APPROXIMATION FOR THE NUMBER OF VISITS TO BALLS FOR A CLASS OF NON UNIFORMLY HYPERBOLIC SYSTEMS

Joint work with Pierre COLLET:

Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems.

Ergodic Theory & Dynamical Systems 33, 49-80 (2013).

 $T: M \bigcirc$ a diffeo acting on a compact Riemannian manifold M& such that $\mu \circ T^{-1} = \mu$ for an ergodic probability measure μ .

Pick:

- $\bullet \ x \in M$
- $\bullet \ {\color{black} U} \subset M$
- t > 0

THEN COUNT:

 $\lfloor t/\mu({\color{black}U}) \rfloor$ $\sum_{j=0}^{n} \mathbb{1}_{\boldsymbol{U}}(T^j x)$

◆□▶ ◆圖▶ ★注▶ ◆注▶ ─ 注

590

PICK: $U = B_r(y)$ THEN COUNT: $\lfloor t/\mu(B_r(y)) \rfloor$ $\sum_{j=0} \mathbb{1}_{B_r(y)}(T^j x)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

BASIC QUESTION

 (M,T,μ) with 'enough mixing'

- + y 'typical'
- + r small enough

$$\sum_{j=0}^{\lfloor t/\mu(B_r(y))\rfloor} \mathbb{1}_{B_r(y)} \circ T^j \stackrel{\text{law}}{\approx} \text{Poisson}(t)$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

OUR MOTIVATING EXAMPLE: THE HÉNON MAP

Abstract setting

Nonuniformly hyperbolic systems modeled by Young towers (Annals of Math., 1998)

+

Extra assumption: 1D local unstable manifolds.

Young tells us that there exists a SRB measure μ and exponential decay of correlations for Hölder observables.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

THEOREM (J.-R. C. - P. COLLET)

There exist constants C, a, b > 0 such that for all $r \in (0, 1)$:

• There exists a set \mathcal{M}_r such that

$$\mu(\mathcal{M}_r) \le Cr^b;$$

• For all $y \notin \mathcal{M}_r$ one has

$$\left| \mu \left\{ x \in M \; \middle| \; \sum_{j=0}^{\lfloor t/\mu(B_r(y)) \rfloor} \mathbb{1}_{B_r(y)}(T^j x) = k \right\} - \frac{t^k}{k!} e^{-t} \right| \le C \ r^a$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

for every integer $k \ge 0$ and for every t > 0.

AN ABSTRACT POISSON APPROXIMATION RESULT

Let $(X_n)_{n \in \mathbb{N}}$ be a stationary $\{0, 1\}$ -valued process. Set $\varepsilon := \mathbb{P}(X_1 = 1)$.

Then, for all positive integers p, M, N such that $M \leq N - 1$ and $2 \leq p < N$, one has

$$d_{\text{TV}}(X_1 + \dots + X_N, \text{Poisson}(N\varepsilon)) \le R(\varepsilon, N, p, M)$$

where

$$R(\varepsilon, N, p, M) = 2NM (R_1(\varepsilon, N, p) + R_2(\varepsilon, p)) + R_3(\varepsilon, N, p, M).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

APPLICATION TO OUR DYNAMICAL SYSTEMS

$$X_{j} = \mathbb{1}_{B_{r}(y)} \circ T^{j-1}$$
$$\varepsilon = \mu(B_{r}(y))$$
$$N = \lfloor t/\mu(B_{r}(y)) \rfloor$$
$$p = \mathcal{O}(1) \lfloor \log(r^{-1}) \rfloor$$
$$M = 1 + \lfloor \log(r^{-1}) \rfloor$$

4 日 ト 4 目 ト 4 三 ト 4 三 ト 9 Q Q

About R_3

$$R_3(\varepsilon, N, p, M) = 4\left(Mp\varepsilon(1+N\varepsilon) + \frac{(\varepsilon N)^M}{M!} e^{-N\varepsilon} + N\varepsilon^2\right)$$

About R_2

$$R_2(\varepsilon, p) = \sum_{\ell=1}^{p-1} \mathbb{E} \left(\mathbb{1}_{\{X_1=1\}} \ \mathbb{1}_{\{X_{\ell+1}=1\}} \right)$$

Since $X_j = \mathbb{1}_{B_r(y)} \circ T^{j-1}$ one has

$$1_{\{X_1=1\}} 1_{\{X_{\ell+1}=1\}} = 1$$
 if $B_r(y) \cap T^{\ell}(B_r(y)) \neq \emptyset$.

For ℓ 'small' this means that y recurs 'fast'. We prove that

$$\mu\left\{y: \exists 1 \le k \le \mathfrak{c}\lfloor \log(r^{-1}) \rfloor: B_r(y) \cap T^{\ell}(B_r(y)) \neq \emptyset\right\} \le \mathcal{O}(1) r^{b'}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

For ℓ 'large', use decay of correlations.

We need to get

$$\left| \int \mathbb{1}_{B_r(y)}(x) \, \mathbb{1}_{B_r(y)}(T^{\ell}x) \, \mathrm{d}\mu(x) - \left(\mu(B_r(y))\right)^2 \right| \le \theta(r) \, \mu(B_r(y))$$

with $\lim_{r\to 0} \theta(r) = 0$ except for y in set whose μ -measure goes to 0 when $r \to 0$.

PROBLEM: we must replace the $\mathbb{1}_{ball}$ by some Lipschitz functions.

This creates an extra error given by the measure of the coronas

$$B_r(y) \setminus B_{r-r^{\delta}}(y) \quad (\delta > 1).$$

Again, we can exclude a set of 'bad' centers outside which

$$\mu(B_r(y) \setminus B_{r-r^{\delta}}(y)) = o(\mu(B_r(y)))$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 日 ・

provided δ is large enough (exponential decay of correlations needed for that).