Min-max methods in Geometry

André Neves

Imperial College London

Outline

- 1 Min-max theory overview
- 2 Applications in Geometry
- 3 Some new progress

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

Key Idea (M. Morse): Topology of Z forces F to have certain critical points.

• X^k a topological space with dimension k and $\Phi: X^k \to \mathcal{Z}$ continuous;

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

Key Idea (M. Morse): Topology of Z forces F to have certain critical points.

• X^k a topological space with dimension k and $\Phi: X^k \to \mathcal{Z}$ continuous;

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

Key Idea (M. Morse): Topology of Z forces F to have certain critical points.

• X^k a topological space with dimension k and $\Phi: X^k \to \mathcal{Z}$ continuous;

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

- X^k a topological space with dimension k and $\Phi: X^k \to \mathcal{Z}$ continuous;
- $[\Phi] = \{ all \ \Psi \text{ homotopic to } \Phi \text{ relative to } \partial X^k \};$

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

- X^k a topological space with dimension k and $\Phi: X^k \to \mathcal{Z}$ continuous;
- $[\Phi] = \{ all \ \Psi \text{ homotopic to } \Phi \text{ relative to } \partial X^k \};$
- $L([\Phi]) = \inf_{\Psi \in [\Phi]} \max_{x \in X^k} F(\Psi(x));$

Consider a space \mathcal{Z} and a functional $F : \mathcal{Z} \to [0, \infty]$. How to find critical points for F?

- X^k a topological space with dimension k and $\Phi: X^k \to \mathcal{Z}$ continuous;
- $[\Phi] = \{ all \ \Psi \text{ homotopic to } \Phi \text{ relative to } \partial X^k \};$
- $L([\Phi]) = \inf_{\Psi \in [\Phi]} \max_{x \in X^k} F(\Psi(x));$
- L([Φ]) = F(z₀) for some critical point z₀ ∈ Z of Morse index at most k.

 (M^n,g) closed compact Riemannian *n*-manifold, $3 \le n \le 7$. The space

- Z_{n-1}(M) = "{all compact oriented hypersurfaces in M}";
- *Z*_{n-1}(*M*; ℤ₂) = "{all compact hypersurfaces in *M*}";

 (M^n, g) closed compact Riemannian *n*-manifold, $3 \le n \le 7$. The space

- Z_{n-1}(M) = "{all compact oriented hypersurfaces in M}";
- *Z*_{n-1}(*M*; ℤ₂) = "{all compact hypersurfaces in *M*}";

The function

- $F: \mathcal{Z}_{n-1}(M) \rightarrow [0, +\infty], \quad F(\Sigma) = \textit{vol}(\Sigma);$
- The critical points are called minimal hypersurfaces.

 (M^n, g) closed compact Riemannian *n*-manifold, $3 \le n \le 7$. The space

- Z_{n-1}(M) = "{all compact oriented hypersurfaces in M}";
- *Z*_{n-1}(*M*; ℤ₂) = "{all compact hypersurfaces in *M*}";

The function

- $F: \mathcal{Z}_{n-1}(M) \rightarrow [0, +\infty], \quad F(\Sigma) = \textit{vol}(\Sigma);$
- The critical points are called minimal hypersurfaces.

Almgren–Pitts Min-max Theorem

If the map $\Phi: X^k \to \mathcal{Z}_{n-1}(M)$ is nontrivial then there is an embedded minimal hypersurface Σ (with multiplicities) so that

$$\mathsf{L}([\Phi]) = \mathit{vol}(\Sigma).$$

Conjecture: Σ has index less or equal than *k*.

The sweepout

Theorem (Almgren, '62)

There is $\Phi_1 : S^1 \to \mathcal{Z}_{n-1}(M)$ so that $[\Phi_1]$ is non-trivial.

The sweepout

Theorem (Almgren, '62)

There is $\Phi_1 : S^1 \to \mathcal{Z}_{n-1}(M)$ so that $[\Phi_1]$ is non-trivial.

- $f: M \rightarrow [0, 1]$ Morse function;
- $\Phi_1: [0,1] \to \mathcal{Z}_{n-1}(M), \quad \Phi_1(t) = f^{-1}(t).$

The sweepout - Applications

(Poincaré, 1905) Does every 2-sphere (S^2, g) admit a closed geodesic?

• Foundational question in Geometry, Topology, and Dynamical Systems.

The sweepout - Applications

(Poincaré, 1905) Does every 2-sphere (S^2, g) admit a closed geodesic?

• Foundational question in Geometry, Topology, and Dynamical Systems.

Application 1 (Birkhoff, '17)

Every (S^2, g) admits a closed geodesic because $\Pi_1(\mathcal{Z}_1(S^2)) \neq 0$.

The sweepout - Applications

(Poincaré, 1905) Does every 2-sphere (S^2, g) admit a closed geodesic?

• Foundational question in Geometry, Topology, and Dynamical Systems.

Application 1 (Birkhoff, '17)

Every (S^2, g) admits a closed geodesic because $\Pi_1(\mathcal{Z}_1(S^2)) \neq 0$.

Application 2 (Pitts '81, Schoen-Simon '81)

Every (M^n, g) admits an embedded minimal hypersurface.

The multi-parameter sweepout

(Almgren, 60's) $\mathcal{Z}_{n-1}(M; \mathbb{Z}_2)$ is weakly homotopic to \mathbb{RP}^{∞} .

Thus, for every $k \in \mathbb{N}$, there is $\Phi_k : \mathbb{RP}^k \to \mathcal{Z}_{n-1}(M; \mathbb{Z}_2)$ which is homotopically non-trivial.

The multi-parameter sweepout

(Almgren, 60's) $\mathcal{Z}_{n-1}(M; \mathbb{Z}_2)$ is weakly homotopic to \mathbb{RP}^{∞} .

Thus, for every $k \in \mathbb{N}$, there is $\Phi_k : \mathbb{RP}^k \to \mathcal{Z}_{n-1}(M; \mathbb{Z}_2)$ which is homotopically non-trivial.

• The k-width of M is

$$\omega_k(M) := L([\Phi_k]) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x)), \quad k \in \mathbb{N}.$$

Compare with *k*-th eigenvalue

$$\lambda_k(M) = \inf_{\{(k+1) \text{ plane } P \subset W^{1,2}\}} \sup_{f \in P - \{0\}} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

The multi-parameter sweepout

(Almgren, 60's) $\mathcal{Z}_{n-1}(M; \mathbb{Z}_2)$ is weakly homotopic to \mathbb{RP}^{∞} .

Thus, for every $k \in \mathbb{N}$, there is $\Phi_k : \mathbb{RP}^k \to \mathcal{Z}_{n-1}(M; \mathbb{Z}_2)$ which is homotopically non-trivial.

• The *k*-width of *M* is

$$\omega_k(M) := L([\Phi_k]) = \inf_{\{\Phi \in [\Phi_k]\}} \sup_{x \in \mathbb{RP}^k} vol(\Phi(x)), \quad k \in \mathbb{N}.$$

Compare with k-th eigenvalue

$$\lambda_k(M) = \inf_{\{(k+1) \text{ plane } P \subset W^{1,2}\}} \sup_{f \in P - \{0\}} \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

Theorem (Gromov, 70's, Guth, 07') $\omega_k(M)$ grows like $k^{1/n}$ as k tends to infinity.

The multi-parameter sweepout - Applications

(Franks, '92, Bangert, '93) Every (S^2, g) admits an infinite number of closed geodesics.

The multi-parameter sweepout - Applications

(Franks, '92, Bangert, '93) Every (S^2, g) admits an infinite number of closed geodesics.

(Yau Conjecture, '82) Every compact 3-manifold (M, g) admits an infinite number of distinct minimal surfaces.

• (Khan–Markovic, '11) Compact hyperbolic 3-manifolds have an infinite number of minimal immersed surfaces.

The multi-parameter sweepout - Applications

(Franks, '92, Bangert, '93) Every (S^2, g) admits an infinite number of closed geodesics.

(Yau Conjecture, '82) Every compact 3-manifold (M, g) admits an infinite number of distinct minimal surfaces.

• (Khan–Markovic, '11) Compact hyperbolic 3-manifolds have an infinite number of minimal immersed surfaces.

Application (Marques-N., 2013)

Assume (M^n, g) compact manifold with positive Ricci curvature. Then M admits an infinite number of distinct embedded minimal hypersurfaces.

 These minimal hypersurfaces are obtained by finding minimal hypersurface Σ_k such that ω_k(M) = vol(Σ_k).

The key issue is to show that they are geometrically distinct because $k\Sigma$ is also a critical point for volume functional for all $k \in \mathbb{N}$.

Canonical family for surfaces in $\mathcal{Z}_2(S^3)$

• Every $v \in B^4$ gives a conformal dilation F_v of S^3 centered at $\{\frac{v}{|v|}, -\frac{v}{|v|}\}$.

Canonical family for surfaces in $\mathcal{Z}_2(S^3)$

- Every v ∈ B⁴ gives a conformal dilation F_v of S³ centered at { v/|v|, -v/|v| }.
- Given Σ embedded surface in S³ consider

 $\mathcal{C}: B^4 \times [-\pi,\pi] \to \mathcal{Z}_2(S^3), \quad \mathcal{C}(v,t) = \text{"surface" at distance } t \text{ from } F_v(\Sigma).$

Canonical family for surfaces in $\mathcal{Z}_2(S^3)$

- Every v ∈ B⁴ gives a conformal dilation F_v of S³ centered at { v/|v|, -v/|v| }.
- Given Σ embedded surface in S³ consider

 $\mathcal{C}: B^4 \times [-\pi,\pi] \to \mathcal{Z}_2(S^3), \quad \mathcal{C}(v,t) = \text{"surface" at distance } t \text{ from } F_v(\Sigma).$

 C maps the boundary of B⁴ × [−π, π] into R = {round spheres in S³}. Thus [C] lies in Π₅(Z₂(S³), R).

Theorem (Marques-N., '12)

If Σ has **positive genus** then C cannot be deformed into the space of all round spheres, i.e., $[C] \neq 0$ in $\Pi_5(\mathcal{Z}_2(S^3), \mathcal{R})$.

What is the best immersion of a surface in space?

What is the best immersion of a surface in space?

Pick the one that minimizes the bending energy (known as Willmore energy)

$$W(\Sigma) := \int_{\Sigma} \left(\frac{k_1 + k_2}{2} \right)^2 dx,$$

where k_1, k_2 are the principal curvatures of Σ

• The bending energy is invariant under conformal transformations, a larger group than the set of isometries.

What is the best immersion of a surface in space?

Pick the one that minimizes the bending energy (known as Willmore energy)

$$W(\Sigma) := \int_{\Sigma} \left(\frac{k_1 + k_2}{2} \right)^2 dx,$$

where k_1, k_2 are the principal curvatures of Σ

• The bending energy is invariant under conformal transformations, a larger group than the set of isometries.

(Willmore, '65) Every compact surface Σ has $W(\Sigma) \ge 4\pi$ with equality only for round spheres.

Canonical family for surfaces - Applications (Willmore, '65) What is the least bended torus in space?

Canonical family for surfaces - Applications (Willmore, '65) What is the least bended torus in space?

(Willmore, '65) What is the least bended torus in space?

Willmore Conjecture, '65

Every torus Σ in space has $W(\Sigma) \ge 2\pi^2$ with equality only for conformal images of that optimal torus.

(Willmore, '65) What is the least bended torus in space?

Willmore Conjecture, '65

Every torus Σ in space has $W(\Sigma) \ge 2\pi^2$ with equality only for conformal images of that optimal torus.

Application 1 (Marques-N., '12)

The Willmore conjecture holds.

Observed in Biophysics by Bensimon and Mutz in 1992.

(Urbano, '90) Minimal surfaces in S^3 with Morse index ≤ 5 are either equators (index 1 and area 4π) or Clifford tori (index 5 and area $2\pi^2$).

• $\mathcal{R} = \{ \text{round spheres in } S^3 \};$

- $\mathcal{R} = \{ \text{round spheres in } S^3 \};$
- Given a torus Σ consider the canonical family C.

- $\mathcal{R} = \{ \text{round spheres in } S^3 \};$
- Given a torus Σ consider the canonical family C.

- $\mathcal{R} = \{ \text{round spheres in } S^3 \};$
- Given a torus Σ consider the canonical family C.

- $\mathcal{R} = \{ \text{round spheres in } S^3 \};$
- Given a torus Σ consider the canonical family C. Because C cannot be homotoped into R we have 2π² ≤ sup_x area(C(x))

- $\mathcal{R} = \{ \text{round spheres in } S^3 \};$
- Given a torus Σ consider the canonical family C. Because C cannot be homotoped into R we have 2π² ≤ sup_x area(C(x))
- C is such that $\sup_x area(C(x)) \le W(\Sigma) =$ Willmore energy of Σ and thus

$$2\pi^2 \leq \sup_x area(\mathcal{C}(x)) \leq W(\Sigma)$$

"The behavior of a charged loop of strings is a traditional subject for tea-time speculation." (Freedman–He–Wang, '94)

"The behavior of a charged loop of strings is a traditional subject for tea-time speculation." (Freedman–He–Wang, '94)

To every link in space (γ_1, γ_2) , one can associate a Möbius cross energy $E(\gamma_1, \gamma_2)$ that is also conformally invariant.

"The behavior of a charged loop of strings is a traditional subject for tea-time speculation." (Freedman–He–Wang, '94)

To every link in space (γ_1, γ_2) , one can associate a Möbius cross energy $E(\gamma_1, \gamma_2)$ that is also conformally invariant.

Freedman-He-Wang Conjecture, '94

Every non-trivial linked curves γ_1, γ_2 have $E(\gamma_1, \gamma_2) \ge 2\pi^2$ with equality achieved only by conformal transformations of the Hopf-link.

Application 2 (Agol–Marques–N., '12)

The conjecture holds.

"The behavior of a charged loop of strings is a traditional subject for tea-time speculation." (Freedman–He–Wang, '94)

To every link in space (γ_1, γ_2) , one can associate a Möbius cross energy $E(\gamma_1, \gamma_2)$ that is also conformally invariant.

Freedman-He-Wang Conjecture, '94

Every non-trivial linked curves γ_1, γ_2 have $E(\gamma_1, \gamma_2) \ge 2\pi^2$ with equality achieved only by conformal transformations of the Hopf-link.

Application 2 (Agol–Marques–N., '12)

The conjecture holds.

New Progress

Unfortunately, Almgren-Pitts Theory does not provide index estimates.

New Progress

Unfortunately, Almgren-Pitts Theory does not provide index estimates.

Theorem A (Marques-N.)

Assume that every embedded hypersurfaces in M is orientable.

Let $\Phi : S^1 \to \mathcal{Z}_{n-1}(M)$ be a sweepout. For a generic set of metrics, there is minimal embedded hypersurface Σ such that

 $L([\Phi]) = vol(\Sigma)$ and $index(\Sigma) = 1$.

New Progress

Unfortunately, Almgren-Pitts Theory does not provide index estimates.

Theorem A (Marques-N.)

Assume that every embedded hypersurfaces in M is orientable.

Let $\Phi : S^1 \to \mathcal{Z}_{n-1}(M)$ be a sweepout. For a generic set of metrics, there is minimal embedded hypersurface Σ such that

 $L([\Phi]) = vol(\Sigma)$ and $index(\Sigma) = 1$.

Theorem B (Marques-N.)

Let $\Phi: X^k \to \mathcal{Z}_{n-1}(M)$ be nontrivial. There is a minimal embedded hypersurface Σ such that

 $L([\Phi]) = vol(\Sigma)$ and index (support $\Sigma) \le k$.

• If you classify low index minimal surfaces, then Min-max theory should give you global consequences.

- If you classify low index minimal surfaces, then Min-max theory should give you global consequences.
- For instance, if you classify
 - 1 minimal surfaces in S^3 with index \leq 9;
 - 2 minimal surfaces in S^4 with index ≤ 6 ;

- 1 Willmore conjecture for genus 2 surfaces;
- 2 Willmore conjecture in \mathbb{R}^4 ;

- If you classify low index minimal surfaces, then Min-max theory should give you global consequences.
- For instance, if you classify
 - 1 minimal surfaces in S^3 with index \leq 9;
 - 2 minimal surfaces in S^4 with index ≤ 6 ;

- 1 Willmore conjecture for genus 2 surfaces;
- 2 Willmore conjecture in \mathbb{R}^4 ;

- If you classify low index minimal surfaces, then Min-max theory should give you global consequences.
- For instance, if you classify
 - **1** minimal surfaces in S^3 with index \leq 9;
 - 2 minimal surfaces in S^4 with index ≤ 6 ;

- 1 Willmore conjecture for genus 2 surfaces;
- 2 Willmore conjecture in \mathbb{R}^4 ;
- Does every (S⁴, g) admits a minimal embedded hypersphere? Probably too hard... What about a minimal hypersurface Σ with b₁(Σ) ≤ 1?

- If you classify low index minimal surfaces, then Min-max theory should give you global consequences.
- For instance, if you classify
 - 1 minimal surfaces in S^3 with index \leq 9;
 - 2 minimal surfaces in S^4 with index ≤ 6 ;

- 1 Willmore conjecture for genus 2 surfaces;
- 2 Willmore conjecture in \mathbb{R}^4 ;
- Does every (S⁴, g) admits a minimal embedded hypersphere? Probably too hard... What about a minimal hypersurface Σ with b₁(Σ) ≤ 1?
- Does every (*S*⁴, *g*) admits an infinite number of minimal branched 2-spheres?

- Does every (S⁴, g) admits a minimal embedded hypersphere? Probably too hard... What about a minimal hypersurface Σ with b₁(Σ) ≤ 1?
- Does every (S^4, g) admits an infinite number of minimal branched 2-spheres?

- Does every (S⁴, g) admits a minimal embedded hypersphere? Probably too hard... What about a minimal hypersurface Σ with b₁(Σ) ≤ 1?
- Does every (S^4, g) admits an infinite number of minimal branched 2-spheres?

Is there any relation between the spectrum of (*M*, *g*) and the sequence of *k*-widths ω_k(*M*)?

- Is there any relation between the spectrum of (*M*, *g*) and the sequence of *k*-widths ω_k(*M*)?
- If ϕ_0, \ldots, ϕ_k are the first *k* eigenfunctions then

$$\omega_k(\mathbf{M}) \leq \sup_{\mathbf{a}_0,\ldots,\mathbf{a}_k \in \mathbb{R}} \operatorname{vol}\{\mathbf{a}_0\phi_0 + \ldots + \mathbf{a}_k\phi_k = \mathbf{0}\}.$$

Is the right side asymptotically sharp? If true would answer an old question of Yau regarding the size of nodal sets.

- Is there any relation between the spectrum of (*M*, *g*) and the sequence of *k*-widths ω_k(*M*)?
- If ϕ_0, \ldots, ϕ_k are the first *k* eigenfunctions then

$$\omega_k(\mathbf{M}) \leq \sup_{\mathbf{a}_0,\ldots,\mathbf{a}_k \in \mathbb{R}} \operatorname{vol}\{\mathbf{a}_0\phi_0 + \ldots + \mathbf{a}_k\phi_k = \mathbf{0}\}.$$

Is the right side asymptotically sharp? If true would answer an old question of Yau regarding the size of nodal sets.

• Does $\{\omega_k(M)\}_{k\in\mathbb{N}}$ satisfy a Weyl Law?

$$\lim_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n}}}=\alpha(n)(\operatorname{vol} M)^{\frac{n-1}{n}}.$$

- Is there any relation between the spectrum of (*M*, *g*) and the sequence of *k*-widths ω_k(*M*)?
- If ϕ_0, \ldots, ϕ_k are the first *k* eigenfunctions then

$$\omega_k(\mathbf{M}) \leq \sup_{\mathbf{a}_0,\ldots,\mathbf{a}_k \in \mathbb{R}} \operatorname{vol}\{\mathbf{a}_0\phi_0 + \ldots + \mathbf{a}_k\phi_k = \mathbf{0}\}.$$

Is the right side asymptotically sharp? If true would answer an old question of Yau regarding the size of nodal sets.

• Does $\{\omega_k(M)\}_{k\in\mathbb{N}}$ satisfy a Weyl Law?

$$\lim_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n}}}=\alpha(n)(\operatorname{vol} M)^{\frac{n-1}{n}}.$$

 We expect that for generic metrics ω_k(M) is attained by a multiplicity one minimal hypersurface Σ_k with index k. What can we say about Σ_k?

- Is there any relation between the spectrum of (*M*, *g*) and the sequence of *k*-widths ω_k(*M*)?
- If ϕ_0, \ldots, ϕ_k are the first *k* eigenfunctions then

$$\omega_k(\mathbf{M}) \leq \sup_{\mathbf{a}_0,\ldots,\mathbf{a}_k \in \mathbb{R}} \operatorname{vol}\{\mathbf{a}_0\phi_0 + \ldots + \mathbf{a}_k\phi_k = \mathbf{0}\}.$$

Is the right side asymptotically sharp? If true would answer an old question of Yau regarding the size of nodal sets.

• Does $\{\omega_k(M)\}_{k\in\mathbb{N}}$ satisfy a Weyl Law?

$$\lim_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n}}}=\alpha(n)(\operatorname{vol} M)^{\frac{n-1}{n}}.$$

 We expect that for generic metrics ω_k(M) is attained by a multiplicity one minimal hypersurface Σ_k with index k. What can we say about Σ_k?

We expect Σ_k to become evenly distributed and to have first Betti number proportional to *k*.