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Introduction

Lift Atiyah–Segal’s axioms to the perturbative QFTs
boundaries vector spaces
manifolds (with boundaries) states/operators
Do it for general Lagrangian theories (including gauge theories)
First understand classical picture
then the perturbative quantum BV picture:

Lift Atiyah–Segal to the cochain level
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Lagrangian Mechanics

In Lagrangian mechanics S =
∫ t1

t0
L dt as a functional on the path

space N [t0,t1].
Usual example: L = 1

2 m||v ||2 − V (q).
Newton’s equation are recovered as Euler–Lagrange equations
(EL), i.e., critical points: δS = 0.
A solution is uniquely specified by its initial conditions. Set
C := TN, the space of Cauchy data.
For this, one sets conditions at t0 and t1 (usually by fixing the
path endpoints). Otherwise

δS = EL +α|t1t0

α =
∑

i

∂L
∂v i dq i ∈ Ω1(C) Noether’s one-form

Here EL denotes the term containing the EL equations. By EL
we will denote the space of solutions to EL.
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Symplectic formulation

ω := dα is symplectic iff L is regular. In this case:

ω is the pullback on C = TN of the canonical symplectic form on
T ∗N by the Legendre mapping.
Time evolution is given by a Hamiltonian flow φ. In particular,

L := graphφt1
t0 ∈ TN × TN

is Lagrangian (canonical relation).

Remark
L may also be defined directly as L = π(EL) with

π : N [t0,t1] → TN × TN
{x(t)} 7→ ((x(t0), ẋ(t0)), (x(t1), ẋ(t1)))

This picture has to be generalized
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Example1: Geodesics

We discuss geodesics on E2 (Minkowski would be more realistic).

L = ||v ||

S is defined on F := N [t0,t1]
0 := {immersed paths}.

EL = straight lines
Initial data:
F|((t0)) = R2×R2

∗×R∞ = R2×S1×R>0×R∞ 3 (q,v, ρ,q2,q3, . . . ).
α = v · dq
ω degenerate
L̃ := π(EL) = {(q1,v, ρ1, . . . ), (q2,v, ρ2, . . . )) : q1 − q2 ||v}
Not a graph!
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Geodesics (continued)

However:
ω|L̃ = 0, so L̃ is isotropic (actually Lagrangian).

kerω = span
(

v · ∂∂q ,
∂
∂ρ ,

∂
∂q2

, . . .
)

=

directions parallel to v, rescalings of velocity, higher jets;
so

$ : F|((t0)) → F∂ := F|((t0))/ kerω = TS1

with canonical symplectic form (identify T and T ∗ using the
metric).
L := $(L̃) = graph Id, so a graph and Lagrangian.
Actually, no time evolution after reduction (an example of
topological theory).
With target Rn+1 and Minkowski metric, one gets F∂ = THn, with
Hn the n-dimensional hyperboloid with induced hyperbolic metric.
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General case

Following ideas by Tulczjiew, Gawedzki, Schwarz, Fock,. . .
Let SM =

∫
M L be a class of local actions determined by a

Lagrangian L. Here M is a d-manifold.
SM is defined on a space of fields FM
(e.g., maps from M to another manifold, connections on M,
sections of a fiber bundle,. . . .)

To a (d − 1)-manifold Σ we associate the space F̃Σ of jets of fields at
Σ× {0} on Σ× [0, ε] (“normal derivatives").
The boundary term in the variational calculus defines a one-form α̃Σ

on F̃Σ, for every Σ, with the property

δSM = ELM +π̃∗M α̃∂M

with π̃M : FM → F̃∂M the natural surjective submersion and ELM the
“EL one-form.”
Define ω̃Σ := dα̃Σ.

Assumption

We assume that ω̃Σ is presymplectic for every Σ.
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Boundary structure

Denote by (F∂
Σ , ω

∂
Σ) the reduction of F̃Σ by the kernel of ω̃Σ.

For simplicity, we assume that α̃Σ also descends to a one-form
αΣ on F∂

Σ .

Then
1 ωΣ = dαΣ.
2 For every M, we get a projection πM : FM → F∂

∂M and the equation

δSM = ELM +π∗Mα
∂
∂M

Now define LM := πM(ELM), which by the previous equation is
automatically isotropic.
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Boundary structure (continued)

Assumption

We assume that LM is Lagrangian for every M.

Remark
This is a requirement for a well-defined theory. It requires, e.g., that
YM, CS and BF theories should be defined in terms of Lie algebras
or the PSM in terms of a Poisson tensor (not just any bivector field).

Definition

For every Σ we define CΣ as the space of points of F∂
Σ that can be

completed to a pair belonging to LΣ×[0,ε] for some ε.

By the assumption, CΣ is coisotropic. It represents the space of
Cauchy data. Its reduction is called the reduced phase space.
Its symplectic reduction is usually singular!
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Boundary structure: composition

Remark (Composition)

If M = M1 ∪Σ M2, where Σ is (part of) the boundary of M1 and of M2,

LM = LM1 ◦ LM2 ⊂ F∂
(∂M1\Σ)

∐
(∂M2\Σ),

where ◦ denotes the composition of relations.

Definition
We call LM the evolution relation. (More precisely, we split
∂M = ∂inM

∐
∂outM and regard LM as a relation in F∂

(∂inM)opp × F∂
∂outM .)

Remark (EL)

By definition the fiber of ELM over LM is just one point if M is a short
cylinder, but in general it may be much bigger.
So it makes sense to remember it and think of ELM → F∂

∂M
as a

correspondence, the evolution correspondence.
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Axiomatics

We may then think of a classical Lagrangian field theory in d
dimensions as the following data:

A space of field FM for every d-manifold M
A symplectic space F∂

Σ for every (d − 1)-manifold Σ

A Lagrangian correspondence π : ELM → F∂
∂M for every M.

(F•,C•) should be thought as a functor.
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Quantization of regular Lagrangian field theories

In a regular theory, CΣ = CΣ = F∂
Σ is symplectic;

geometric quantization: vector space HΣ.
For simplicity, assume that the symplectic manifold C∂M is
endowed with a Lagrangian foliation along which α∂M vanishes
and with a smooth leaf space B∂M . (One may change α∂M to this
goal.) Then H∂M is a space of functions on B∂M .Denote by p∂M
the projection C∂M → B∂M .
The canonical relation LM ⊂ C∂M is quantized to a state
ψM ∈ H∂M . Asymptotically,

ψM(ϕ) =

∫
Φ∈π−1

M (p−1
∂M (ϕ))

e
i
~ SM (Φ) [DΦ], ϕ ∈ B∂M

If ∂M = ∂inM
∐
∂outM, then ψM ∈ H∗∂inM ⊗ H∂outM .

Hence, operator H∂inM → H∂outM .
Composition of relations goes to composition of operators.
Cfr. Segal’s axiomatization of CFT and Atiyah’s axiomatization of
TFT.
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The BV formalism

The local, finite-dimensional BV formalism

The Batalin–Vilkovisky (BV) formalism is used to gauge fix gauge
theories and check gauge-fixing independence.
We start with a local, finite-dimensional version.

Consider super coordinates q i ,pi and the symplectic form
ω =

∑
i dpidq i .

Functions are ordinary smooth functions of the even coordinates
tensor the Grassmann algebra generated by the odd coordinates.
Here pi has parity opposite to q i .
The BV Laplacian is defined as

∆ =
∑

i

(−1)|qi | ∂2

∂q i∂pi
.

Equivalently, ∆f = − 1
2 div Xf .

Lemma

∆2 = 0, ∆(fg) = ∆f g ± f ∆g ± (f ,g).

Here ( , ) denotes the BV bracket (odd Poisson bracket given by ω).
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Let f be a function of the p,qs and ψ a function of the qs only. One
defines the BV integral∫

Lψ

f :=

∫
f (q,pi = ∂iψ) dq1 . . . dqn

to be intended as the integral of f on the Lagrangian submanifold

Lψ = graph dψ.

Remark

dq1 . . . dqn denotes Berezinian integration:
In the even coordinates it is the standard integration; in the odd
coordinates it is just the selection of the top coefficient in the
Grassmann algebra (with a choice of orientation).

Lemma
Assume that integrals converge. Then:

If f = ∆g, then
∫
Lψ

f = 0.

If ∆f = 0, then
∫
Lψ

f is invariant under deformations of ψ.
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The main application

Suppose
∫
L0

f is ill defined but ∆f = 0. Then we can replace the
ill-defined integral by a well-defined one

∫
Lψ

f and the above
Lemma says that it does not matter which ψ we choose (as long
as the integral converges). This procedure is called gauge fixing.
In view of applications to path integrals, we write f = e

i
~ S. Then

∆f = 0 corresponds to the Quantum Master Equation (QME)
1
2

(S,S)− i~∆S = 0

The central idea is to allow S to depend on the parameter ~ and
solve the QME order by order (if possible). The lowest order term
is the Classical Master Equation (CME)

(S,S) = 0

The main point here is that the CME may be defined on infinite
dimensional manifolds (needed in field theory). Integration
together with the actual definition of ∆ are deferred to a second
step (e.g., perturbative path integral quantization).
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Further remarks

It is convenient to introduce a Z-grading. One assigns degrees
so that ω has degree −1, so the Hamiltonian vector field Q of a
degree 0 function S has degree +1. The CME for S is equivalent
to [Q,Q] = 0. One says that Q is a cohomological vector field.
One may generalize the BV integral to a partial integration.
Assume a splitting of coordinates (p,q) = (p′,p′′,q′,q′′) with
ω = ω′ + ω′′ and ∆ = ∆′ + ∆′′. If f is a function of all coordinates
and ψ a function of the q′′s, one defines the BV pushforward∫

Lψ

f :=

∫
f |p′′i =∂iψ dq′′

One can then prove that

∆′
∫
Lψ

f =

∫
Lψ

∆f

and that, if ∆f = 0,
d
dt

∫
Lψ(t)

f = ∆′(· · · )
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There is a global description of the BV formalism due to A.
Schwarz formulated on odd symplectic manifolds. The BV
Laplacian is canonically defined on half densities, which in turn
can be integrated on Lagrangian submanifolds. BV integration of
∆-closed half densities turns out to be invariant under
deformations of Lagrangian submanifolds (and under some
further transformations). The BV pushforward may be defined on
appropriate fiber bundles. One usually prefers to choose a
reference half density and to work with functions again.
The BV action S satisfying the CME arises in field theory as
follows. One starts with an action functional S0, defined on a
space of fields, and its symmetries. One then look for an odd
symplectic manifold that contains the space of fields and for an
extension of S0 that satisfies the CME and whose Hamiltonian
vector field "restricted" to the original space of fields yields the
symmetries. Under certain weak assumptions existence and
uniqueness (up to. . . ) is guaranteed.
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BV theories

Let us go back to field theory.
We start with a field theory on a space of fields FM and an action
S0, plus symmetries.
If M has no boundary, the BV construction yields a BV manifold
(FM , ωM ,SM), where

1 FM is a supermanifold with additional Z-grading (containing the
original FM as its degree zero component).

2 ωM is an odd symplectic form of degree −1 on FM .
3 SM is an even function of degree zero on FM which extends the

classical action and satisfies the CME

(SM ,SM) = 0.

One defines QM as the Hamiltonian vector field of SM

ιQMωM = dSM

QM has degree one and [QM ,QM ] = 0 (cohomological vector
field).
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The case with boundary

The equation
ιQMωM = dSM

no longer holds if M has boundary. We have to deal with the
boundary terms in computing dSM as in the first part of this talk.
Define the space F̃Σ of preboundary fields on a (d − 1)-manifold
Σ as the jets at Σ× {0} of FΣ×[0,ε]. Integration by parts in the
computation of dSΣ×[0,ε] yields a one-form α̃Σ of degree zero on
F̃Σ. We denote by ω̃Σ its differential.

Assumption
We assume that ω̃Σ is presymplectic.

Denote by (F∂Σ, ω
∂
Σ) the reduction of (F̃Σ, ω̃Σ).

For simplicity, we assume that α̃Σ also descends to a one-form
α∂Σ on F∂Σ.
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The case with boundary (continued)

Let πM : FM → F∂∂M be the induced surjective submersion.
One can then prove that

1 QM descends to a cohomological vector field Q∂
∂M which is

Hamiltonian w.r.t. ω∂∂M .

Remark

One then says that the triple (F∂∂M , ω
∂
∂M ,Q

∂
∂M) is a BFV manifold.

Notice that the degree of ω∂∂M is now zero. The zero locus of Q∂
∂M is

coisotropic. Its degree zero component C∂M is also coisotropic. If its
reduction is smooth, its Poisson algebra of functions is the same as
the cohomology of Q∂

∂M in degree zero. The BFV construction has to
be thought of as a resolution of this quotient.

2 We have the fundamental equation of the BV theory for
manifolds with boundary [C, Mnëv, Reshetikhin]:

ιQMωM = dSM + π∗Mα
∂
∂M
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Example: Electromagnetism

Maxwell’s equations: d∗dA = 0, A connection 1-form.
First-order formalism: Scl

M =
∫

M B dA + 1
2 B ∗ B

B a (d − 2)-form. Then EL = {∗B = dA, dB = 0}.
BV: SM =

∫
M B dA + 1

2 B ∗ B + A+ dc
A+: (d − 1)-form, ghost number −1; c: 0-form, ghost number 1.
ωM =

∫
M δA δA

+ + δB δB+ + δc δc+,
B+ and c+ do not show up in the action.
QA = dc, QA+ = dB, QB+ = ∗B + dA, Qc+ = dA+.
Boundary fields: A,B,A+, c,
S∂Σ =

∫
Σ

c dB,
α∂Σ =

∫
Σ

B δA + A+ δc,
Q∂A+ = dB, Q∂A = dc.
Interpretation:
A = vector potential, up to gauge transformations A 7→ A + dc
B = electric field constrained by Gauss law dB = 0.
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Properties

The fundamental equation

ιQMωM = dSM + π∗Mα
∂
∂M (1)

has several consequences. Among them
1 QM is not symplectic

LQMωM = π∗Mω
∂
∂M

2 Modified CME (mCME)

“(SM ,SM)” := ιQM ιQMωM = π∗M(2S∂∂M)



Introduction Lagrangian field theory I: Overview Lagrangian field theory II Cohomological description of non regular theories Quantization

BV+BFV

Boundaries of boundaries

On every boundary component Σ, we now have a BFV manifold
(F∂Σ, ω

∂
Σ,Q

∂
Σ). Assume it is given by local data. Let S∂Σ be the

Hamiltonian function of Q∂
Σ: ιQ∂Σω

∂
Σ = dS∂Σ.

If Σ has a boundary γ, we may repeat the previous construction
verbatim. We get

1 A triple (F∂∂γ , ω∂∂γ = dα∂∂γ ,Q∂∂
γ ) with ω∂∂γ symplectic of degree one

and Q∂∂
γ cohomological and Hamiltonian.

2 The fundamental equation

ιQ∂
Σ
ω∂Σ = dS∂Σ + π∗

Σα
∂∂
∂Σ

3 and so on.

Remark
It makes sense however to stop if the fibers of the correpondences
become infinite dimensional. In TFTs and in 2d YM one can go down
up to dimension zero (fully extended field theories).
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Example: EM

Boundary fields: A,B,A+, c, S∂Σ =
∫

Σ
c dB,

α∂Σ =
∫

Σ
B δA + A+ δc, Q∂A+ = dB, Q∂A = dc.

Boundary of boundary: γ = (d − 2)-manifold
BB fields: B, c, α∂∂γ =

∫
γ

B δc, of degree +1
S∂∂γ = 0, Q∂∂

γ = 0.
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Quantization

1 The first step is to fix a polarization P on F∂∂M . We assume that
the leaf space BP

∂M is smooth. We set

HP
∂M = functions on BP

∂M

We also assume for simplicity that the 1-form α∂∂M vanishes on
fibers. (We also allow shifting it by an exact 1-form if necessary.)

2 We assume a splitting of the fibration FM → BP
∂M

FM = BP
∂M × Y

such that ωM is constant on the base BP
∂M .

3 Such a splitting leads to a fiberwise version of the mCME. As a
result the exponential of the action is ∆-closed only up to
boundary terms that can be summarized as the action of a
differential operator ΩP

∂M on BP
∂M that quantizes S∂∂M

(~2∆ + ΩP
∂M)e

i
~SM = 0

We assume (ΩP
∂M)2 = 0. (No anomaly condition.)
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differential operator ΩP

∂M on BP
∂M that quantizes S∂∂M

(~2∆ + ΩP
∂M)e

i
~SM = 0

We assume (ΩP
∂M)2 = 0. (No anomaly condition.)
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Perturbative quantization

1 Define
ψM =

∫
L

e
i
~ SM ∈ HP

∂M

where L is a Lagrangian submanifold of Y.
2 By the standard techniques in BV, one gets

ΩP
∂M ψM = 0.

Moreover, changing gauge fixing modifies ψM by an Ω∂M -exact
term. Thus,

ψM defines a class in the physical space H0
Ω∂M

(HP
∂M).



Introduction Lagrangian field theory I: Overview Lagrangian field theory II Cohomological description of non regular theories Quantization

Residual fields

Usually, the only way of computing the functional integral is to perturb
around a quadratic theory.
Let S0 be the quadratic theory. Denote by VP

M the space of critical
points of S0 relative to the boundary polarization P modulo
symmetries.

1 We assume a symplectic splitting

Y = VP
M × Y′

2 We now define ψM as a BV-pushforward:

ψM =

∫
L′

e
i
~ SM ∈ HP

∂M ⊗ ZP
M

where L′ is a Lagrangian submanifold of Y′ and

ZP
M = functions on VP

M

3 We finally get the modified quantum master equation (mQME)

(~2∆VP
M
ψM + ΩP

∂M)ψM = 0
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Axiomatics

To each (d − 1)-manifold Σ we associate a complex (HΣ,ΩΣ).
To each d-manifold M we as associate a state ψM satisfying the
mQME.
Plus functorial properties.
In particular, gluing is given by pairing states and doing a
BV-pushforward

VM1 × VM1 → VM1∪ΣM2

Remark
The full power of this approach is that we may cut the original
manifold M into simple, or tiny, pieces; do the perturbative
quantization there; and eventually glue and reduce.
This could provide some new insight for physical theories.
In TFTs it yields a perturbative version of Atiyah’s axioms. We expect
to be able to compute, e.g., perturbative CS invariants.
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BF theory

BF theory

SM =

∫
M

〈
B, dA +

1
2

[A,A]

〉
, A ∈ Ω(M, g), B ∈ Ω(M, g∗)

Here
S0

M =

∫
M
〈B, dA〉

It turns out that VM is the odd cotangent bundle of the (relative)
cohomology of M with values in g.
The gluing in the quadratic theory consists of

Gluing of torsions
Mayer–Vietoris
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Nonabelian BF theory

Figure: δ
δB -polarization

Figure: δ
δA -polarization
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