Symmetric decomposition of the associated graded algebra of a Gorenstein Artinian algebra

Pedro Macias Marques

Universidade de Évora

12th June 2015

2015 AMS - EMS - SPM Joint Meeting, Porto

Joint work with Anthony larrobino

Let *A* be an Artinian algebra, obtained as a quotient of a polynomial ring $R = k[x_1, ..., x_r]$ by an ideal *I* (not necessarily homogenous).

Let $\mathbf{m} = (x_1, \ldots, x_r) \subset A$.

Let *A* be an Artinian algebra, obtained as a quotient of a polynomial ring $R = k[x_1, ..., x_r]$ by an ideal *I* (not necessarily homogenous). Let $m = (x_1, ..., x_r) \subset A$.

The socle of A is

$$(\mathbf{0}:\mathbf{m})=\{\varphi\in \boldsymbol{A}\mid \varphi\mathbf{m}=\mathbf{0}\}.$$

Let *A* be an Artinian algebra, obtained as a quotient of a polynomial ring $R = k[x_1, ..., x_r]$ by an ideal *I* (not necessarily homogenous). Let $m = (x_1, ..., x_r) \subset A$.

The socle of A is

$$(\mathsf{0}:\mathsf{m})=\{\varphi\in \mathsf{A}\mid \varphi\mathsf{m}=\mathsf{0}\}.$$

A is Gorenstein if

 $\dim_k(0:m) = 1.$

Let *A* be an Artinian algebra, obtained as a quotient of a polynomial ring $R = k[x_1, ..., x_r]$ by an ideal *I* (not necessarily homogenous). Let $m = (x_1, ..., x_r) \subset A$.

The socle of A is

$$(\mathbf{0}:\mathbf{m})=\{\varphi\in \boldsymbol{A}\mid \varphi\mathbf{m}=\mathbf{0}\}.$$

A is Gorenstein if

$$\dim_k(0:m)=1.$$

The *socle degree* of a Gorenstein Artinian (GA) algebra *A* is the highest integer *j* such that

$$m^j \neq 0.$$

Associated graded algebra

Associated graded algebra

The graded associated algebra of a GA algebra A is

$$A^* := \bigoplus_{i>0} \frac{\mathsf{m}^i}{\mathsf{m}^{i+1}}.$$

Gorenstein Artinian algebras Associated graded algebra

The graded associated algebra of a GA algebra A is

$$A^* := \bigoplus_{i \ge 0} \frac{\mathsf{m}^i}{\mathsf{m}^{i+1}}.$$

larrobino 1994 A* has a stratification by ideals

$$A^* = C(0) \supset C(1) \supset \cdots \supset C(j-1) = 0$$

Gorenstein Artinian algebras Associated graded algebra

The graded associated algebra of a GA algebra A is

$$A^* := \bigoplus_{i \ge 0} \frac{\mathsf{m}^i}{\mathsf{m}^{i+1}}.$$

larrobino 1994 A^* has a stratification by ideals

$$A^* = C(0) \supset C(1) \supset \cdots \supset C(j-1) = 0$$

whose successive quotients Q(a) = C(a)/C(a+1) are reflexive A^* -modules.

Gorenstein sequences

Gorenstein sequences

A *Gorenstein sequence H* is an integer sequence occurring as the Hilbert function of a GA algebra *A*.

Gorenstein sequences

A *Gorenstein sequence H* is an integer sequence occurring as the Hilbert function of a GA algebra *A*.

If A is graded, its Hilbert function is symmetric, e.g.

$$A = k[x, y, z]/(z^2, y^2, x^3 - xyz), \quad H(A) = (1, 3, 4, 3, 1)$$

Gorenstein sequences

A *Gorenstein sequence H* is an integer sequence occurring as the Hilbert function of a GA algebra *A*.

If A is graded, its Hilbert function is symmetric, e.g.

$$A = k[x, y, z]/(z^2, y^2, x^3 - xyz), \quad H(A) = (1, 3, 4, 3, 1)$$

If A is not graded, its Hilbert function may not be symmetric, e.g.

$$A = k[x, y, z]/(xz, xy - z^2, x^3 - y^2), \quad H(A) = (1, 3, 3, 1, 1)$$

Gorenstein sequences

A *Gorenstein sequence H* is an integer sequence occurring as the Hilbert function of a GA algebra *A*.

If A is graded, its Hilbert function is symmetric, e.g.

$$A = k[x, y, z]/(z^2, y^2, x^3 - xyz), \quad H(A) = (1, 3, 4, 3, 1)$$

If A is not graded, its Hilbert function may not be symmetric, e.g.

$$A = k[x, y, z]/(xz, xy - z^2, x^3 - y^2), \quad H(A) = (1, 3, 3, 1, 1)$$

but admits a symmetric decomposition

$$\begin{array}{ccccccc} H(A) & 1 & 3 & 3 & 1 & 1 \\ H(Q_A(0)) & 1 & 1 & 1 & 1 & 1 \\ H(Q_A(1)) & 0 & 2 & 2 & 0 \end{array}$$

Gorenstein sequences

A *Gorenstein sequence H* is an integer sequence occurring as the Hilbert function of a GA algebra *A*.

If A is graded, its Hilbert function is symmetric, e.g.

$$A = k[x, y, z]/(z^2, y^2, x^3 - xyz), \quad H(A) = (1, 3, 4, 3, 1)$$

If A is not graded, its Hilbert function may not be symmetric, e.g.

$$A = k[x, y, z]/(xz, xy - z^2, x^3 - y^2), \quad H(A) = (1, 3, 3, 1, 1)$$

but admits a symmetric decomposition

$$\begin{array}{ccccccc} H(A) & 1 & 3 & 3 & 1 & 1 \\ H(Q_A(0)) & 1 & 1 & 1 & 1 & 1 \\ H(Q_A(1)) & 0 & 2 & 2 & 0 \end{array}$$

larrobino 1994 There is an exact pairing

$$Q_A(a)_i \times Q_A(a)_{j-a-i} \longrightarrow k$$

A few questions

A few questions

A few questions

Questions on Gorenstein sequences and on symmetric decompositions of associated graded algebras of GA algebras

1. Which sequences are Gorenstein?

A few questions

- 1. Which sequences are Gorenstein?
- If we know the Hilbert functions H(Q_A(0)),..., H(Q_A(a)), what can we say about H(Q_A(a + 1))?

A few questions

- 1. Which sequences are Gorenstein?
- If we know the Hilbert functions H(Q_A(0)),..., H(Q_A(a)), what can we say about H(Q_A(a + 1))?
- 3. Can $Q_A(a)$ be an acyclic module?

A few questions

- 1. Which sequences are Gorenstein?
- If we know the Hilbert functions H(Q_A(0)),..., H(Q_A(a)), what can we say about H(Q_A(a + 1))?
- 3. Can $Q_A(a)$ be an acyclic module? Is it possible to have

$$H(Q_A(a)) = (0, s, 0, \dots, 0, s, 0)?$$

Denote by $\mathfrak{D} = k_{DP}[X_1, \dots, X_r]$ the divided power ring and let the polynomial ring $R = k[x_1, \dots, x_r]$ act on \mathfrak{D} by contraction:

$$\mathbf{X}_{i}^{\alpha} \circ \mathbf{X}_{i}^{[\beta]} = \begin{cases} \mathbf{X}_{i}^{[\beta-\alpha]} & \text{if } \beta \geq \alpha, \\ \mathbf{0} & \text{if } \beta < \alpha. \end{cases}$$

Denote by $\mathfrak{D} = k_{DP}[X_1, \dots, X_r]$ the divided power ring and let the polynomial ring $R = k[x_1, \dots, x_r]$ act on \mathfrak{D} by contraction:

$$\mathbf{X}_{i}^{\alpha} \circ \mathbf{X}_{i}^{[\beta]} = \begin{cases} \mathbf{X}_{i}^{[\beta-\alpha]} & \text{ if } \beta \geq \alpha, \\ \mathbf{0} & \text{ if } \beta < \alpha. \end{cases}$$

Macaulay 1916 Giving an ideal *I* of the polynomial ring *R* defining an Artinian quotient A = R/I of length dim_k(A) = *n* is equivalent to giving a length-*n R*-submodule *A*' of the divided power algebra \mathfrak{D} .

Denote by $\mathfrak{D} = k_{DP}[X_1, \dots, X_r]$ the divided power ring and let the polynomial ring $R = k[x_1, \dots, x_r]$ act on \mathfrak{D} by contraction:

$$\mathbf{X}_{i}^{\alpha} \circ \mathbf{X}_{i}^{[\beta]} = \begin{cases} \mathbf{X}_{i}^{[\beta-\alpha]} & \text{ if } \beta \geq \alpha, \\ \mathbf{0} & \text{ if } \beta < \alpha. \end{cases}$$

Macaulay 1916 Giving an ideal *I* of the polynomial ring *R* defining an Artinian quotient A = R/I of length dim_k(A) = *n* is equivalent to giving a length-*n R*-submodule *A*' of the divided power algebra \mathfrak{D} .

$$f \in \mathfrak{D} \mapsto R/\operatorname{Ann} f$$
.

Typical Hilbert functions

If *f* is a general polynomial of degree *j*, then the Hilbert function of $A = R / \operatorname{Ann} f$ is maximal:

Typical Hilbert functions

If *f* is a general polynomial of degree *j*, then the Hilbert function of $A = R / \operatorname{Ann} f$ is maximal:

Typical Hilbert functions

If *f* is a general polynomial of degree *j*, then the Hilbert function of $A = R / \operatorname{Ann} f$ is maximal:

Typical Hilbert functions

If *f* is a general polynomial of degree *j*, then the Hilbert function of $A = R / \operatorname{Ann} f$ is maximal:

 $\dim \mathfrak{D}_i \qquad \qquad \dim R_i$

Easy atypical Hilbert functions

$$f = X^{[3]} Y^{[3]}, \quad g = Z^{[5]} + W^{[5]}$$

Easy atypical Hilbert functions

$$f = X^{[3]} Y^{[3]}, \quad g = Z^{[5]} + W^{[5]}$$

 $H(R / \text{Ann } f) \quad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$

Easy atypical Hilbert functions

$$\begin{array}{ll} f = X^{[3]} Y^{[3]}, & g = Z^{[5]} + W^{[5]} \\ H(R/\operatorname{Ann} f) & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\ H(R/\operatorname{Ann} g) & 1 & 2 & 2 & 2 & 2 & 1 \end{array}$$

Easy atypical Hilbert functions

$$f = X^{[3]} Y^{[3]}, \quad g = Z^{[5]} + W^{[5]}$$

$$H(R / \operatorname{Ann} f) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$$

$$H(R / \operatorname{Ann} g) \qquad 1 \quad 2 \quad 2 \quad 2 \quad 2 \quad 1$$

$$H(R / \operatorname{Ann}(f + g)) \qquad 1 \quad 4 \quad 5 \quad 6 \quad 5 \quad 2 \quad 1$$

Easy atypical Hilbert functions

ŀ

Easy atypical Hilbert functions

$$f = X^{[3]} Y^{[3]}, \quad g = Z^{[5]} + W^{[5]}$$

 $H(R / \operatorname{Ann}(f + g)) \quad 1 \quad 4 \quad 5 \quad 6 \quad 5 \quad 2 \quad 1$
 $Q(0) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$
 $Q(1) \qquad 0 \quad 2 \quad 2 \quad 2 \quad 2 \quad 0$

Easy atypical Hilbert functions

$$f = X^{[3]} Y^{[3]}, \quad g = Z^{[5]} + W^{[5]}$$

$$H(R/\operatorname{Ann}(f+g)) \quad 1 \quad 4 \quad 5 \quad 6 \quad 5 \quad 2 \quad 1$$

$$Q(0) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$$

$$Q(1) \qquad 0 \quad 2 \quad 2 \quad 2 \quad 2 \quad 0$$
Partials of f
$$X^{[3]}$$

$$X^{[2]} X^{[2]} Y \qquad X^{[3]} Y$$

$$X \quad XY \quad XY^{[2]} \quad X^{[3]} Y^{[2]} \qquad X^{[3]} Y^{[2]}$$

$$1 \quad Y \quad Y^{[2]} \quad Y^{[3]} \qquad XY^{[3]} \qquad X^{[2]} Y^{[3]} \qquad f$$

Easy atypical Hilbert functions

$$f = X^{[3]} Y^{[3]}, \quad g = Z^{[5]} + W^{[5]}$$

$$H(R/\operatorname{Ann}(f+g)) \quad 1 \quad 4 \quad 5 \quad 6 \quad 5 \quad 2 \quad 1$$

$$Q(0) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$$

$$Q(1) \qquad 0 \quad 2 \quad 2 \quad 2 \quad 2 \quad 2 \quad 0$$
Partials of f
$$X^{[2]} \qquad X^{[2]} Y \qquad X^{[3]} Y$$

$$X \qquad XY \qquad XY^{[2]} \qquad X^{[3]} Y^{[2]} \qquad X^{[3]} Y^{[2]}$$

$$1 \qquad Y \qquad Y^{[2]} \qquad Y^{[3]} \qquad XY^{[3]} \qquad X^{[2]} Y^{[3]} \qquad f$$
Partials of g
$$Z \qquad Z^{[2]} \qquad Z^{[3]} \qquad Z^{[4]}$$

$$1 \qquad W \qquad W^{[2]} \qquad W^{[3]} \qquad W^{[4]} \qquad g$$

$$f = X^{[3]} Y^{[3]}, \quad g = XYZ^{[3]}, \quad h = Y^{[2]} W^{[2]}$$

$$f = X^{[3]}Y^{[3]}, \quad g = XYZ^{[3]}, \quad h = Y^{[2]}W^{[2]}$$

 $H(R/\operatorname{Ann} f) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$

$$f = X^{[3]} Y^{[3]}, \quad g = XYZ^{[3]}, \quad h = Y^{[2]} W^{[2]}$$

 $H(R / \text{Ann} f) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1$
 $H(R / \text{Ann}(f + g)) \qquad 1 \quad 3 \quad 6 \quad 7 \quad 4 \quad 2 \quad 1$

$$f = X^{[3]} Y^{[3]}, \quad g = XYZ^{[3]}, \quad h = Y^{[2]} W^{[2]}$$

$H(R/\operatorname{Ann} f)$	1	2	3	4	3	2	1
$H(R/\operatorname{Ann}(f+g))$	1	3	6	7	4	2	1
Q(0)	1	2	3	4	3	2	1
Q(1)	0	1	3	3	1	0	

$$f = X^{[3]} Y^{[3]}, \quad g = XYZ^{[3]}, \quad h = Y^{[2]} W^{[2]}$$

$H(R/\operatorname{Ann} f)$	1	2	3	4	3	2	1
$H(R/\operatorname{Ann}(f+g))$	1	3	6	7	4	2	1
Q(0)	1	2	3	4	3	2	1
Q(1)	0	I	3	3	I	0	
$H(R/\operatorname{Ann}(f+g+h))$	1	4	7	8	4	2	1

$$f = X^{[3]} Y^{[3]}, \quad g = X Y Z^{[3]}, \quad h = Y^{[2]} W^{[2]}$$

$H(R/\operatorname{Ann} f)$	1	2	3	4	3	2	1
$H(R/\operatorname{Ann}(f+g))$	1	3	6	7	4	2	1
Q(0) Q(1)	1 0	2 1	3 3	4 3	3 1	2 0	1
$H(R/\operatorname{Ann}(f+g+h))$	1	4	7	8	4	2	1
Q(0) Q(1) Q(2)	1 0 0	2 1 1	3 3 1	4 3 1	3 1 0	2 0	1

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$H(Q_B(u)) = egin{cases} H(Q_A(u)), & ext{for } u < a, \ 0, & ext{for } u \geq a, \end{cases}$$

for a given integer a?

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra *A*, is there another Gorenstein Artinian algebra *B* such that

$$m{H}ig(m{Q}_{B}(u)ig) = egin{cases} m{H}ig(m{Q}_{A}(u)ig), & ext{for } u < a, \ 0, & ext{for } u \geq a, \end{cases}$$

for a given integer a?

H(A)	1	•	•	•	•	•	-
<i>Q</i> (0)	1	•	•	•	•	•	1
Q(1)	0	٠	٠	٠	٠	0	
Q(2)	0	٠	٠	٠	0		
Q(3)	0	٠	٠	0			
Q(4)	0	٠	0				

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$egin{aligned} & etaig(\mathcal{Q}_{\mathcal{B}}(u)ig) = egin{cases} & etaig(\mathcal{Q}_{\mathcal{A}}(u)ig), & ext{ for } u < a, \ 0, & ext{ for } u \geq a, \end{aligned}$$

for a given integer a?

H(A)	1	•	•	•	•	•	1	H(B)	1	•	•	•	•	•	1
<i>Q</i> (0)	1	•	•	•	•	•	1	<i>Q</i> (0)	1	•	•	•	•	•	1
Q(1)	0	٠	٠	٠	٠	0		Q(1)	0	٠	٠	٠	٠	0	
Q(2)	0	٠	٠	٠	0										
Q(3)	0	٠	٠	0											
Q(4)	0	٠	0												

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$H(Q_B(u)) = egin{cases} H(Q_A(u)), & ext{for } u < a, \ 0, & ext{for } u \geq a, \end{cases}$$

for a given integer a?

Stronger question.

If we have a Gorenstein Artinian algebra A = R/I, is R/C(a) still a Gorenstein Artinian algebra?

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$H(Q_B(u)) = egin{cases} H(Q_A(u)), & ext{for } u < a, \ 0, & ext{for } u \geq a, \end{cases}$$

for a given integer a?

Stronger question.

If we have a Gorenstein Artinian algebra A = R/I, is R/C(a) still a Gorenstein Artinian algebra?

Yes, to both, if codim $R/C(a) \leq 2$.

Ubiquity

Question.

If we have a given Gorenstein Artinian algebra A, is there another Gorenstein Artinian algebra B such that

$$H(Q_B(u)) = egin{cases} H(Q_A(u)), & ext{for } u < a, \ 0, & ext{for } u \geq a, \end{cases}$$

for a given integer a?

Stronger question.

If we have a Gorenstein Artinian algebra A = R/I, is R/C(a) still a Gorenstein Artinian algebra?

- Yes, to both, if codim $R/C(a) \leq 2$.
- No, to both, if codim $R/C(a) \ge 3$.

Surprising decompositions

Question. Is it possible to have

 $H(Q_A(a)) = (0, s, 0, \dots, 0, s, 0)?$

Surprising decompositions

Question. Is it possible to have

$$H(Q_A(a)) = (0, s, 0, \dots, 0, s, 0)?$$

larrobino 1994 There is a complete intersection A with

Surprising decompositions

Question. Is it possible to have

$$H(Q_A(a)) = (0, s, 0, \dots, 0, s, 0)?$$

larrobino 1994 There is a complete intersection A with

Can we create other such examples?

$$f = X^{[4]} Y^{[4]}, \quad g = X^{[5]} Z_1 + Y^{[5]} Z_2$$

$$f = X^{[4]}Y^{[4]}, \quad g = X^{[5]}Z_1 + Y^{[5]}Z_2$$

 $H(R/\operatorname{Ann} f) = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

$$f = X^{[4]} Y^{[4]}, \quad g = X^{[5]} Z_1 + Y^{[5]} Z_2$$

 $H(R / \text{Ann } f) \qquad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$
 $H(R / \text{Ann } g) \qquad 1 \quad 4 \quad 4 \quad 4 \quad 4 \quad 4 \quad 4 \quad 1$

ŀ

$$f = X^{[4]} Y^{[4]}, \quad g = X^{[5]} Z_1 + Y^{[5]} Z_2$$

$H(R/\operatorname{Ann} f)$	1	2	3	4	5	4	3	2	1
$H(R / \operatorname{Ann} g)$	1	4	4	4	4	4	4	1	
$H(R/\operatorname{Ann}(f+g))$	1	4	5	4	5	6	3	2	1

$$f = X^{[4]} Y^{[4]}, \quad g = X^{[5]} Z_1 + Y^{[5]} Z_2$$

$H(R/\operatorname{Ann} f)$	1	2	3	4	5	4	3	2	1
$H(R/\operatorname{Ann} g)$	1	4	4	4	4	4	4	1	
$H(R/\operatorname{Ann}(f+g))$	1	4	5	4	5	6	3	2	1
Q(0)	1	2	3	4	5	4	3	2	1
Q(1)	0	0	0	0	0	0	0	0	
Q(2)	0	2	0	0	0	2	0		
Q(3)	0	0	0	0	0	0			
Q(4)	0	0	2	0	0				

Gorenstein sequences Vanishing of Q(u)

Theorem (larrobino, ____

Let $f, h_1, \ldots, h_s \in k_{DP}[X_1, \ldots, X_r]$ be homogeneous polynomials with

- · deg f = j,
- $deg h_t = k_t$,

$$j-2 \geq k_1 \geq \cdots \geq k_s \geq 1.$$

Let $a_t = j - (k_t + 1)$ and consider the polynomial

$$F=f+h_1Z_1+\cdots+h_sZ_s.$$

Then symmetric decomposition of the GA algebra $A = R / \operatorname{Ann} F$ satisfies

$$Q(u) = 0 \text{ for } u \notin \{0, a_1, \dots, a_s\} \cup \{a_{t_1} + a_{t_2} \mid 1 \le t_1 \le t_2 \le s\}$$

$$f = X^{[3]} Y^{[3]}, \quad g = X^{[4]} Z_1 + Y^{[4]} Z_2$$

$$f = X^{[3]}Y^{[3]}, \quad g = X^{[4]}Z_1 + Y^{[4]}Z_2$$

$$H(R/Ann(f+g))$$
 1 4 5 4 5 2 1

$$f = X^{[3]} Y^{[3]}, \quad g = X^{[4]} Z_1 + Y^{[4]} Z_2$$

$$\begin{array}{cccccccc} H(R/\operatorname{Ann}(f+g)) & 1 & 4 & 5 & 4 & 5 & 2 & 1 \\ Q(0) & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\ Q(1) & 0 & 2 & 0 & 0 & 2 & 0 \\ Q(2) & 0 & 0 & 2 & 0 & 0 \end{array}$$

$$f = X^{[3]} Y^{[3]}, \quad g = X^{[4]} Z_1 + Y^{[4]} Z_2$$

$H(R/\operatorname{Ann}(f+g))$	1	4	5	4	5	2	1
Q(0)	1	2	3	4	3	2	1
Q(1)	0	2	0	0	2	0	
Q(2)	0	0	2	0	0		
$H(R/\mathcal{C}(2))$	1	4	3	4	5	2	1

Non-ubiquity

$$f = X^{[3]} Y^{[3]}, \quad g = X^{[4]} Z_1 + Y^{[4]} Z_2$$

$H(R/\operatorname{Ann}(f+g))$	1	4	5	4	5	2	1
Q(0)	1	2	3	4	3	2	1
Q(1)	0	2	0	0	2	0	
Q(2)	0	0	2	0	0		
H(R/C(2))	1	4	3	4	5	2	1

Proposition (larrobino, _

The sequence H = (1, 4, 3, 4, 5, 2, 1) does not occur as the Hilbert function of a GA algebra.

Museu de Arte Contemporânea de Serralves, Álvaro Siza Vieira, 1997 Fotografia: Nelson Alexandre Rocha, Serralves minimalista #5, 2007