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Motivation
Let C be a collection of finitely generated (f.g.) modules.

Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}
• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Motivation
Let C be a collection of finitely generated (f.g.) modules.
Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}
• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Motivation
Let C be a collection of finitely generated (f.g.) modules.
Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}

• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Motivation
Let C be a collection of finitely generated (f.g.) modules.
Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}
• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Motivation
Let C be a collection of finitely generated (f.g.) modules.
Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}
• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Motivation
Let C be a collection of finitely generated (f.g.) modules.
Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}
• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Motivation
Let C be a collection of finitely generated (f.g.) modules.
Question. Can we “describe” lim−→C ?

• lim−→{all f.g. modules} = {all modules}
• lim−→{f.g. projective modules} = {flat modules}

Remark. Every module M can be written

M ∼= lim−→Mi where each Mi is f.g.

But if M has some (homological) properties, then one can not
(in general) choose the Mi ’s to have the same properties.

Example (Lazard, 1969)
Let R = k [[x , y , z]]/(xz, yz, z2). There is an R-module M with
fdRM = 1 such that M can not be written as a direct limit
M = lim−→Mi of finitely generated modules Mi with fdRMi 6 1.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 2



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Big CM modules
Setup. (R,m, k) commutative noetherian local ring.

Let M be an R-module (not necessarily finitely generated).

A sequence x1, . . . , xn ∈ m is said to be M-regular if
(1) Every xi is a non-zerodivisor on M/(x1, . . . , xi−1)M, and
(2) (x1, . . . , xn)M 6= M.
If only (1) holds, then x1, . . . , xn is a weak M-regular sequence.

Definition (Hochster)
• M is called big CM if

some s.o.p. for R is an M-regular sequence.
• M is called balanced big CM if

every s.o.p. for R is an M-regular sequence.

small CM = finitely generated (balanced) big CM – or zero.
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A big CM module need not be balanced:

Example (Griffith, 1976)
Let R = k [[x , y ]]. Set E = ER(R/(y)) and M = R ⊕ E .

• E x−→ E is an automorphism since x /∈ (y).
Thus x is a non-zerodivisor on M with

M/xM ∼= R/(x).

Hence y is a non-zerodivisor on M/xM with

M/(x , y)M ∼= R/(x , y) 6= 0.

The s.o.p. x , y of R is an M-regular sequence.
Thus, M is big CM.

• The s.o.p. y , x is not an M-regular sequence as E
y−→ E is

not injective.
Thus, M is not balanced big CM.
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A conjecture by Hochster

Conjecture (Hochster)
Every local ring R has a (balanced) big CM module.

The conjecture has been settled affirmatively in many cases,
e.g. if R contains a field (Hochster).

(Maybe the conjecture has even been proved by now?)

We consider a situation where the conjecture is trivially true:

New setup. Let (R,m, k) be a commutative noetherian local
Cohen–Macaulay ring with a dualizing module Ω.

Question
Do all big CM modules share some kind of common structure?
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Theorem A
Every balanced big CM module can be obtained as a direct
limit of small CM modules.

I am not claiming that every direct limit of (even non-zero) small
CM modules will be balanced big CM. For example,

lim−→ (R 0−→ R 0−→ R 0−→ · · · ) ∼= 0.

Theorem A is a consequence of:

Theorem B
For every R-module M, the following conditions are equivalent:

(i) M is a direct limit of small CM R-modules.
(ii) Every s.o.p. for R is a weak M-regular sequence.
(iii) M is Gorenstein flat viewed as a module over R n Ω.

Enochs, Jenda, and Torrecillas defined Gorenstein flat modules.
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(i) M is a direct limit of small CM R-modules.
(ii) Every s.o.p. for R is a weak M-regular sequence.
(iii) M is Gorenstein flat viewed as a module over R n Ω.

Enochs, Jenda, and Torrecillas defined Gorenstein flat modules.
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Application I (regular rings) 1/3

Recall that an R-module M is called balanced big CM if
• Every s.o.p. for R is an M-regular sequence.

Terminology
An R-module M is called weak balanced big CM if
• Every s.o.p. for R is a weak M-regular sequence.

Now the equivalence (i)⇔(ii) in Theorem B can be phrased as:

lim−→
{
small CM modules

}
=

{
weak balanced big CM modules

}
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Application I (regular rings) 2/3

Assume that R is a PID. In this case:

lim−→
{
small CM modules

}
=

{
flat modules

}{
weak balanced big CM modules

}
=

{
torsion-free modules

}
Thus, the identity from Theorem B:

lim−→
{
small CM modules

}
=

{
weak balanced big CM modules

}
translates into:

A classic text book theorem
Over a PID one has:{

flat modules
}

=
{
torsion-free modules

}
.
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Application I (regular rings) 3/3

Corollary of Theorem B
The following conditions are equivalent:

(i) R is regular.
(ii)

{
flat modules

}
=

{
weak balanced big CM modules

}
.

Proof. (i)⇒ (ii): If R is regular (of any dimension), then

lim−→
{
small CM modules

}
=

{
flat modules

}
.

(ii)⇒ (i): By (ii) every small CM R-module is flat and hence
projective (as it is finitely generated). Thus R is regular.
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Application II (covers) 1/3

Theorem (Auslander and Buchweitz, 1989)
Every finitely generated R-module M has a maximal CM
approximation, that is, there exists a short exact sequence,

0 −→ I −→ X π−→ M −→ 0,

where X is small CM and I has finite injective dimension.

π is a precover of M w.r.t. the class
{
small CM modules

}
:

X ′

∀π′

��

∃α

~~
X π

// M

Every finitely generated R-module has a surjective precover
w.r.t. the class C=

{
small CM modules

}
.
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Application II (covers) 2/3
Combined with a result of Yoshino/Takahashi, this implies:

If R is complete, then every finitely generated R-module has
a surjective cover w.r.t. C=

{
small CM modules

}
.

Simon has extended this to non-finitely generated modules:

Theorem (Simon, 2009)
Every complete R-module has a surjective cover w.r.t.

C=
{
complete big CM modules

}
∪
{

0
}
.

Here is another result in the same direction:

Corollary of Theorem B
Every R-module has a surjective cover w.r.t.

C=
{
weak balanced big CM modules

}
.
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Application II (covers) 3/3

Remark.

Let M be an R-module with weak balanced big CM cover

W // // M.

Assume that mM 6= M.

We have

mM 6= M =⇒ mW 6= W =⇒ W is balanced big CM.

Every R-module M with mM 6= M has a surjective cover w.r.t.
C=

{
balanced big CM modules

}
.
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Application III (CM preenvelopes) 1/4

Theorem B implies the existence of CM preenvelopes:

Corollary of Theorem B
Every finitely generated R-module has a CM preenvelope,
that is, a preenvelope w.r.t. C=

{
small CM modules

}
.

Proof. By [Crawley-Boevey, 1994] we must show that the class

lim−→C = lim−→
{
small CM modules

}
is closed under products. By Theorem B, this class is{

weak balanced big CM modules
}
,

which is easily seen to be closed under products.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 13



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Application III (CM preenvelopes) 1/4

Theorem B implies the existence of CM preenvelopes:

Corollary of Theorem B
Every finitely generated R-module has a CM preenvelope,
that is, a preenvelope w.r.t. C=

{
small CM modules

}
.

Proof. By [Crawley-Boevey, 1994] we must show that the class

lim−→C = lim−→
{
small CM modules

}
is closed under products.

By Theorem B, this class is{
weak balanced big CM modules

}
,

which is easily seen to be closed under products.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 13



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Application III (CM preenvelopes) 1/4

Theorem B implies the existence of CM preenvelopes:

Corollary of Theorem B
Every finitely generated R-module has a CM preenvelope,
that is, a preenvelope w.r.t. C=

{
small CM modules

}
.

Proof. By [Crawley-Boevey, 1994] we must show that the class

lim−→C = lim−→
{
small CM modules

}
is closed under products. By Theorem B, this class is{

weak balanced big CM modules
}
,

which is easily seen to be closed under products.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 13



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Application III (CM preenvelopes) 1/4

Theorem B implies the existence of CM preenvelopes:

Corollary of Theorem B
Every finitely generated R-module has a CM preenvelope,
that is, a preenvelope w.r.t. C=

{
small CM modules

}
.

Proof. By [Crawley-Boevey, 1994] we must show that the class

lim−→C = lim−→
{
small CM modules

}
is closed under products. By Theorem B, this class is{

weak balanced big CM modules
}
,

which is easily seen to be closed under products.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 13



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

Application III (CM preenvelopes) 2/4

Example
Let M be a finitely generated R-module.

Assume that

M†† = HomR(HomR(M,Ω),Ω) is (small) CM.

In this case, the biduality map

M
δM // M††

is a CM preenvelope.

Proof. We must be able to complete every diagram the form

M

ε

��

δM // M††.

α
}}

X

Since the diagram

M
δM //

ε

��

M††

ε††

��
X

δX
∼=
// X ††

commutes, we can use α = δ−1
X ε††.
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Proof. We must be able to complete every diagram the form

M

ε

��

δM // M††.

α
}}

X

Since the diagram

M
δM //

ε

��

M††

ε††

��
X

δX
∼=
// X ††

commutes,

we can use α = δ−1
X ε††.
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Application III (CM preenvelopes) 3/4

The case M = k
Set d = dimR and consider M = k .

We have

k†† ∼=
{

k if d = 0
0 if d > 0

is CM.

Thus a CM preenvelope of k is:{
k =→ k if d = 0
k → 0 if d > 0 (not injective)
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Application III (CM preenvelopes) 4/4

The case M =m

Set d = dimR and consider M = m.

We have

m†† ∼=
{
m if d = 0,1
R if d > 1

is CM.

Thus a CM preenvelope of m is:{
m

=→ m if d = 0,1
m ↪→ R if d > 1
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More about CM preenvelopes 1/3

A well-known fact:

High syzygies are CM
Set d = dimR and let M be a finitely generated R-module. If

· · · → X1 → X0 → M → 0

is an exact sequence where each Xi is CM (e.g. free), then

Kn = Ker(Xn−1 → Xn−2) is CM for all n > d .

There is a “dual” of this result:

Of course, one can not always construct an exact sequence

0→ M → X 0 → X 1 → · · · where Xi is CM.

But there is a canonical way to construct such a complex:
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More about CM preenvelopes 2/3

• Take an CM preenvelope M
µ0

→ X 0 → C1 → 0.

• Take an CM preenvelope C1 µ1

→ X 1 → C2 → 0.

• · · ·

This gives a (non-exact) complex:

0→ M → X 0 → X 1 → · · ·

Theorem (not related to Theorem B)
The modules Cd ,Cd+1,Cd+2, . . . are all CM.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 18



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

More about CM preenvelopes 2/3

• Take an CM preenvelope M
µ0

→ X 0 → C1 → 0.

• Take an CM preenvelope C1 µ1

→ X 1 → C2 → 0.

• · · ·

This gives a (non-exact) complex:

0→ M → X 0 → X 1 → · · ·

Theorem (not related to Theorem B)
The modules Cd ,Cd+1,Cd+2, . . . are all CM.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 18



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

More about CM preenvelopes 2/3

• Take an CM preenvelope M
µ0

→ X 0 → C1 → 0.

• Take an CM preenvelope C1 µ1

→ X 1 → C2 → 0.

• · · ·

This gives a (non-exact) complex:

0→ M → X 0 → X 1 → · · ·

Theorem (not related to Theorem B)
The modules Cd ,Cd+1,Cd+2, . . . are all CM.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 18



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

More about CM preenvelopes 2/3

• Take an CM preenvelope M
µ0

→ X 0 → C1 → 0.

• Take an CM preenvelope C1 µ1

→ X 1 → C2 → 0.

• · · ·

This gives a (non-exact) complex:

0→ M → X 0 → X 1 → · · ·

Theorem (not related to Theorem B)
The modules Cd ,Cd+1,Cd+2, . . . are all CM.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 18



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

More about CM preenvelopes 2/3

• Take an CM preenvelope M
µ0

→ X 0 → C1 → 0.

• Take an CM preenvelope C1 µ1

→ X 1 → C2 → 0.

• · · ·

This gives a (non-exact) complex:

0→ M → X 0 → X 1 → · · ·

Theorem (not related to Theorem B)
The modules Cd ,Cd+1,Cd+2, . . . are all CM.

Henrik Holm — The structure of balanced big CM modules over CM rings — Slide 18



U N I V E R S I T Y O F C O P E N H A G E N D E P A R T M E N T O F M A T H E M A T I C A L S C I E N C E S

More about CM preenvelopes 3/3
A CM preenvelope µ : M → X has the unique lifting property if

M

∀µ′
��

µ // X

∃!α (unique)~~
X ′

(In this case, µ is a CM envelope.)

Theorem (not related to Theorem B)
The following conditions are equivalent.

(i) Every finitely generated R-module has an CM envelope
with the unique lifting property.

(ii) Hom(M,Ω) is CM for every finitely generated R-module M.
(iii) The functor {small CM} ↪→ modR has a left adjoint.
(iv) dimR 6 2.
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On the proof of Theorem B 1/2

Theorem B
For every R-module M, the following conditions are equivalent:

(i) M is a direct limit of small CM R-modules.
(ii) Every s.o.p. for R is a weak M-regular sequence.
(iii) M is Gorenstein flat viewed as a module over R n Ω.

(i)⇒ (ii): Easy.

(iii)⇒ (i): Follows from work of Enochs and Jenda.
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On the proof of Theorem B 2/2
Theorem B
For every R-module M, the following conditions are equivalent:

(i) M is a direct limit of small CM R-modules.
(ii) Every s.o.p. for R is a weak M-regular sequence.
(iii) M is Gorenstein flat viewed as a module over R n Ω.

(ii)⇒ (iii):

• As T = R n Ω is Gorenstein, one has

GfdT M = sup
{

depthTq − depthTq
Mq

∣∣ q ∈ SpecT
}
<∞.

• Every prime q⊂T has the form q = pnΩ for a prime p⊂R.

• Now one shows that (ii) implies that

depthTpnΩ − depthTpnΩ
MpnΩ 6 0

for every prime p⊂R. Hence GfdRnΩM 6 0.
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Thanks for your attention!
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