Existence and stability of heteroclinic networks in \mathbb{R}^4

Alexander Lohse

Joint work with Sofia Castro

AMS-EMS-SPM Meeting - Porto, 13th June 2015

Definition 1 (Krupa&Melbourne [3])

Simple and robust cycles

- (1) A heteroclinic cycle is called **robust** if for all j there is a subgroup $\Sigma_i \subset \Gamma$ such that ξ_{i+1} is a sink in $P_i := Fix(\Sigma_i)$ and $W^u(\xi_i) \cap P_i \subset W^s(\xi_{i+1})$.
- (2) A robust cycle in \mathbb{R}^4 is called **simple** if
 - \circ dim $(P_i) = 2$ for all j,
 - o it intersects connected components of $(P_{i-1} \cap P_i) \setminus \{0\}$ at most once,
 - the linearisation $df(\xi_i)$ has no double eigenvalues.

- (1) A heteroclinic cycle is called **robust** if for all j there is a subgroup $\Sigma_j \subset \Gamma$ such that ξ_{j+1} is a sink in $P_j := \operatorname{Fix}(\Sigma_j)$ and $W^u(\xi_j) \cap P_j \subset W^s(\xi_{j+1})$.
- (2) A robust cycle in \mathbb{R}^4 is called **simple** if
 - o $dim(P_j) = 2$ for all j,
 - \circ it intersects connected components of $(P_{j-1} \cap P_j) \setminus \{0\}$ at most once,
 - \circ the linearisation $\mathrm{d}f(\xi_j)$ has no double eigenvalues.

Definition 2 (Krupa&Melbourne [3])

A simple heteroclinic cycle $X\subset\mathbb{R}^4$ is of

- **type A** if and only if $\Sigma_j \cong \mathbb{Z}_2$ for all j (i.e. there is no reflection in Γ),
- o **type B** if and only if X lies in a 3d fixed-point subspace $Q \subset \mathbb{R}^4$,
- **type C** if and only if it is not of type A or B.

Definition 3 (L.&Castro [5])

A heteroclinic network in \mathbb{R}^4 is called **simple** if

- o all of its subcycles are simple,
- \circ it intersects connected components of $(P_{j-1} \cap P_j) \setminus \{0\}$ at most once.

Definition 3 (L.&Castro [5])

A heteroclinic network in \mathbb{R}^4 is called **simple** if

- o all of its subcycles are simple,
- o it intersects connected components of $(P_{j-1} \cap P_j) \setminus \{0\}$ at most once.

Simple networks

A heteroclinic network in \mathbb{R}^4 is called **simple** if

- o all of its subcycles are simple,
- o it intersects connected components of $(P_{i-1} \cap P_i) \setminus \{0\}$ at most once.

- Can we give a list of all simple networks in \mathbb{R}^4 ?
- → What about relative stability/competition between cycles?
- → How do dynamics near these networks depend on their type?

Definition 3 (L.&Castro [5])

A heteroclinic network in \mathbb{R}^4 is called **simple** if

- o all of its subcycles are simple,
- it intersects connected components of $(P_{i-1} \cap P_i) \setminus \{0\}$ at most once.

Theorem 4 (Castro&L. [5, 2])

In \mathbb{R}^4 , the following is the complete list of (genuinely heteroclinic) simple networks that can be generated with the **simplex** and **cylinder methods** from Ashwin&Postlethwaite [1]:

- \circ $(A_2, A_2), (A_3, A_3), (A_3, A_4), (A_3, A_3, A_4)$
- $\circ (B_2^+, B_2^+), (B_3^-, B_3^-), (B_3^-, C_4^-), (B_3^-, B_3^-, C_4^-)$

Definition 5 (Melbourne [6])

A compact invariant set $X \subset \mathbb{R}^n$ is called **essentially asymptotically stable (e.a.s.)** if it is asymptotically stable relative to a set $N \subset \mathbb{R}^n$ and

$$\frac{\ell(B_{\varepsilon}(X)\cap N)}{\ell(B_{\varepsilon}(X))} \xrightarrow{\varepsilon\to 0} 1.$$

Definition 5 (Melbourne [6])

A compact invariant set $X \subset \mathbb{R}^n$ is called **essentially asymptotically stable (e.a.s.)** if it is asymptotically stable relative to a set $N \subset \mathbb{R}^n$ and

$$\frac{\ell(B_{\varepsilon}(X)\cap N)}{\ell(B_{\varepsilon}(X))} \xrightarrow{\varepsilon\to 0} 1.$$

Theorem 6 (L. [4])

Let $X \subset \mathbb{R}^n$ be a heteroclinic cycle with $\ell_1(X) < \infty$. Assume that the local stability index $\sigma_{loc}(x)$ exists for all $x \in X$. Then the following holds:

X is e.a.s.
$$\Leftrightarrow \sigma_{loc}(x) > 0$$
 along all connections

Symmetries $\kappa_i, \kappa_{ij}, \kappa_{ijk} : \mathbb{R}^4 \to \mathbb{R}^4$

$$\kappa_1(x_1, x_2, x_3, x_4) = (x_1, -x_2, -x_3, -x_4)$$

	A_3 cycle	B_3^- cycle
symmetry Γ	$\langle \kappa_{12}, \kappa_{23}, \kappa_{34} \rangle \cong \mathbb{Z}_2^3$	$\langle \kappa_1, \kappa_2, \kappa_3, \kappa_4 \rangle \cong \mathbb{Z}_2^4$
fixed-point spaces	lines (\mathbb{Z}_2^2) , planes (\mathbb{Z}_2)	lines (\mathbb{Z}_2^3) , planes (\mathbb{Z}_2^2) , spheres (\mathbb{Z}_2)
type?	$\kappa_{123} otin \Gamma$	$\kappa_{123} \in \Gamma$

Symmetries $\kappa_i, \kappa_{ij}, \kappa_{ijk} : \mathbb{R}^4 \to \mathbb{R}^4$

$$\kappa_1(x_1, x_2, x_3, x_4) = (x_1, -x_2, -x_3, -x_4)$$

	A_3 cycle	B_3^- cycle
symmetry Γ	$\langle \kappa_{12}, \kappa_{23}, \kappa_{34} \rangle \cong \mathbb{Z}_2^3$	$\langle \kappa_1, \kappa_2, \kappa_3, \kappa_4 \rangle \cong \mathbb{Z}_2^4$
fixed-point spaces	lines (\mathbb{Z}_2^2) , planes (\mathbb{Z}_2)	lines (\mathbb{Z}_2^3) , planes (\mathbb{Z}_2^2) , spheres (\mathbb{Z}_2)
type?	<i>κ</i> ₁₂₃ ∉ Γ	$\kappa_{123} \in \Gamma$

Symmetries $\kappa_i, \kappa_{ii}, \kappa_{iik} : \mathbb{R}^4 \to \mathbb{R}^4$

$$\kappa_1(x_1, x_2, x_3, x_4) = (x_1, -x_2, -x_3, -x_4)$$

	A_3 cycle	B_3^- cycle
symmetry Γ	$\langle \kappa_{12}, \kappa_{23}, \kappa_{34} \rangle \cong \mathbb{Z}_2^3$	$\langle \kappa_1, \kappa_2, \kappa_3, \kappa_4 \rangle \cong \mathbb{Z}_2^4$
fixed-point spaces	lines (\mathbb{Z}_2^2) , planes (\mathbb{Z}_2)	lines (\mathbb{Z}_2^3) , planes (\mathbb{Z}_2^2) , spheres (\mathbb{Z}_2)
type?	κ ₁₂₃ ∉ Γ	$\kappa_{123} \in \Gamma$

 \rightarrow How much do the stability properties of these cycles differ?

Symmetries $\kappa_i, \kappa_{ii}, \kappa_{ijk} : \mathbb{R}^4 \to \mathbb{R}^4$

$$\kappa_1(x_1, x_2, x_3, x_4) = (x_1, -x_2, -x_3, -x_4)$$

	A_3 cycle	B_3^- cycle
symmetry Γ	$\langle \kappa_{12}, \kappa_{23}, \kappa_{34} \rangle \cong \mathbb{Z}_2^3$	$\langle \kappa_1, \kappa_2, \kappa_3, \kappa_4 \rangle \cong \mathbb{Z}_2^4$
fixed-point spaces	lines (\mathbb{Z}_2^2) , planes (\mathbb{Z}_2)	lines (\mathbb{Z}_2^3) , planes (\mathbb{Z}_2^2) , spheres (\mathbb{Z}_2)
type?	κ ₁₂₃ ∉ Γ	$\kappa_{123} \in \Gamma$

 \rightarrow How much do the stability properties of these cycles differ?

$$\dot{x}_j = a_j x_j + \left(\sum_{i=1}^4 b_{1i} x_i^2\right) x_j + c_j x_1 x_2 x_3 x_4 x_j$$

 A_3 -cycles, $t_3 < 0$

The corresponding networks are also geometrically identical . . .

There is no switching near the (B_3^-, B_3^-) network.

- \rightarrow Is this due to the common connection and/or type *B*?
- \rightarrow Is switching possible in the (A_3, A_3) network?

There is no switching near the (B_3^-, B_3^-) network.

Dynamics – switching?

- \rightarrow Is this due to the common connection and/or type B?
- \rightarrow Is switching possible in the (A_3, A_3) network?
- \rightarrow Or in these networks that can be realized in \mathbb{R}^5 ?

- There are eight simple ... heteroclinic networks in \mathbb{R}^4 .
- Stability properties of geometrically identical cycles of different types depend on the symmetry group Γ :
 - o less symmetry (type A) uniform stability along connections, all stability indices have the same sign
 - more symmetry (type B) varying stability configurations, stability indices with different sign possible
- Switching seems to depend on dimension, the presence of a common connection and the type of the network.

P. Ashwin and C. Postlethwaite. Physica D, 265:26-39, 2013.

On designing heteroclinic networks from graphs.

S. Castro and A. Lohse.

Stability in simple heteroclinic networks in \mathbb{R}^4 .

Proc. Roy. Soc. Edinb., 134:1177-1197, 2004.

Dynamical Systems: An International Journal, 29:451-481, 2014.

M. Krupa and I. Melbourne.

Asymptotic Stability of Heteroclinic Cycles in Systems with Symmetry II.

A. Lohse.

Attraction properties and non-asymptotic stability of simple heteroclinic cycles and networks in \mathbb{R}^4 . PhD thesis, University of Hamburg, 2014.

A. Lohse and S. Castro.

Construction of heteroclinic networks in R4. in preparation, 2015.

I. Melbourne.

An example of a non-asymptotically stable attractor.

Nonlinearity, 4:835-844, 1991.

Thank you very much for your attention.

Dynamics

000