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Key Idea (M. Morse): Topology of Z forces F to have certain critical points.

o X atopological space with dimension k and ¢ : XX — Z continuous;
e [¢] = {all ¥ homotopic to ¢ relative to 9X*};

o L([®]) = infyc[o) Maxyexx F (V(X));

e L([®]) = F(z) for some critical point zy € Z of Morse index at most k.
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(M", g) closed compact Riemannian n-manifold, 3 < n < 7.

The space
e Z, 1(M) = "{all compact oriented hypersurfaces in M}";
e Z, 1(M;Z,) = "{all compact hypersurfaces in M}";
The function
o F:Z,_1(M)—[0,+00], F(X)=wvol(X);
e The critical points are called minimal hypersurfaces.

Almgren—Pitts Min-max Theorem

If the map & : Xk — Z,_1(M) is nontrivial then there is an embedded minimal
hypersurface ¥ (with multiplicities) so that

L([¢]) = vol(%).

Conjecture: X has index less or equal than k.
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The sweepout
Theorem (Almgren, '62)
There is &1 : S' — Z, 1(M) so that [¢4] is non-trivial.

e f: M—[0,1] Morse function;

o &1 :[0,1] = Z,4(M), () =F(2).
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(Poincaré, 1905) Does every 2-sphere (S?, g) admit a closed geodesic?

e Foundational question in Geometry, Topology, and Dynamical Systems.

Application 1 (Birkhoff, ’17)
Every (S?, g) admits a closed geodesic because M4(21(S?)) # 0.

Application 2 (Pitts '81, Schoen-Simon ’81)
Every (M", g) admits an embedded minimal hypersurface.
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(Almgren, 60’s) Z,_1(M; Zy) is weakly homotopic to RP>.
Thus, for every k € N, there is dx : RPX — Z,_1(M; Z3) which is
homotopically non-trivial.

e The k-width of M is

wr(M) ;= L([®«]) = inf sup vol(®(x)), keN.

SE[O4]} yerpk

Compare with k-th eigenvalue

ik
(M) = inf sup v 2'
((k+1) plane w2y rep—oy Sy f

Theorem (Gromov, 70’s, Guth, 07°)
wk(M) grows like k'/" as k tends to infinity.
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The multi-parameter sweepout - Applications

(Franks, ‘92, Bangert, '93) Every (S?, g) admits an infinite number of closed
geodesics.

(Yau Conjecture, '82) Every compact 3-manifold (M, g) admits an infinite
number of distinct minimal surfaces.

e (Khan—-Markovic, '11) Compact hyperbolic 3-manifolds have an infinite
number of minimal immersed surfaces.

Application (Marques—N., 2013)
Assume (M", g) compact manifold with positive Ricci curvature.

Then M admits an infinite number of distinct embedded minimal
hypersurfaces.

e These minimal hypersurfaces are obtained by finding minimal
hypersurface X such that wx(M) = vol(XZk).

The key issue is to show that they are geometrically distinct because kX
is also a critical point for volume functional for all k € N.
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Canonical family for surfaces in Z5(S%)

* Every v € B* gives a conformal dilation F, of S° centered at {7, — 77 }-

e Given ¥ embedded surface in S® consider

C:B* x [-m, 7] — 22(S®), C(v,t) = “surface” at distance t from F,(X).
FV(E) B2 t<0
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e C maps the boundary of B* x [, 7] into R = {round spheres in S%}.
Thus [C] lies in M5(22(S®), R).

Theorem (Marques-N., '12)

If¥ has positive genus then C cannot be deformed into the space of all
round spheres, i.e., [C] # 0 in N5(22(S%), R).
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What is the best immersion of a surface in space?

N S &

Pick the one that minimizes the bending energy (known as Willmore energy)

W(E) ;:/Z<k“2rk2> dx,

where k1, ko are the principal curvatures of &

e The bending energy is invariant under conformal transformations, a larger
group than the set of isometries.

(Willmore, '65) Every compact surface © has W(X) > 4x with equality only for
round spheres.
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(Willmore, '65) What is the least bended torus in space?

Willmore Conjecture, ‘65

Every torus ¥. in space has W(X) > 22 with equality only for conformal
images of that optimal torus.

Application 1 (Marques-N., '12)

The Willmore conjecture holds.

Observed in Biophysics by Bensimon and Mutz in 1992.
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Willmore Conjecture and Min-max theory

(Urbano, '90) Minimal surfaces in S® with Morse index < 5 are either equators
(index 1 and area 4r) or Clifford tori (index 5 and area 27®).
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R = {round spheres in S%};

e Given a torus X consider the canonical family C. Because C cannot be
homotoped into R we have 272 < sup, area(C(x))

e C is such that sup, area(C(x)) < W(X) =Willmore energy of X and thus

272 < sup area(C(x)) < W(X)
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To every link in space (v1,72), one can associate a Mdbius cross energy
E(v1,72) that is also conformally invariant.

Freedman—He—Wang Conjecture, ‘94

Every non-trivial linked curves 1,2 have E(vy,72) > 22 with equality
achieved only by conformal transformations of the Hopf-link.
Application 2 (Agol-Marques—N., '12)

The conjecture holds.
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New Progress
Unfortunately, Almgren-Pitts Theory does not provide index estimates.

Theorem A (Marques-N.)
Assume that every embedded hypersurfaces in M is orientable.

Letd : S' — Z,_1(M) be a sweepout. For a generic set of metrics, there is
minimal embedded hypersurface ¥ such that

L([®]) = vol(X) andindex(X) = 1.

Theorem B (Marques-N.)

Let® : Xk — Z,_1(M) be nontrivial. There is a minimal embedded
hypersurface ¥ such that

L([¢]) = vol(X) and index(supportx) < k.
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Some Questions

« Does every (S*, g) admits a minimal embedded hypersphere? Probably
too hard... What about a minimal hypersurface X with by(X) < 1?

« Does every (S*, g) admits an infinite number of minimal branched
2-spheres?
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New Questions

e Is there any relation between the spectrum of (M, g) and the sequence of
k-widths wy(M)?

o If o, ..., ¢k are the first k eigenfunctions then

wk(M) < sup VO/{ao¢o 4+ ...+ akpk = 0}.

Is the right side asymptotically sharp? If true would answer an old
question of Yau regarding the size of nodal sets.

e Does {wk(M)}en satisfy a Weyl Law?

jim “<(M)

n—1
1 "
k—oo  kn

= a(n)(vol M)

o We expect that for generic metrics wy(M) is attained by a multiplicity one
minimal hypersurface ¥, with index k. What can we say about X ,?

We expect L, to become evenly distributed and to have first Betti number
proportional to k.



