \gamma) (\gamma^{-1}(h^{-1}), \gamma^{-1}) \cdot (h_1 h, \gamma) (\gamma^{-1}(h^{-1}h_1 h), Id).$$

Hence, $h_1 \sim_G h_2 \Leftrightarrow \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \square

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \le B \le \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}(v) = 1$. Then,

$$OD(A)$$
 solvable \Rightarrow $MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(G)$$
, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B).$$

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \le B \le \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}(v) = 1$. Then,

$$OD(A)$$
 solvable \Rightarrow $MP(A, B)$ solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}$$

$$OD(A) \Rightarrow MP(A, B). \square$$

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \le B \le \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}(v) = 1$. Then,

$$OD(A)$$
 solvable \Rightarrow $MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(G)$$
, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B). \square$$

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \le B \le \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}(v) = 1$. Then,

$$OD(A)$$
 solvable \Rightarrow $MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(G)$$
, let $w = v\varphi$ and

$$\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$$

$$OD(A) \Rightarrow MP(A, B).$$

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \operatorname{GL}_d(\mathbb{Z})$, $d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.

- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$.

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, A ≤ GL₄(Z) is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.

- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$.

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \operatorname{GL}_4(\mathbb{Z})$ is orbit undecidable
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$:

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.
- Take A ≤ B ≃ F₂ × F₂ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \operatorname{GL}_d(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$:

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The existence of v is technical.
- Take A ≤ B ≃ F₂ × F₂ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \operatorname{GL}_d(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Conclusion

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Conclusion

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Conclusion

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

THANKS