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Min-max Theory
Consider a space Z and a functional F : Z → [0,∞]. How to find critical
points for F?

Key Idea (M. Morse): Topology of Z forces F to have certain critical points.

• X k a topological space with dimension k and Φ : X k → Z continuous;
• [Φ] = {all Ψ homotopic to Φ relative to ∂X k};
• L([Φ]) = infΨ∈[Φ] maxx∈X k F (Ψ(x));
• L([Φ]) = F (z0) for some critical point z0 ∈ Z of Morse index at most k .
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Min-max Theory

(Mn,g) closed compact Riemannian n-manifold, 3 ≤ n ≤ 7.

The space
• Zn−1(M) = “{all compact oriented hypersurfaces in M}”;
• Zn−1(M;Z2) = “{all compact hypersurfaces in M}”;

The function
• F : Zn−1(M)→ [0,+∞], F (Σ) = vol(Σ);
• The critical points are called minimal hypersurfaces.

Almgren–Pitts Min-max Theorem
If the map Φ : X k → Zn−1(M) is nontrivial then there is an embedded minimal
hypersurface Σ (with multiplicities) so that

L([Φ]) = vol(Σ).

Conjecture: Σ has index less or equal than k .
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The sweepout

Theorem (Almgren, ’62)
There is Φ1 : S1 → Zn−1(M) so that [Φ1] is non-trivial.

• f : M → [0,1] Morse function;

• Φ1 : [0,1]→ Zn−1(M), Φ1(t) = f−1(t).
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The sweepout - Applications
(Poincaré, 1905) Does every 2-sphere (S2,g) admit a closed geodesic?

• Foundational question in Geometry, Topology, and Dynamical Systems.

Application 1 (Birkhoff, ’17)
Every (S2,g) admits a closed geodesic because Π1(Z1(S2)) 6= 0.

Application 2 (Pitts ’81, Schoen-Simon ’81)
Every (Mn,g) admits an embedded minimal hypersurface.
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The multi-parameter sweepout
(Almgren, 60’s) Zn−1(M;Z2) is weakly homotopic to RP∞.

Thus, for every k ∈ N, there is Φk : RPk → Zn−1(M;Z2) which is
homotopically non-trivial.

• The k -width of M is

ωk (M) := L([Φk ]) = inf
{Φ∈[Φk ]}

sup
x∈RPk

vol(Φ(x)), k ∈ N.

Compare with k -th eigenvalue

λk (M) = inf
{(k+1) plane P⊂W 1,2}

sup
f∈P−{0}

∫
M |∇f |2∫

M f 2 .

Theorem (Gromov, 70’s, Guth, 07’)
ωk (M) grows like k1/n as k tends to infinity.
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The multi-parameter sweepout - Applications
(Franks, ’92, Bangert, ’93) Every (S2,g) admits an infinite number of closed
geodesics.

(Yau Conjecture, ’82) Every compact 3-manifold (M,g) admits an infinite
number of distinct minimal surfaces.

• (Khan–Markovic, ’11) Compact hyperbolic 3-manifolds have an infinite
number of minimal immersed surfaces.

Application (Marques–N., 2013)
Assume (Mn,g) compact manifold with positive Ricci curvature.

Then M admits an infinite number of distinct embedded minimal
hypersurfaces.

• These minimal hypersurfaces are obtained by finding minimal
hypersurface Σk such that ωk (M) = vol(Σk ).

The key issue is to show that they are geometrically distinct because kΣ
is also a critical point for volume functional for all k ∈ N.
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Canonical family for surfaces in Z2(S3)

• Every v ∈ B4 gives a conformal dilation Fv of S3 centered at { v
|v | ,−

v
|v |}.

• Given Σ embedded surface in S3 consider

C : B4 × [−π, π]→ Z2(S3), C(v , t) = “surface” at distance t from Fv (Σ).

• C maps the boundary of B4 × [−π, π] into R = {round spheres in S3}.
Thus [C] lies in Π5(Z2(S3),R).

Theorem (Marques-N., ’12)
If Σ has positive genus then C cannot be deformed into the space of all
round spheres, i.e., [C] 6= 0 in Π5(Z2(S3),R).
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Canonical family for surfaces - Applications
What is the best immersion of a surface in space?

Pick the one that minimizes the bending energy (known as Willmore energy)

W (Σ) :=

∫
Σ

(
k1 + k2

2

)2

dx ,

where k1, k2 are the principal curvatures of Σ

• The bending energy is invariant under conformal transformations, a larger
group than the set of isometries.

(Willmore, ’65) Every compact surface Σ has W (Σ) ≥ 4π with equality only for
round spheres.
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Canonical family for surfaces - Applications
(Willmore, ’65) What is the least bended torus in space?

Willmore Conjecture, ’65
Every torus Σ in space has W (Σ) ≥ 2π2 with equality only for conformal
images of that optimal torus.

Application 1 (Marques-N., ’12)
The Willmore conjecture holds.

Observed in Biophysics by Bensimon and Mutz in 1992.
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Willmore Conjecture and Min-max theory
(Urbano, ’90) Minimal surfaces in S3 with Morse index ≤ 5 are either equators
(index 1 and area 4π) or Clifford tori (index 5 and area 2π2).

• R = {round spheres in S3};

• Given a torus Σ consider the canonical family C. Because C cannot be
homotoped into R we have 2π2 ≤ supx area(C(x))

• C is such that supx area(C(x)) ≤W (Σ) =Willmore energy of Σ and thus

2π2 ≤ sup
x

area(C(x)) ≤W (Σ)
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Canonical family for surfaces - Applications

“The behavior of a charged loop of strings is a traditional subject for tea-time
speculation.” (Freedman–He–Wang, ’94)

To every link in space (γ1, γ2), one can associate a Möbius cross energy
E(γ1, γ2) that is also conformally invariant.

Freedman–He–Wang Conjecture, ’94
Every non-trivial linked curves γ1, γ2 have E(γ1, γ2) ≥ 2π2 with equality
achieved only by conformal transformations of the Hopf-link.

Application 2 (Agol–Marques–N., ’12)
The conjecture holds.
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New Progress
Unfortunately, Almgren-Pitts Theory does not provide index estimates.

Theorem A (Marques-N.)
Assume that every embedded hypersurfaces in M is orientable.

Let Φ : S1 → Zn−1(M) be a sweepout. For a generic set of metrics, there is
minimal embedded hypersurface Σ such that

L([Φ]) = vol(Σ) and index (Σ) = 1.

Theorem B (Marques-N.)
Let Φ : X k → Zn−1(M) be nontrivial. There is a minimal embedded
hypersurface Σ such that

L([Φ]) = vol(Σ) and index (support Σ) ≤ k .



New Progress
Unfortunately, Almgren-Pitts Theory does not provide index estimates.

Theorem A (Marques-N.)
Assume that every embedded hypersurfaces in M is orientable.

Let Φ : S1 → Zn−1(M) be a sweepout. For a generic set of metrics, there is
minimal embedded hypersurface Σ such that

L([Φ]) = vol(Σ) and index (Σ) = 1.

Theorem B (Marques-N.)
Let Φ : X k → Zn−1(M) be nontrivial. There is a minimal embedded
hypersurface Σ such that

L([Φ]) = vol(Σ) and index (support Σ) ≤ k .



New Progress
Unfortunately, Almgren-Pitts Theory does not provide index estimates.

Theorem A (Marques-N.)
Assume that every embedded hypersurfaces in M is orientable.

Let Φ : S1 → Zn−1(M) be a sweepout. For a generic set of metrics, there is
minimal embedded hypersurface Σ such that

L([Φ]) = vol(Σ) and index (Σ) = 1.

Theorem B (Marques-N.)
Let Φ : X k → Zn−1(M) be nontrivial. There is a minimal embedded
hypersurface Σ such that

L([Φ]) = vol(Σ) and index (support Σ) ≤ k .



Some Questions

• If you classify low index minimal surfaces, then Min-max theory should
give you global consequences.

• For instance, if you classify
1 minimal surfaces in S3 with index ≤ 9;
2 minimal surfaces in S4 with index ≤ 6;

then you should prove
1 Willmore conjecture for genus 2 surfaces;
2 Willmore conjecture in R4;

• Does every (S4,g) admits a minimal embedded hypersphere? Probably
too hard... What about a minimal hypersurface Σ with b1(Σ) ≤ 1?

• Does every (S4,g) admits an infinite number of minimal branched
2-spheres?
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New Questions
• Is there any relation between the spectrum of (M,g) and the sequence of

k -widths ωk (M)?

• If φ0, . . . , φk are the first k eigenfunctions then

ωk (M) ≤ sup
a0,...,ak∈R

vol{a0φ0 + . . .+ akφk = 0}.

Is the right side asymptotically sharp? If true would answer an old
question of Yau regarding the size of nodal sets.

• Does {ωk (M)}k∈N satisfy a Weyl Law?

lim
k→∞

ωk (M)

k 1
n

= α(n)(vol M)
n−1

n .

• We expect that for generic metrics ωk (M) is attained by a multiplicity one
minimal hypersurface Σk with index k . What can we say about Σk ?

We expect Σk to become evenly distributed and to have first Betti number
proportional to k .



New Questions
• Is there any relation between the spectrum of (M,g) and the sequence of

k -widths ωk (M)?

• If φ0, . . . , φk are the first k eigenfunctions then

ωk (M) ≤ sup
a0,...,ak∈R

vol{a0φ0 + . . .+ akφk = 0}.

Is the right side asymptotically sharp? If true would answer an old
question of Yau regarding the size of nodal sets.

• Does {ωk (M)}k∈N satisfy a Weyl Law?

lim
k→∞

ωk (M)

k 1
n

= α(n)(vol M)
n−1

n .

• We expect that for generic metrics ωk (M) is attained by a multiplicity one
minimal hypersurface Σk with index k . What can we say about Σk ?

We expect Σk to become evenly distributed and to have first Betti number
proportional to k .



New Questions
• Is there any relation between the spectrum of (M,g) and the sequence of

k -widths ωk (M)?

• If φ0, . . . , φk are the first k eigenfunctions then

ωk (M) ≤ sup
a0,...,ak∈R

vol{a0φ0 + . . .+ akφk = 0}.

Is the right side asymptotically sharp? If true would answer an old
question of Yau regarding the size of nodal sets.

• Does {ωk (M)}k∈N satisfy a Weyl Law?

lim
k→∞

ωk (M)

k 1
n

= α(n)(vol M)
n−1

n .

• We expect that for generic metrics ωk (M) is attained by a multiplicity one
minimal hypersurface Σk with index k . What can we say about Σk ?

We expect Σk to become evenly distributed and to have first Betti number
proportional to k .



New Questions
• Is there any relation between the spectrum of (M,g) and the sequence of

k -widths ωk (M)?

• If φ0, . . . , φk are the first k eigenfunctions then

ωk (M) ≤ sup
a0,...,ak∈R

vol{a0φ0 + . . .+ akφk = 0}.

Is the right side asymptotically sharp? If true would answer an old
question of Yau regarding the size of nodal sets.

• Does {ωk (M)}k∈N satisfy a Weyl Law?

lim
k→∞

ωk (M)

k 1
n

= α(n)(vol M)
n−1

n .

• We expect that for generic metrics ωk (M) is attained by a multiplicity one
minimal hypersurface Σk with index k . What can we say about Σk ?

We expect Σk to become evenly distributed and to have first Betti number
proportional to k .



New Questions
• Is there any relation between the spectrum of (M,g) and the sequence of

k -widths ωk (M)?

• If φ0, . . . , φk are the first k eigenfunctions then

ωk (M) ≤ sup
a0,...,ak∈R

vol{a0φ0 + . . .+ akφk = 0}.

Is the right side asymptotically sharp? If true would answer an old
question of Yau regarding the size of nodal sets.

• Does {ωk (M)}k∈N satisfy a Weyl Law?

lim
k→∞

ωk (M)

k 1
n

= α(n)(vol M)
n−1

n .

• We expect that for generic metrics ωk (M) is attained by a multiplicity one
minimal hypersurface Σk with index k . What can we say about Σk ?

We expect Σk to become evenly distributed and to have first Betti number
proportional to k .


