

Bifurcations from homoclinic cycles

Ale Jan Homburg

Korteweg-de Vries Institute for Mathematics University of Amsterdam

Department of Mathematics VU University Amsterdam

June, 2015

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Consider a differential equation

$$\dot{\mathbf{x}} = f(\mathbf{x})$$

on a Euclidean space \mathbb{R}^n ,

that is equivariant

under the representation of a discrete group G, i.e.

$$gf(\mathbf{x}) = f(g\mathbf{x}), \qquad \forall g \in G.$$

Ale Jan Homburg - Bifurcations from homoclinic cycles

3

ヘロン 人間 とくほと 人ほと

Heteroclinic networks

A heteroclinic network is a connected set consisting of finitely many disjunct equilibria p_j , $j = 1, ..., \ell$, and heteroclinic trajectories $\gamma_j(t)$, j = 1, ..., k between them.

Homoclinic cycles

A homoclinic cycle Γ is a connected invariant set that is equal to a group orbit $\langle h \rangle \overline{\gamma}$, for a heteroclinic trajectory γ connecting p to hp for some $h \in G$.

Codimension

The codimension of a homoclinic cycle is the number p of parameters to find it in generic p-parameter families.

<ロ> <同> <同> < 回> < 回>

The connectivity matrix

 $C = (c_{ij})$ of a heteroclinic network with heteroclinic trajectories γ_i , i = 1, ..., k, is a 0-1 matrix, that is $c_{ij} \in \{0, 1\}$, where $c_{ij} = 1$ if and only if the endpoint (the ω -limit $\omega(\gamma_i)$) of the heteroclinic connection γ_i is equal to the starting point (the α -limit $\alpha(\gamma_j)$) of the heteroclinic connection γ_j .

Topological Markov chains

Let $\Sigma_k = \{1, \dots, k\}^{\mathbb{Z}}$ denote the set of double infinite sequences $\kappa : \mathbb{Z} \to \{1, \dots, k\}, i \mapsto \kappa_i.$ Let $C = (c_{ij})_{i,j \in \{1,\dots,k\}}$ be a 0-1 matrix. $\Sigma_C = \{\kappa \in \Sigma_k \mid a_{\kappa_i \kappa_{i+1}} = 1\},$ With time in \mathbb{N} : Σ_k^+ and Σ_C^+ .

Take cross sections S_i transverse to γ_i and write Π for the first return map on the collection of cross sections $S := \bigcup_{i=1}^k S_i$.

Realizations

Let κ be a symbolic sequence in Σ_C . We call a trajectory \mathcal{O} a *realization of* κ *in* \mathcal{U} , if $\mathcal{O} \subset \mathcal{U}$ and if there is an $x_{\kappa} \in \mathcal{O}$ such that $\Pi^i(x_{\kappa}) \in S_{\kappa_i}$, $i \in \mathbb{Z}$.

イロト 不同下 イヨト イヨト

Goal: derive symmetric equivalent of codimension one homoclinic bifurcation

References

A.J. Homburg, A.C. Jukes, J. Knobloch, J.S.W. Lamb Bifurcation from codimension one relative homoclinic cycles *Transactions of the Americal Mathematical Society* (2011)

Let $\dot{x} = f(x, \lambda)$ be a one parameter family of differential equations equivariant with respect to a finite group *G*, with the following properties:

- **1** At $\lambda = 0$, there is a codimension one homoclinic cycle Γ with hyperbolic equilibria.
- **2** The connecting trajectories in Γ are nondegenerate.
- **3** The isotropy subgroup G_p of an equilibrium p in Γ acts absolutely irreducibly on the leading stable eigenspace at p, and the real leading stable eigenvalues of the linearized vector field about p are closest of all eigenvalues to the imaginary axis.
- **4** The connecting trajectories $\gamma_1, \ldots, \gamma_k$ in Γ approach the equilibria along the leading stable directions (a non-orbit-flip condition). The connecting trajectories in Γ satisfy a non-inclination-flip condition.

There is an explicit construction of $k \times k$ matrices A_{-} and A_{+} with coefficients in $\{0, 1\}$ and the nonzero coefficients in mutually disjoint positions, so that the following holds for any generic family unfolding the homoclinic cycle.

Take cross sections S_i transverse to γ_i and write Π_{λ} for the first return map on the collection of cross sections $\cup_{i=1}^k S_i$.

For $\lambda > 0$ small, there is an invariant set $\mathcal{D}_{\lambda} \subset \cup_{j=1}^{k} S_{j}$ for Π_{λ} such that for each $\kappa \in \Sigma_{A_{+}}$ there exists a unique $x \in D_{\lambda}$ with $\Pi_{\lambda}^{i}(x) \in S_{\kappa_{i}}$. $(\mathcal{D}_{\lambda}, \Pi_{\lambda})$ is topologically conjugate to $(\Sigma_{A_{+}}, \sigma)$.

Analogous statements hold for $\lambda < 0$, Σ_{A_+} replaced by Σ_{A_-} .

ヘロト ヘヨト ヘヨト ヘヨト

Consider a heteroclinic chain γ_{κ_i} with $p_{k_i} = \omega(\gamma_{\kappa_{i-1}}) = \alpha(\gamma_{\kappa_i})$ $\alpha(\gamma_i), \omega(\gamma_i)$ stand for begin and end point of the connection γ_i

What goes into the proof: Lin's method

For ω_i large, there is a unique piecewise continuous trajectory, with jumps in S_{κ_i} in specified direction (perpendicular to stable and unstable manifolds) with transition time ω_i between sections $S_{\kappa_{i-1}}$ and S_{κ_i} .

Bifurcation equation for trajectories: "jumps = zero"

イロト 不同下 イヨト イヨト

By the conditions there are well defined solutions η_i^s : a bounded solution of the variational equation along γ_i . η_i^s : a bounded solution of the adjoint variational equation along γ_i .

Limits of these bounded solutions with time going to $\pm \infty$ yield vectors e_i^s, e_i^- in the leading stable spaces.

After reparameterization, the bifurcation equations have a form

$$\lambda - e^{2\mu^{s}\omega_{i}} \langle e^{s}_{\kappa_{i-1}}, e^{-}_{\kappa_{i}} \rangle + h.o.t. = 0$$

These can be solved if the inner products do not vanish

ヘロト ヘヨト ヘヨト ヘヨト

Definition A^+, A^-

 $M=(m_{ij}), 1\leq i,j\leq k$, with

$$m_{ij} = \begin{cases} 0, & \omega(\gamma_i) \neq \alpha(\gamma_j), \\ \operatorname{sgn} \langle e_i^s, e_j^- \rangle, & \omega(\gamma_i) = \alpha(\gamma_j). \end{cases}$$

$$A^+ = \frac{1}{2}(M + |M|), \ A^- = -\frac{1}{2}(M - |M|)$$

<ロト <部ト <きト <きト = 5

This description of the dynamics provides a complete picture of the local nonwandering dynamics near Γ if and only if

$$A_{+} + A_{-} = C. (1)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Figure: Illustration of three homoclinic trajectories approaching p when $\dim(E_p^s) = 2$. The state space has to be at least four dimensional.

Example with \mathbb{D}_3 symmetry

Consider a homoclinic cycle with three connecting trajectories γ_i , i = 1, 2, 3, to a hyperbolic equilibrium, such that each has isotropy equal to \mathbb{Z}_2 .

As all three connecting trajectories are connecting to the same equilibrium, the connectivity matrix C is given by

$$C = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

Ale Jan Homburg — Bifurcations from homoclinic cycles

イロン 人間 と 不同 とう

Suppose that the absolutely irreducible action of the group \mathbb{D}_3 on the leading eigenspace is

- 1 one-dimensional and trivial, or,
- two-dimensional and acting as the symmetry group of the equilateral triangle.

< 17 >

In case the representation of \mathbb{D}_3 on the leading eigenspace is trivial, the leading eigenspace will generically be one-dimensional so that the connecting trajectories γ_i (i = 1, 2, 3) come into the equilibrium in the same direction (tangent to each other). The matrices A_-, A_+ are given by

$$A_{-} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad A_{+} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

so that there is a nonwandering set that is topologically conjugate to the suspension of a full shift on three symbols if $\lambda < 0$ and no nontrivial nonwandering dynamics near the relative homoclinic cycle if $\lambda > 0$.

ヘロン 人間 とくほと 人ほと

In case the representation of \mathbb{D}_3 on the leading eigenspace is nontrivial, the leading eigenspace will generically be two-dimensional with the connecting trajectories γ_i , i = 1, 2, 3, coming into the equilibrium in three different directions (each separated by an angle of $2\pi/3$). The matrices $A = A_i$ are given by

The matrices A_-, A_+ are given by

$$A_{-} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A_{+} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

If $\lambda < 0$ the nonwandering set consists of three periodic solutions, shadowing the individual connecting trajectories γ_i (i = 1, 2, 3). If $\lambda > 0$ the nonwandering dynamics is more complicated, with all trajectories avoiding shadowing twice the same connecting trajectory.

References

A.J. Homburg, M. Kellner, J. Knobloch Construction of codimension one homoclinic cycles *Dynamical Systems* (2014)

If $A_+ + A_- \neq C$ then the theorem may not fully describe the bifurcation and dynamics This can be forced by symmetry: e.g. with \mathbb{D}_4 symmetry inner products $\langle e_i^s, e_i^- \rangle$ may be forced to be zero.

There is an explicit construction of polynomial vector fields in \mathbb{R}^4 with \mathbb{D}_m symmetry and *m* homoclinic solutions to the origin.

イロン イロン イヨン イヨン

Polynomial vector fields on \mathbb{R}^4 with \mathbb{D}_4 symmetry and 4 homoclinic trajectories to the origin, plus unfolding in λ

$$\begin{split} f_4(x,\lambda) &= \\ \begin{pmatrix} ax_1 + bx_2 & -ax_1^3 + 3ax_1y_1^2 \\ ay_1 + by_2 & +3ax_1^2y_1 - ay_1^3 \\ bx_1 + ax_2 & -2bx_1^3 + 6bx_1y_1^2 & -2ax_1^2x_2 + 2ay_1^2x_2 + 4ax_1y_1y_2 \\ by_1 & +ay_2 & +6bx_1^2y_1 - 2by_1^3 & +4ax_1y_1x_2 + 2ay_2(x_1^2 - y_1^2) \end{pmatrix} \\ &+ \lambda \begin{pmatrix} 2x_1 & -4x_1^3 + 12x_1y_1^2 \\ 2y_1 & +12x_1^2y_1 - 4y_1^3 \\ -2x_2 \\ -2y_2 & \end{pmatrix}. \end{split}$$

A (10) × (10)

-

Switching homoclinic cycles

References

P.J. Holmes A strange family of three-dimensional vector fields near a degenerate singularity J. Differential Equations (1980)

A.J. Homburg, J. Knobloch Switching homoclinic networks Dynamical Systems (2010)

Connectivity matrix

A heteroclinic network Γ with connectivity matrix C is switching (forward switching) if for each sequence $\kappa \in \Sigma_C$ ($\kappa \in \Sigma_C^+$) and each tubular neighborhood \mathcal{U} of Γ , there exists a realization of κ in \mathcal{U} .

Define the representation of the group $G = \mathbb{Z}_2 \ltimes \mathbb{Z}_2^2$ on \mathbb{R}^5 as follows: $\mathbb{Z}_2 = \mathbb{Z}_2(g_0)$ is acting by

$$g_0(x, y_1, y_2, z_1, z_2) = (-x, z_1, z_2, y_1, y_2)$$

and $\mathbb{Z}_2^2 = \mathbb{Z}_2^2(g_1,g_2)$ is acting by

$$g_1(x, y_1, y_2, z_1, z_2) = (x, -y_1, -y_2, z_1, z_2),$$

$$g_2(x, y_1, y_2, z_1, z_2) = (x, y_1, y_2, -z_1, -z_2).$$

Ale Jan Homburg — Bifurcations from homoclinic cycles

イロト 不同下 イヨト イヨト

Figure: Homoclinic network Γ (above) and reduced homoclinic network (identifying equilibria; below)

The connectivity matrix C of Γ reads

$$C = \left(\begin{array}{rrrr} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

Theorem

Consider an ordinary differential equation on \mathbb{R}^5 that is G-equivariant and possesses a homoclinic network Γ as above. Assume eigenvalue conditions λ^d , $\lambda^r < \operatorname{Re} \lambda^c < -\lambda^e$. Then Γ is a robust asymptotically stable homoclinic cycle which is forward switching.

Open problem: what realizations occur for typical initial points, with respect to Lebesgue measure?

Theorem

Consider an ordinary differential equation on \mathbb{R}^5 that is G-equivariant and possesses a homoclinic network Γ as above. Assume $\lambda^d, \lambda^r < -\lambda^e < \operatorname{Re} \lambda^c$. Then Γ is a robust homoclinic cycle which is switching.

< 17 ≥

References

R. Driesse, A.J. Homburg Essentially asymptotically stable homoclinic networks *Dynamical Systems* (2009)

Essentially asymptotically stable invariant sets

A flow-invariant compact set H is essentially asymptotically stable if for any open neighborhood U of H there is a set C so that for any given number $a \in (0, 1)$ there is an open ε -neighborhood $V \subset U$ of H such that all trajectories starting in V - C remain in U and are asymptotic to H and $\mu(V - C)/\mu(V) > a$, where μ is the Lebesgue measure.

<ロ> <同> <同> < 回> < 回>

Equivariance on \mathbb{R}^5

Consider differential equations on $\mathbb{R}^5,$ equivariant under $G\cong\mathbb{Z}_2^3\rtimes\mathbb{Z}_4$ generated by

$$g_{1}: (x, y, z, u, v) \to (x, y, -z, u, v),$$

$$g_{2}: (x, y, z, u, v) \to (x, -y, z, u, v),$$

$$g_{3}: (x, y, z, u, v) \to (x, y, z, u, -v),$$

$$h: (x, y, z, u, v) \to (-x, z, y, -v, u).$$

(4 回) (4 回) (4 回)

Figure: Homoclinic network Γ inside three dimensional fixed point space $R=\{u,v=0\}$

Э

Theorem

Let $\dot{\mathbf{x}} = f(\mathbf{x})$ be a *G*-equivariant differential equation on \mathbb{R}^5 , $G \cong \mathbb{Z}_2^3 \rtimes \mathbb{Z}_4$ generated by g_1 , g_2 , g_3 and h, possessing a robust homoclinic network $G\Gamma$ contained in the fixed point space R as above. Assume eigenvalue conditions $0 < \lambda_v / \lambda_y < \min{\{\lambda_u / \lambda_z, 1\}}$, $\lambda_u < 0$ and $-\lambda_z / \lambda_y > 1$. Then $G\Gamma$ is essentially asymptotically stable.

イロト 不同下 イヨト イヨト

An explicit example is contained in

the family of differential equations

$$\begin{aligned} \dot{x} &= \nu x + z^2 - y^2 - x^3 + \beta x (y^2 + z^2), \\ \dot{y} &= y (\lambda + a y^2 + b z^2 + c x^2) + y x, \\ \dot{z} &= z (\lambda + a z^2 + b y^2 + c x^2) - z x, \\ \dot{u} &= \mu u + d u x, \\ \dot{v} &= \mu v - d v x. \end{aligned}$$

→ 御 → → 注 → → 注 →

Transverse bifurcation from asymptotically stable to essentially asymtotically stable homoclinic cycle

Let $\dot{\mathbf{x}} = f(\mathbf{x}, \varepsilon)$ be a *G*-equivariant system of differential equations depending on a parameter ε . Assume that it possesses a robust homoclinic network *G* Γ as above, asymptotically stable for $\varepsilon < 0$, with at $\varepsilon = 0$ a supercritical transverse bifurcation; $\lambda_v(0) = 0$, $-\lambda_z(0) > \lambda_y(0) > 0$, $\lambda_x(0) < 0$, $\lambda_u(0) < 0$. Assume generic unfolding conditions.

Then for $\varepsilon > 0$ small enough the heteroclinic network $\mathcal{A} = G(W^u(p') \cup W^u(p))$ is an attractor. Furthermore there is an open invariant neighborhood U of $G\Gamma$, so that for $\varepsilon > 0$ small enough, trajectories starting at $\mathbf{x} \in U - GW^s(p')$ converge for positive time to $G\Gamma$.

イロト イポト イヨト イヨト 二日