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Hitchin’s equation
Setting

X compact Riemann surface, π : E → X complex rank-2 vector
bundle

I Auxiliary data: g compatible Riemannian metric on X , h
hermitian metric on E

I Fixed determinant case: A0 fixed unitary connection on E ,
consider unitary connections of the form

A = A0 + α, α ∈ Ω1(su(E ))

and trace-free Higgs-field Φ ∈ Ω1,0(sl(E ))

I Hitchin’s equation

F⊥A + [Φ ∧ Φ∗] = 0, ∂̄AΦ = 0

where F⊥A is the trace-free part of the curvature



Hitchin’s equation
Basic question

Consider sequence (An,Φn) of solutions

I ‖Φn‖L2 ≤ C <∞: Uhlenbeck compactness =⇒ (An,Φn)
subconverges to solution (A∞,Φ∞)

I ‖Φn‖L2 →∞: (An,Φn) exiting end of the moduli space

Question

What is the degeneration behavior of a diverging sequence of
solutions?

Ultimate goals:

I Describe asymptotics of Hyperkahler metric

I Compute space of L2-harmonic forms



Limiting configurations
The limiting fiducial solution

Consider trivial rank-2 vector bundle over C and the Higgs field

Φ =

(
0 1
z 0

)
dz , =⇒ det Φ = −zdz2.

Goal: Find hermitian metric H∞ on C× such that

∂̄(H−1∞ ∂H∞) = 0, [Φ ∧ Φ∗H∞ ] = 0.

Ansatz: Rotationally symmetric

H∞ =

(
α(r) b(r)
b̄(r) β(r)

)
with α, β real valued, α > 0 and αβ − |b|2 = 1.



Limiting configurations
The (limiting) fiducial solution

Short Calculation =⇒

The unique solution is given by

H∞ =

(
r1/2 0

0 r−1/2

)
and the corresponding pair

Afid
∞ :=

1

8

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
, Φfid

∞ :=

(
0 r1/2

zr−1/2 0

)
dz

solves the decoupled equation

FA∞ = 0, [Φ∞ ∧ (Φ∞)∗] = 0, ∂̄A∞Φ∞ = 0

on C×.



Limiting configurations
Globally

Fix q ∈ H0(K 2
X ) with simple zeroes. Let X× = X \ q−1(0).

A limiting configuration associated with q is a pair (A∞,Φ∞) on
X× such that

I (A∞,Φ∞) solves

F⊥A∞ = 0, [Φ∞ ∧ Φ∗∞] = 0, ∂̄A∞Φ∞ = 0

I det Φ∞ = q

I (A∞,Φ∞) = (Afid
∞ ,Φ

fid
∞ ) near each p ∈ q−1(0)

after fixed choice of holomorphic coordinate and unitary frame.



Limiting configurations
Existence

Fix q ∈ H0(K 2
X ) with simple zeroes. Let X× = X \ q−1(0).

Theorem (MSWW)

For each pair (A,Φ) with ∂̄AΦ = 0 and det Φ = q there exists a
complex gauge transformation g∞ on X× such that (A,Φ)g∞ is a
limiting configuration.

Note: det Φ simple zeroes =⇒ (∂̄A,Φ) stable Higgs bundle

Proof:

I Normalize the Higgs field on X×

I Gauge away the curvature

Hitchin: Interpretation as parabolic Higgs bundles



Limiting configurations
Moduli space

Fix q ∈ H0(K 2
X ) with simple zeroes.

M∞(q) := space of limiting configurations associated with q

γ := genus of X

Theorem (MSWW)

M∞(q) is a torus of real dimension 6γ − 6.

Note: generic fiber of Hitchin fibration Prym variety associated
with q (= complex torus of dimension 3γ − 3)

Hitchin: direct identification of M∞(q) with Prym variety



Desingularization
The (desingularized) fiducial solution

Now look for nonsingular solutions of Hitchin’s equation

∂̄(H−1t ∂Ht) + t2[Φ ∧ Φ∗Ht ] = 0

on C for t <∞. Ht rotationally symmetric =⇒

Ht =

(
r1/2eht(r) 0

0 r−1/2e−ht(r)

)
where after substitution ht(r) = ψ(ρ) with ρ = 8

3 tr
3/2 and ψ

solves Painlevé type III equation

ψ′′ +
ψ′

ρ
=

1

2
sinh(2ψ).

=⇒ ∃! solution ht satisfying ht(r) + 1
2 log(r)→ 0 as r ↘ 0 and

ht(r)→ 0 as r ↗∞.



Desingularization
The (desingularized) fiducial solution

The corresponding pair

Afid
t = ft(r)

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
,

Φfid
t =

(
0 r1/2eht(r)

zr−1/2e−ht(r) 0

)
dz

where ft(r) = 1
8 + 1

4 r∂rht solves Hitchin’s equation

FAt + t2[Φt ∧ Φ∗t ] = 0, ∂̄At Φt = 0

on C (called the fiducial solution by Gaiotto, Moore and Neitzke).

Key properties:

I (Afid
t ,Φfid

t ) nonsingular on C
I (Afid

t ,Φfid
t )→ (Afid

∞ ,Φ
fid
t ) as t →∞ locally uniformly on C×

and exponentially fast in t.



Desingularization
Globally

Theorem (MSWW)

For each limiting configuration (A∞,Φ∞) there exists a family
(At ,Φt) of solutions to Hitchin’s equation

FAt + t2[Φt ∧ Φ∗t ] = 0, ∂̄At Φt = 0

such that (At ,Φt)→ (A∞,Φ∞) as t →∞ locally uniformly on
X× and exponentially fast in t.

Proof:

I glue Afid
t to A∞ using partition of unity to obtain approximate

solution

I deform into actual solution for large t



Work in progress

I multiple zeroes

I determination of asymptotics of Hyperkahler metric

gHK = gsf + O(e−δt)

where is gsf is the so-called semi-flat metric

I higher rank (touches thesis work of Laura Fredrickson)


