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2..2d TFT with boundaries / defects leads to modules / bimodules and thus relates

to representation theory.
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Topic of this talk: 3d extended TFT relates to categorified representation theory



3d extended TFET

Generalization of definition:
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Evaluation of the bifunctor tft;
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2 d TET with defects

2d TFT with boundaries / defects leads to modules /
bimodules and thus relates to representation theory.
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Topic of this talk: 3d extended TFT relates to categorified representation theory:

module categories and bimodule categories over fusion categories



Extended 3d TETs with boundaries and defects
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Application 1: Quantum codes from twist defects

— 2"_"' surface = Hkg (2:'> guantum code (G‘: %li toric code >

— Representation of braid group gives quantum gates

Problems: — low genus of )j —> small codes

— simple systems —> Nno universal gates

Idea: Bilayer systems € 18 € and twist defects create branch cuts

(cf. permutation orbifolds)




Application of defects: relative field theories

A relative field theory is a (d-1)-dimensional theory on the boundary or
on a codimension one defect in a d-dimensional theory.

Important case: d-dimensional theory is a topological field theory
Situation 1:

d-dimensional theory is "invertible" TFT ~yanomalous theory in (d-1) dimensions

Situation 2:
d=3, TFT of Reshetikhin-Turaev type ~»TFT construction of 2d RCFT correlators

category of chiral symmetries
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1. TET of Turaev-Viro type

Input: (spherical) fusion category &

3d TFT, e.g. by state sum construction
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Defects and boundaries in Dijkgraaf-Witten theories

ldea: keep the same 2-step procedure, but allow for more general "bundles" as field configurations
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Given relative manifold % . M =Y and group homomorphism 4 = H—=> G
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Additional datum: twisted linearization
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Module cateqories from DW theories

Example: Interval
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This "explains" a representation theoretic result:
classification of module categories, cf. [Ostrik]



3. A construction in representation theory [ENOM]

& fusion category , X a A - bimodule category

Given (a/c> e 2(A) , C-linearfunctors
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4. General remark: invertible topological defects and symmetries

Topological defects: Correlators do not change under small deformations of the defect
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Symmetries from invertible topological defects (2d RCFT [FFRS '04])
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5. Symmetries in 3d extended TFETs from defects

Symmetries €=> invertible topological defects

For 3d TFT:

Symmetries for f:g,{:e with € = 2(3\\ are invertible SA -bimodule categories

Bicategory ("categorical 2-group") B{-' ?LC (A) , the Brauer-Picard group

o Explicitly computable for DW theories:
Important tool: Transmission functor
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6. A case study: symmetries for abelian DW-theories theories

Special case: : G = A abelian , w=

Br¥ic (A-wd) = O, (Ao A*)
with 0\Q 9 X) :X(a\

guadratic form

Obvious symmetries:
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3) Partial e-m dualities:

Example: A cyclic, fix §: A A*

Braided equivalence:
Ao A" — AB A
) = (SR 89)

Subgroup: A < ABA
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Theorem [FPSV]

These symmetries form a set of generators
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7. Conclusions

Topological defects are important structures in guantum field theories

- Construction of relative field theories on defects and boundaries
- Applications to topological phases of matter

- Relation to (categorified) representation theory:
(bi)module categories over monoidal categories

- Defects describe symmetries and dualities

- Symmetry groups as Brauer-Picard groups



