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Cycles and Networks A-B-stability Dynamics

Simple and robust cycles 0o 00000 000

Definition 1 (Krupa&Melbourne [3])

(1) A heteroclinic cycle is called robust if for all j there is a subgroup X; C I’
such that £j41 is a sink in P; := Fix(X;) and WY(&) N P; € W*(€j41).
(2) A robust cycle in R* is called simple if
o dim(P;) = 2 for all j,
o it intersects connected components of (Pj—1 N P;)\ {0} at most once,
o the linearisation df(&;) has no double eigenvalues.
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Definition 2 (Krupa&Melbourne [3])

A simple heteroclinic cycle X C R?* is of
o type A if and only if X; 2 Z, for all j (i.e. there is no reflection in I'),
o type B if and only if X lies in a 3d fixed-point subspace Q C R*,
o type C if and only if it is not of type A or B.
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Slmp|e networks oceo 00000 ocoo

Definition 3 (L.&Castro [5])

A heteroclinic network in R* is called simple if
o all of its subcycles are simple,

o it intersects connected components of (P;—; N P;) \ {0} at most once.
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— Can we give a list of all simple networks in R*?

— What about relative stability/competition between cycles?

— How do dynamics near these networks depend on their type?
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Definition 3 (L.&Castro [5])

A heteroclinic network in R* is called simple if
o all of its subcycles are simple,

o it intersects connected components of (P;—; N P;) \ {0} at most once.

s .

Theorem 4 (Castro&L. [5, 2])

In R*, the following is the complete list of (genuinely heteroclinic) simple

networks that can be generated with the simplex and cylinder methods from
Ashwiné& Postlethwaite [1]:

o (A2, A2), (A3, A3), (As, As), (As, Az, As)
© (BZJr’BZJr)I (B3‘_7BB_)' (B3_a C4_), (B?,_vB:s‘_a C4_)
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Non-asymptotic stability coe 00000 000

Definition 5 (Melbourne [6])

A compact invariant set X C R” is called
essentially asymptotically stable (e.a.s.) if it is
asymptotically stable relative to a set N C R" and

UB-(X)NN) <o
{(B:(X))

1.
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Theorem 6 (L. [4])

Let X C R" be a heteroclinic cycle with £1(X) < co. Assume that the local
stability index gioc(x) exists for all x € X. Then the following holds:

X is e.a.s. & 0loc(x) > 0 along all connections
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Az and B; cycles

As and B; cycles are geometrically identical.
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A3 and B; Cycles [e]e]e} [ Jelelele] [e]e]e}
£3
As and B; cycles are geometrically identical.
Symmetries i, Ky, fjk - R* — R*
K1(x1, X2, X3, xa) = (X1, —X2, —X3, —X4) s
&1
As cycle B; cycle
symmetry [ (K12, K3, Kiaa) =2 73 (K1, Ko, K3, Ka) =2 Z3

fixed-point spaces lines (Z3), planes (Z,) lines (Z3), planes (Z3), spheres (Z>)

type? K13 ¢ T k13 €T
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— How much do the stability properties of these cycles differ?
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— How much do the stability properties of these cycles differ?

4
. 2
Xj = ajxj + ( E bux,-) Xj + GX1X2X3XaX;

i=1



Az and B; cycles — stability

asymptotically stable

As-cycles, t3 <0
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Az and B; cycles — stability 000
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i
asymptotically stable e.a.s. :
]

)]
1

B; -cycles, t3 < —c3 < 0
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(As, A3) and (B; , By) networks

&1 &1

The corresponding networks are also geometrically identical . ..
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(As, A3) and (B; , By) networks

... but their stability properties differ:
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Dynamics - SWItChlng? 000 00000 00

There is no switching near the (B;, B; ) network.
— Is this due to the common connection and/or type B?

— Is switching possible in the (As, A3) network?
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Dynamics - SWItChlng? 000 00000 00

There is no switching near the (B;, B; ) network.
— Is this due to the common connection and/or type B?
— Is switching possible in the (As, A3) network?

— Or in these networks that can be realized in R>?
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Summary ocoo 00000 oceo

@ There are eight simple . .. heteroclinic networks in R*.

o Stability properties of geometrically identical cycles of different types
depend on the symmetry group I':

o less symmetry (type A) — uniform stability along connections, all stability
indices have the same sign

o more symmetry (type B) — varying stability configurations, stability indices
with different sign possible

@ Switching seems to depend on dimension, the presence of a common
connection and the type of the network.
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Thank you very much for your attention.



