Symmetric decomposition of the associated graded algebra of a Gorenstein Artinian algebra

Pedro Macias Marques

Universidade de Évora
12th June 2015

2015 AMS - EMS - SPM Joint Meeting, Porto
Joint work with Anthony larrobino

Gorenstein Artinian algebras

Gorenstein Artinian algebras

Let A be an Artinian algebra, obtained as a quotient of a polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ by an ideal I (not necessarily homogenous).

Let $\mathrm{m}=\left(x_{1}, \ldots, x_{r}\right) \subset A$.

Gorenstein Artinian algebras

Let A be an Artinian algebra, obtained as a quotient of a polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ by an ideal I (not necessarily homogenous).

Let $\mathrm{m}=\left(x_{1}, \ldots, x_{r}\right) \subset A$.
The socle of A is

$$
(0: m)=\{\varphi \in A \mid \varphi \mathrm{m}=0\} .
$$

Gorenstein Artinian algebras

Let A be an Artinian algebra, obtained as a quotient of a polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ by an ideal I (not necessarily homogenous).

Let $\mathrm{m}=\left(x_{1}, \ldots, x_{r}\right) \subset A$.
The socle of A is

$$
(0: m)=\{\varphi \in A \mid \varphi \mathrm{m}=0\} .
$$

A is Gorenstein if

$$
\operatorname{dim}_{k}(0: m)=1 .
$$

Gorenstein Artinian algebras

Let A be an Artinian algebra, obtained as a quotient of a polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ by an ideal I (not necessarily homogenous).

Let $\mathrm{m}=\left(x_{1}, \ldots, x_{r}\right) \subset A$.
The socle of A is

$$
(0: m)=\{\varphi \in A \mid \varphi \mathrm{m}=0\} .
$$

A is Gorenstein if

$$
\operatorname{dim}_{k}(0: m)=1 .
$$

The socle degree of a Gorenstein Artinian (GA) algebra A is the highest integer j such that

$$
m^{j} \neq 0
$$

Gorenstein Artinian algebras

Associated graded algebra

Gorenstein Artinian algebras

Associated graded algebra

The graded associated algebra of a GA algebra A is

$$
A^{*}:=\bigoplus_{i \geq 0} \frac{\mathrm{~m}^{i}}{\mathrm{~m}^{i+1}}
$$

Gorenstein Artinian algebras

Associated graded algebra

The graded associated algebra of a GA algebra A is

$$
A^{*}:=\bigoplus_{i \geq 0} \frac{\mathrm{~m}^{i}}{\mathrm{~m}^{i+1}}
$$

Iarrobino $1994 A^{*}$ has a stratification by ideals

$$
A^{*}=C(0) \supset C(1) \supset \cdots \supset C(j-1)=0
$$

Gorenstein Artinian algebras

Associated graded algebra

The graded associated algebra of a GA algebra A is

$$
A^{*}:=\bigoplus_{i \geq 0} \frac{\mathrm{~m}^{i}}{\mathrm{~m}^{i+1}}
$$

larrobino $1994 A^{*}$ has a stratification by ideals

$$
A^{*}=C(0) \supset C(1) \supset \cdots \supset C(j-1)=0
$$

whose successive quotients $Q(a)=C(a) / C(a+1)$ are reflexive A^{*}-modules.

Gorenstein Artinian algebras

Gorenstein sequences

Gorenstein Artinian algebras

Gorenstein sequences
A Gorenstein sequence H is an integer sequence occurring as the Hilbert function of a GA algebra A.

Gorenstein Artinian algebras

Gorenstein sequences

A Gorenstein sequence H is an integer sequence occurring as the Hilbert function of a GA algebra A.

If A is graded, its Hilbert function is symmetric, e.g.

$$
A=k[x, y, z] /\left(z^{2}, y^{2}, x^{3}-x y z\right), \quad H(A)=(1,3,4,3,1)
$$

Gorenstein Artinian algebras

Gorenstein sequences

A Gorenstein sequence H is an integer sequence occurring as the Hilbert function of a GA algebra A.

If A is graded, its Hilbert function is symmetric, e.g.

$$
A=k[x, y, z] /\left(z^{2}, y^{2}, x^{3}-x y z\right), \quad H(A)=(1,3,4,3,1)
$$

If A is not graded, its Hilbert function may not be symmetric, e.g.

$$
A=k[x, y, z] /\left(x z, x y-z^{2}, x^{3}-y^{2}\right), \quad H(A)=(1,3,3,1,1)
$$

Gorenstein Artinian algebras

Gorenstein sequences

A Gorenstein sequence H is an integer sequence occurring as the Hilbert function of a GA algebra A.

If A is graded, its Hilbert function is symmetric, e.g.

$$
A=k[x, y, z] /\left(z^{2}, y^{2}, x^{3}-x y z\right), \quad H(A)=(1,3,4,3,1)
$$

If A is not graded, its Hilbert function may not be symmetric, e.g.

$$
A=k[x, y, z] /\left(x z, x y-z^{2}, x^{3}-y^{2}\right), \quad H(A)=(1,3,3,1,1)
$$

but admits a symmetric decomposition

$$
\begin{array}{clllll}
H(A) & 1 & 3 & 3 & 1 & 1 \\
H\left(Q_{A}(0)\right) & 1 & 1 & 1 & 1 & 1 \\
H\left(Q_{A}(1)\right) & 0 & 2 & 2 & 0 &
\end{array}
$$

Gorenstein Artinian algebras

Gorenstein sequences

A Gorenstein sequence H is an integer sequence occurring as the Hilbert function of a GA algebra A.

If A is graded, its Hilbert function is symmetric, e.g.

$$
A=k[x, y, z] /\left(z^{2}, y^{2}, x^{3}-x y z\right), \quad H(A)=(1,3,4,3,1)
$$

If A is not graded, its Hilbert function may not be symmetric, e.g.

$$
A=k[x, y, z] /\left(x z, x y-z^{2}, x^{3}-y^{2}\right), \quad H(A)=(1,3,3,1,1)
$$

but admits a symmetric decomposition

$$
\begin{array}{clllll}
H(A) & 1 & 3 & 3 & 1 & 1 \\
H\left(Q_{A}(0)\right) & 1 & 1 & 1 & 1 & 1 \\
H\left(Q_{A}(1)\right) & 0 & 2 & 2 & 0 &
\end{array}
$$

Iarrobino 1994 There is an exact pairing

$$
Q_{A}(a)_{i} \times Q_{A}(a)_{j-a-i} \longrightarrow k
$$

Gorenstein Artinian algebras

A few questions

Gorenstein Artinian algebras

A few questions

Questions on Gorenstein sequences and on symmetric decompositions of associated graded algebras of GA algebras

Gorenstein Artinian algebras

A few questions

Questions on Gorenstein sequences and on symmetric decompositions of associated graded algebras of GA algebras

1. Which sequences are Gorenstein?

Gorenstein Artinian algebras

A few questions

Questions on Gorenstein sequences and on symmetric decompositions of associated graded algebras of GA algebras

1. Which sequences are Gorenstein?
2. If we know the Hilbert functions $H\left(Q_{A}(0)\right), \ldots, H\left(Q_{A}(a)\right)$, what can we say about $H\left(Q_{A}(a+1)\right)$?

Gorenstein Artinian algebras

A few questions

Questions on Gorenstein sequences and on symmetric decompositions of associated graded algebras of GA algebras

1. Which sequences are Gorenstein?
2. If we know the Hilbert functions $H\left(Q_{A}(0)\right), \ldots, H\left(Q_{A}(a)\right)$, what can we say about $H\left(Q_{A}(a+1)\right)$?
3. Can $Q_{A}(a)$ be an acyclic module?

Gorenstein Artinian algebras

A few questions

Questions on Gorenstein sequences and on symmetric decompositions of associated graded algebras of GA algebras

1. Which sequences are Gorenstein?
2. If we know the Hilbert functions $H\left(Q_{A}(0)\right), \ldots, H\left(Q_{A}(a)\right)$, what can we say about $H\left(Q_{A}(a+1)\right)$?
3. Can $Q_{A}(a)$ be an acyclic module? Is it possible to have

$$
H\left(Q_{A}(a)\right)=(0, s, 0, \ldots, 0, s, 0) ?
$$

Dual ring

Dual ring

Denote by $\mathfrak{D}=k_{D P}\left[X_{1}, \ldots, X_{r}\right]$ the divided power ring and let the polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ act on \mathfrak{D} by contraction:

$$
x_{i}^{\alpha} \circ X_{i}^{[\beta]}= \begin{cases}X_{i}^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { if } \beta<\alpha .\end{cases}
$$

Dual ring

Denote by $\mathfrak{D}=k_{D P}\left[X_{1}, \ldots, X_{r}\right]$ the divided power ring and let the polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ act on \mathfrak{D} by contraction:

$$
X_{i}^{\alpha} \circ X_{i}^{[\beta]}= \begin{cases}X_{i}^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { if } \beta<\alpha .\end{cases}
$$

Macaulay 1916 Giving an ideal I of the polynomial ring R defining an Artinian quotient $A=R / I$ of length $\operatorname{dim}_{k}(A)=n$ is equivalent to giving a length- $n R$-submodule A^{\prime} of the divided power algebra \mathfrak{D}.

Dual ring

Denote by $\mathfrak{D}=k_{D P}\left[X_{1}, \ldots, X_{r}\right]$ the divided power ring and let the polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ act on \mathfrak{D} by contraction:

$$
x_{i}^{\alpha} \circ X_{i}^{[\beta]}= \begin{cases}X_{i}^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { if } \beta<\alpha .\end{cases}
$$

Macaulay 1916 Giving an ideal I of the polynomial ring R defining an Artinian quotient $A=R / I$ of length $\operatorname{dim}_{k}(A)=n$ is equivalent to giving a length- $n R$-submodule A^{\prime} of the divided power algebra \mathfrak{D}.

$$
f \in \mathfrak{D} \mapsto R / \text { Ann } f
$$

Gorenstein sequences

Typical Hilbert functions

If f is a general polynomial of degree j, then the Hilbert function of $A=R /$ Ann f is maximal:

Gorenstein sequences

Typical Hilbert functions

If f is a general polynomial of degree j, then the Hilbert function of $A=R / \operatorname{Ann} f$ is maximal:

$$
j=2 \quad j=3 \quad j=4 \quad j=6
$$

1	1	1		1	1	1
1	1					
1	2	1		1	2	2
1						
1	3	1		1	3	3
1	1					
1	4	1		1	4	4
1	5	1		1	5	5
1						

1	1	1	1	1
1	2	3	2	1
1	3	6	3	1
1	4	10	4	1
1	5	15	5	1

1	1	1	1	1	1	1
1	2	3	4	3	2	1
1	3	6	10	6	3	1
1	4	10	20	10	4	1
1	5	15	35	15	5	1

Gorenstein sequences

Typical Hilbert functions

If f is a general polynomial of degree j, then the Hilbert function of $A=R /$ Ann f is maximal:

$$
j=2 \quad j=3 \quad j=4 \quad j=6
$$

1	1	1		1	1	1
1	1					
1	2	1		1	2	2
1						
1	3	1		1	3	3
1	1					
1	4	1		1	4	4
1	5	1		1	5	5
1						

1	1	1	1	1
1	2	3	2	1
1	3	6	3	1
1	4	10	4	1
1	5	15	5	1

1	1	1	1	1
1	2	3	4	3
1	3	6	10	6
1	4	10	20	10
1	5	15	35	15

1	1
2	1
3	1
4	1
5	1

In general,

$$
\begin{array}{lllllllll}
1 & r & \binom{r+1}{2} & \binom{r+2}{3} & \cdots & \binom{r+2}{3} & \binom{r+1}{2} & r & 1
\end{array}
$$

Gorenstein sequences

Typical Hilbert functions

If f is a general polynomial of degree j, then the Hilbert function of $A=R /$ Ann f is maximal:

$$
j=2 \quad j=3 \quad j=4 \quad j=6
$$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	1	1	2	2	1	1	2	3	2	1	1	2	3	4	3	2	1
1	3	1	1	3	3	1	1	3	6	3	1	1	3	6	10	6	3	1
1	4	1	1	4	4	1	1	4	10	4	1	1	4	10	20	10	4	1
1	5	1	1	5	5	1	1	5	15	5	1	1	5	15	35	15	5	1

In general,

$$
\begin{array}{lllllllll}
1 & r & \binom{r+1}{2} & \binom{r+2}{3} & \cdots & \binom{r+2}{3} & \binom{r+1}{2} & r & 1
\end{array}
$$

$$
\operatorname{dim} \mathfrak{D}_{i} \quad \operatorname{dim} R_{i}
$$

Gorenstein sequences

Easy atypical Hilbert functions
Connected sums

$$
f=X^{[3]} Y^{[3]}, \quad g=Z^{[5]}+W^{[5]}
$$

Gorenstein sequences

Easy atypical Hilbert functions
Connected sums

\[

\]

Gorenstein sequences

Easy atypical Hilbert functions

Connected sums

\[

\]

Gorenstein sequences

Easy atypical Hilbert functions

Connected sums

\[

\]

Gorenstein sequences

Easy atypical Hilbert functions

Connected sums

\[

\]

Gorenstein sequences

Easy atypical Hilbert functions
Connected sums

\[

\]

Gorenstein sequences

Easy atypical Hilbert functions

Connected sums

\[

\]

Partials of f

			$X^{[3]}$			
		$X^{[2]}$	$X^{[2]} Y$	$X{ }^{[3]} Y$		
	X	$X Y$	$X Y^{[2]}$	$X^{[2]} Y^{[2]}$	$X^{[3]} Y{ }^{[2]}$	
1	Y	$Y{ }^{[2]}$	$Y^{[3]}$	$X Y^{[3]}$	$X{ }^{[2]} Y{ }^{[3]}$	f

Gorenstein sequences

Easy atypical Hilbert functions

Connected sums

\[

\]

Partials of f

Partials of g

	Z	$Z^{[2]}$	$Z^{[3]}$	$Z^{[4]}$	
1	W	$W^{[2]}$	$W^{[3]}$	$W^{[4]}$	g

Gorenstein sequences

Easy atypical Hilbert functions

$$
f=X^{[3]} Y^{[3]}, \quad g=X Y Z^{[3]}, \quad h=Y^{[2]} W^{[2]}
$$

Gorenstein sequences

Easy atypical Hilbert functions

$$
f=X^{[3]} Y^{[3]}, \quad g=X Y Z^{[3]}, \quad h=Y^{[2]} W^{[2]}
$$

$$
\left.\begin{array}{lllllllll}
H(R / A n n
\end{array}\right) \quad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 211
$$

Gorenstein sequences

Easy atypical Hilbert functions

$$
f=X^{[3]} Y^{[3]}, \quad g=X Y Z^{[3]}, \quad h=Y^{[2]} W^{[2]}
$$

$$
\begin{array}{cccccccc}
H(R / \operatorname{Ann} f) & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\
H(R / \operatorname{Ann}(f+g)) & 1 & 3 & 6 & 7 & 4 & 2 & 1
\end{array}
$$

Gorenstein sequences

Easy atypical Hilbert functions

$$
f=X^{[3]} Y^{[3]}, \quad g=X Y Z^{[3]}, \quad h=Y Y^{[2]} W^{[2]}
$$

$H(R / \operatorname{Ann} f)$	1	2	3	4	3	2	1
$H(R / \operatorname{Ann}(f+g))$	1	3	6	7	4	2	1
$Q(0)$	1	2	3	4	3	2	1
$Q(1)$	0	1	3	3	1	0	

Gorenstein sequences

Easy atypical Hilbert functions

$$
\begin{array}{clllllll}
f=X^{[3]} Y^{[3]}, \quad g=X Y Z^{[3]}, & h=Y & Y^{[2]} & W^{[2]} \\
H(R / \operatorname{Ann} f) & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\
H(R / \operatorname{Ann}(f+g)) & 1 & 3 & 6 & 7 & 4 & 2 & 1 \\
Q(0) & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\
Q(1) & 0 & 1 & 3 & 3 & 1 & 0 & \\
H(R / \operatorname{Ann}(f+g+h)) & 1 & 4 & 7 & 8 & 4 & 2 & 1
\end{array}
$$

Gorenstein sequences

Easy atypical Hilbert functions

\[

\]

Gorenstein sequences

Ubiquity
Question.
If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$
H\left(Q_{B}(u)\right)= \begin{cases}H\left(Q_{A}(u)\right), & \text { for } u<a \\ 0, & \text { for } u \geq a\end{cases}
$$

for a given integer a ?

Gorenstein sequences

Ubiquity
Question.
If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$
H\left(Q_{B}(u)\right)= \begin{cases}H\left(Q_{A}(u)\right), & \text { for } u<a \\ 0, & \text { for } u \geq a\end{cases}
$$

for a given integer a ?

Gorenstein sequences

Ubiquity
Question.
If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$
H\left(Q_{B}(u)\right)= \begin{cases}H\left(Q_{A}(u)\right), & \text { for } u<a \\ 0, & \text { for } u \geq a\end{cases}
$$

for a given integer a ?

Gorenstein sequences

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$
H\left(Q_{B}(u)\right)= \begin{cases}H\left(Q_{A}(u)\right), & \text { for } u<a \\ 0, & \text { for } u \geq a\end{cases}
$$

for a given integer a ?
Stronger question.
If we have a Gorenstein Artinian algebra $A=R / I$, is $R / \mathcal{C}(a)$ still a Gorenstein Artinian algebra?

Gorenstein sequences

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$
H\left(Q_{B}(u)\right)= \begin{cases}H\left(Q_{A}(u)\right), & \text { for } u<a \\ 0, & \text { for } u \geq a\end{cases}
$$

for a given integer a ?
Stronger question.
If we have a Gorenstein Artinian algebra $A=R / I$, is $R / \mathcal{C}(a)$ still a Gorenstein Artinian algebra?

- Yes, to both, if codim $R / \mathcal{C}(a) \leq 2$.

Gorenstein sequences

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$
H\left(Q_{B}(u)\right)= \begin{cases}H\left(Q_{A}(u)\right), & \text { for } u<a \\ 0, & \text { for } u \geq a\end{cases}
$$

for a given integer a ?
Stronger question.
If we have a Gorenstein Artinian algebra $A=R / I$, is $R / \mathcal{C}(a)$ still a Gorenstein Artinian algebra?

- Yes, to both, if codim $R / C(a) \leq 2$.
- No, to both, if codim $R / \mathcal{C}(a) \geq 3$.

Gorenstein sequences

Surprising decompositions

Question.
Is it possible to have

$$
H\left(Q_{A}(a)\right)=(0, s, 0, \ldots, 0, s, 0) ?
$$

Gorenstein sequences

Surprising decompositions

Question.
Is it possible to have

$$
H\left(Q_{A}(a)\right)=(0, s, 0, \ldots, 0, s, 0) ?
$$

Iarrobino 1994 There is a complete intersection A with

$$
\begin{array}{llllllll}
H(A) & 1 & 3 & 3 & 4 & 2 & 1 & 1 \\
Q(0) & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Q(1) & 0 & 1 & 2 & 2 & 1 & 0 & \\
Q(2) & 0 & 1 & 0 & 1 & 0 & &
\end{array}
$$

Gorenstein sequences

Surprising decompositions

Question.
Is it possible to have

$$
H\left(Q_{A}(a)\right)=(0, s, 0, \ldots, 0, s, 0) ?
$$

Iarrobino 1994 There is a complete intersection A with

$$
\begin{array}{llllllll}
H(A) & 1 & 3 & 3 & 4 & 2 & 1 & 1 \\
Q(0) & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Q(1) & 0 & 1 & 2 & 2 & 1 & 0 & \\
Q(2) & 0 & 1 & 0 & 1 & 0 & &
\end{array}
$$

Can we create other such examples?

Gorenstein sequences

Surprising decompositions

$$
f=X^{[4]} Y^{[4]}, \quad g=X^{[5]} Z_{1}+Y^{[5]} Z_{2}
$$

Gorenstein sequences

Surprising decompositions

$$
\begin{gathered}
f=X^{[4]} Y^{[4]}, \\
H(R / \text { Ann } f) \\
H
\end{gathered} 1 \begin{array}{lllllllll}
& 2 & 3 & 4 & 5 & 4 & 3 & 2 & 1
\end{array}
$$

Gorenstein sequences

Surprising decompositions

$$
f=X^{[4]} Y^{[4]}, \quad g=X^{[5]} Z_{1}+Y^{[5]} Z_{2}
$$

$H(R / \operatorname{Ann} f)$	1	2	3	4	5	4	3	2	1

Gorenstein sequences

Surprising decompositions

$$
f=X^{[4]} Y^{[4]}, \quad g=X^{[5]} Z_{1}+Y^{[5]} Z_{2}
$$

$H(R / \operatorname{Ann} f)$	1	2	3	4	5	4	3	2	1
$H(R / \operatorname{Ann} g)$	1	4	4	4	4	4	4	1	
$H(R / \operatorname{Ann}(f+g))$	1	4	5	4	5	6	3	2	1

Gorenstein sequences

Surprising decompositions

\[

\]

Gorenstein sequences

Vanishing of $Q(u)$

Theorem (larrobino,

Let $f, h_{1}, \ldots, h_{s} \in k_{D P}\left[X_{1}, \ldots, X_{r}\right]$ be homogeneous polynomials with

$$
\begin{aligned}
& \operatorname{deg} f=j \\
& \operatorname{deg} h_{t}=k_{t} \\
& j-2 \geq k_{1} \geq \cdots \geq k_{s} \geq 1
\end{aligned}
$$

Let $a_{t}=j-\left(k_{t}+1\right)$ and consider the polynomial

$$
F=f+h_{1} Z_{1}+\cdots+h_{s} Z_{s} .
$$

Then symmetric decomposition of the GA algebra $A=R /$ Ann F satisfies

$$
Q(u)=0 \text { for } u \notin\left\{0, a_{1}, \ldots, a_{s}\right\} \cup\left\{a_{t_{1}}+a_{t_{2}} \mid 1 \leq t_{1} \leq t_{2} \leq s\right\}
$$

Gorenstein sequences

Non-ubiquity

$$
f=X^{[3]} Y^{[3]}, \quad g=X^{[4]} Z_{1}+Y^{[4]} Z_{2}
$$

Gorenstein sequences

Non-ubiquity

$$
\begin{gathered}
f=X^{[3]} Y^{[3]}, \quad g=X^{[4]} Z_{1}+Y^{[4]} Z_{2} \\
H(R / \operatorname{Ann}(f+g)) \\
1
\end{gathered} 1 \begin{array}{llllllll}
4 & 5 & 4 & 5 & 2 & 1
\end{array}
$$

Gorenstein sequences

Non-ubiquity

\[

\]

Gorenstein sequences

Non-ubiquity

\[

\]

Gorenstein sequences

Non-ubiquity

\[

\]

Proposition (larrobino,

The sequence $H=(1,4,3,4,5,2,1)$ does not occur as the Hilbert function of a GA algebra.

Museu de Arte Contemporânea de Serralves, Álvaro Siza Vieira, 1997
Fotografia: Nelson Alexandre Rocha, Serralves minimalista \#5, 2007

