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Weyl theory is an important tool in initial-boundary value problems
and, vice versa,
initial-boundary value problems are of interest in Weyl theory.



We start with the well-known zero curvature equation

Gt(x , t, z)− Fx(x , t, z) + [G (x , t, z),F (x , t, z)] = 0 (1)(
[G ,F ] := GF − FG , Gt :=

∂

∂t
G
)
,

which is the compatibility condition of the auxiliary linear systems

wx = Gw , wt = Fw , (2)

where G and F are m ×m matrix functions, and z is the spectral
parameter.

Equation (1) is an equivalent of Lax’s equation and as such it is
actively used for representation of various integrable equations.

The term ”compatibility condition” is very often used with
respect to (1) and it is easy to derive (1) from (2).



In other words, it is easy to show that

Gt − Fx + [G ,F ] = 0 (3)

is a necessary compatibility condition for the systems
wx = Gw , wt = Fw

but the proof of sufficiency is more complicated.

More precisely, assume that (3) holds in the semistrip

Ωa = {(x , t) : 0 ≤ x <∞, 0 ≤ t < a}. (4)

Is the system wx = Gw , wt = Fw compatible in Ωa?
Initial-boundary conditions

w(x , 0, z) = W (x , 0, z), w(0, t, z) = R(0, t, z), (5)

follow from the normalization w(0, 0, z) = Im and def-s of W , R:

Wx(x , t, z) = G (x , t, z)W (x , t, z), W (0, t, z) = Im;

Rt(x , t, z) = F (x , t, z)R(x , t, z), R(x , 0, z) = Im.



Thus, we have an initial-boundary value problem

wx = Gw , wt = Fw ; (6)

w(x , 0, z) = W (x , 0, z), w(0, t, z) = R(0, t, z). (7)

Recall that Wx(x , t, z) = G (x , t, z)W (x , t, z),
Rt(x , t, z) = F (x , t, z)R(x , t, z).

Theorem 1. Let m ×m matrix functions G and F and their
derivatives Gt and Fx exist on the semi-strip Ωa, let G , Gt , and F
be continuous with respect to x and t on Ωa, and let
Gt − Fx + [G ,F ] = 0. Then we have the equality

W (x , t, z)R(0, t, z) = R(x , t, z)W (x , 0, z). (8)

Hence, Gt − Fx + [G ,F ] = 0 implies (8) and so the solution of (6),
(7) exists and is given by the formula

w(x , t, z) = W (x , t, z)R(0, t, z) = R(x , t, z)W (x , 0, z).



The first proof of ”sufficiency” for the ”compatibility condition”
and for the factorization f-la

W (x , t, z)R(0, t, z) = R(x , t, z)W (x , 0, z) (9)

were given in L.A. Sakhnovich, St. Petersburg Math. J. 5:1, 1994
and in greater detail under weaker conditions in
ALS, J. Diff. Eq-s 252, 2012.

The initial-boundary value problem

wx = Gw , wt = Fw ;

w(x , 0, z) = W (x , 0, z), w(0, t, z) = R(0, t, z)

or, equivalently, the factorization formula (9) is basic in the
derivation of the evolution of the Weyl function of the system
Wx = GW .

On the other hand, the evolution of the Weyl function plays an
essential role in the study of the initial-boundary value problems
for integrable systems which admit representation
Gt − Fx + [G ,F ] = 0.



Now, recall that for the case

G = i(zj + jV ), F = −i
(
z2j + zjV −

(
iVx − jV 2

)
/2
)
, (10)

j =

[
Im1 0
0 −Im2

]
, V =

[
0 v
v∗ 0

]
, m1 + m2 = m, (11)

where Im1 is the m1 ×m1 identity matrix and v is an m1 ×m2

matrix function,
Gt − Fx + [G ,F ] = 0 is equivalent to the famous defocusing
nonlinear Schrödinger eq-n (dNLS)

2vt = i(vxx − 2vv∗v). (12)

Here the system

Wx = GW = i
(
zj + jV (x)

)
W (x , z)

is a selfadjoint Dirac (also called ZS-AKNS) system.
Let us consider the case of dNLS as an example.



Consider selfadjoint Dirac system Wx = GW , G = i(zj + jV ),
where V is locally summable on [0, ∞). Let W (0, z) = Im.

Then Weyl function is an m2 ×m1 holomorphic matrix function,
which satisfies the inequality∫ ∞

0

[
Im1 ϕ(z)∗

]
W (x , z)∗W (x , z)

[
Im1

ϕ(z)

]
dx <∞, z ∈ C+.

The Weyl function always exists and it is unique.

The inverse problems to recover V from the scalar or square,
spectral or Weyl matrix functions is closely connected with
M.G. Krein, B.L. Levitan, V.A. Marchenko, and (in the context
of Borg-Marchenko theorems) with F. Gesztesy and coauthors.

Dirac system Wx = GW (where V is locally square summable) is
uniquely recovered from the Weyl function ϕ.

We shall present a procedure to recover V in the second half of
the talk, see more details in ALS, arXiv:1401.3605.

See further results and references in
ALS, L.A. Sakhnovich, I.Ya. Roitberg ”Inverse Problems ...”,
de Gruyter, 2013.



The next formula gives an important property of Weyl functions:

ϕ(z) = lim
b→∞

ϕb(z) (13)

for any set of functions ϕb(z) ∈ N (b, z). Here N (b, z) is the set
(Weyl circle) of functions of the form

ϕ(b, z ,P) =
[
0 Im2

]
W (b, z)−1P(z)

×
( [

Im1 0
]
W (b, z)−1P(z)

)−1
, (14)

where P(z) are m ×m1 nonsingular meromorphic matrix functions
with property-j , i.e.,

P(z)∗P(z) > 0, P(z)∗jP(z) ≥ 0 (z ∈ C+). (15)

In order to derive evolution ϕ(t, z), we insert an additional variable
t into functions ϕ and W and substitute the equality
W (b, t, z)−1 = R(0, t, z)W (b, 0, z)−1R(b, t, z)−1 into (14) .



Passing (on the previous frame) to the limit we obtain:

Theorem 2 (ALS). Let an m1 ×m2 matrix function v(x , t) be
continuously differentiable on the semistrip Ωa and let vxx exist.
Assume that v satisfies the dNLS equation

2vt = i(vxx − 2vv∗v)

as well as the following inequalities (for all 0 ≤ t < a and some
values M(t) ∈ R+) :

sup
x∈R+, 0≤s≤t

‖v(x , s)‖ ≤ M(t). (16)

Then the evolution ϕ(t, z) of the Weyl functions of Dirac systems
Wx(x , t, z) = G (x , t, z)W (x , t, z) is given (for z ∈ C+) by the
equality

ϕ(t, z) =
(
R21(t, z) + R22(t, z)ϕ(0, z)

)
×
(
R11(t, z) + R12(t, z)ϕ(0, z)

)−1
. (17)



The evolution formula

ϕ(t, z) =
(
R21(t, z) + R22(t, z)ϕ(0, z)

)
(18)

×
(
R11(t, z) + R12(t, z)ϕ(0, z)

)−1
.

proves important in several problems, including uniqueness
problems and blow up solutions.

We note that ϕ(0, z) in (18) is determined by the initial condition
v(x , 0), that R(t, z) is determined by the boundary conditions
v(0, t) and vx(0, t) via equation Rt(t, z) = F (0, t, z)R(t, z) and
that v(x , t) can be uniquely recovered from ϕ(t, z).

The main difficulty is that in various approaches to these problems
the necessary initial-boundary conditions make our wave equation
overdetermined. Thus, the reduction of the initial-boundary
conditions is crucial.

Next, we go to the approach suggested in the papers
ALS, arXiv:1405.3500 and ALS, J. Math. Anal. Appl. 423 (2015)



Consider dNLS with quasi-analytic boundary conditions and
smoothness near zero in the semistrip Ωa

By Cε(Ω) we denote the class of m1 ×m2 matrix functions
v(x , t), which are continuously differentiable and are such that vxx
exists on Ωa. Moreover, it is required that for each k there is a
value εk = εk(v) > 0 such that v is k times continuously
differentiable with respect to x in the square

Ω(εk) = {(x , t) : 0 ≤ x ≤ εk , 0 ≤ t ≤ εk}, Ω(εk) ⊂ Ωa.

Proposition 3. Assume that v ∈ Cε(Ω) satisfies dNLS on Ωa.
Then, for each integer r ≥ 0 and values 0 ≤ k ≤ r , the functions(
∂k

∂tk
v
)

(x , 0) and
(
∂k

∂tk
vx
)

(x , 0) may be uniquely recovered

(on the interval 0 ≤ x ≤ ε4r ) from the initial condition
v(x , 0) = h(x).



Thus, we derive our next theorem.

Theorem 4. Let conditions of Proposition 3 and the inequalities

sup
x∈R+, 0≤s≤t

‖v(x , s)‖ ≤ M(t)

hold. Assume that v(0, t) and vx(0, t) are quasi-analytic. Then we
recover ϕ(t, z) from the initial condition v(x , 0) = h(x) and we
recover v(x , t) from ϕ(t, z).

Similar results are valid when the quasi-analytic initial condition is
recovered from boundary conditions. (See ALS, J. Math. Anal.
Appl. (2015).)



Next, we discuss interconnections between Dirac (spectral Dirac)
and dynamical Dirac system. It suffices for our purposes to
consider the case of square Weyl functions from Herglotz class
(and locally bounded potentials V ). The more general case (which
we discussed earlier) is treated in the same way.

Recall that Weyl function of the spectral Dirac system

yx = i
(
zj + jV (x)

)
y(x , z), j =

[
Ik 0
0 −Ik

]
(19)

is uniquely determined by the inequality∫ ∞
0

[
Ik iϕH(z)∗

]
Y (x , z)∗Y (x , z)

[
Ik

−iϕH(z)

]
dx <∞

for all z ∈ C+, where Y is the fundamental solution of (19)
normalized by

Y (0, z) = Θ∗, Θ :=
1√
2

[
Ik −Ik
Ik Ik

]
.

On the next frame we describe the recovery of V from ϕH .



Introduce convolution operators S` > 0 acting in L2k(0, `):

S` =
d

dx

∫ `

0
s(x − t) · dt, s(x) = −s(−x)∗, (20)

s(x)∗ :=
d

dx

(
i

4π
eηx l.i.m.a→∞

∫ a

−a
e−iξx(ξ + iη)−2ϕH(ξ + iη)dξ

)
,

where l.i.m is the entrywise limit in L2(0,∞) norm. Then

V (x) =

[
0 v(x)

v(x)∗ 0

]
, v(x) = iθ′1(x)Jθ2(x)∗, where

θ2(x) =
1√
2

(
[−Ik Ik ]−

∫ 2x

0
ω(t)∗S−12x [2s(t) Ik ]dt

)
,

ω(t) = s ′(t) and θ1 is uniquely determined by θ2 and equalities

θ1(0) =
1√
2

[Ik Ik ], θ1(x)Jθ2(x)∗ ≡ 0, θ′1(x)Jθ1(x)∗ ≡ 0.

Here s ′ is an accelerant in the terminology of M.G. Krein and
2i(s ′)∗ is an analogue of the A-amplitude in Gesztesy-Simon
terminology.



Dynamical Dirac system has the following form:

iut + Jux + Vu = 0 (x > 0, t > 0); (21)

u =

[
u1
u2

]
, J =

[
0 1
−1 0

]
, V(x) =

[
p(x) q(x)
q(x) −p(x)

]
,

where p and q are real-valued functions and initial-boundary
conditions are given by the equalities

u(x , 0) = 0, x ≥ 0; u1(0, t) = f (t), t ≥ 0. (22)

Here f is a complex-valued function (boundary control) and the
input-output map R : u1(0, ·)→ u2(0, ·) is of the convolution form
Rf = if + r ∗ f . The inverse problem consists in recovery of the
potential V from the response function r .

For continuously differentiable V, f , r , this problem is solved in
M. Belishev, V. Mikhailov, Inverse Problems 30 (2014), 125013
using boundary control methods.

Under natural conditions, we can take Fourier transformation of
u and r and come to the spectral Dirac system and Weyl function,
respectively.



Namely, we have

û(x , z) :=

∫ ∞
0

eiztu(x , t)dt, r̂(z) =

∫ ∞
0

eiztr(t)dt (23)

(z ∈ CM = {z : =(z) > M}).

Then û satisfies spectral Dirac system in an equivalent (to the one
given before in the talk) form

zû(x , z) + Jûx(x , z) + V(x)û(x , z) = 0 (24)

and there is a simple correspondence between r̂ and the Weyl
function ϕH :

ϕH(z) = r̂(z) + i. (25)



Initial-boundary conditions don’t need reduction for the classical
sine-Gordon eq-n

ψxt = 2 sin(2ψ). (26)

Local solutions of the in.-bound. probl. for (26) were studied in
I.M. Krichever, Dokl. Akad. Nauk. SSSR, 253:2, 288–292 (1980);
A.N. Leznov, M.V. Saveliev, Progress in Physics 15, Birkhäuser.

For global solutions see ALS, Russ. Math. Iz. VUZ 36 (1992)
and ALS, Nonlinear Analysis 75, 964–974 (2012).

Now, system Wx = GW is a skew-selfadjoint Dirac system, we use
gw-functions (generalized Weyl functions) instead of Weyl
functions and evolution of the gw-function is again described via
Möbius transformation.



Theorem 5. Let the initial–boundary conditions

ψ(x , 0) = h1(x), ψ(0, t) = h2(t), h1(0) = h2(0), (27)

(hk = hk) be given. Assume that h2 is continuous on [0, a) and
that h1 is boundedly differentiable on all the finite intervals on
[0, ∞). Assume also that the gw-function ϕ(0, z) of the system

d

dx
W = GW , G (x , z) = izj −

[
0 h′1(x)
−h′1(x) 0

]
(28)

exists and satisfies

sup |z2(ϕ(z)− φ0/z)| <∞ (=z > M > 0), (29)

where φ0 is some constant. Then a solution of the initial-boundary
value problem (27) for ψxt = 2 sin(2ψ) exists and is given by

ψ(x , t) = h2(t)−
∫ x

0

(
M
(
ϕ(t, z)

))
(ξ)dξ, (30)

where ϕ(t, z) is constructed in Theorem 3 and M
(
ϕ(t, z)

)
is the

solution v of the inverse problem, which is recovered from ϕ.


