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Literature

- Fluid balls in “slow rotation” approximation in equilibrium (stationary
perturbations)

@ Hartle (1967): first and second order stationary and axisymmetric
perturbations of static perfect-fluid balls in vacuum.

@ More recent (analytic) works on models for compact objects in
equilibrium: Bradley et al. (2007), and more, and Cabezas et al. (2007),
Bldzquez-Salcedo et al. (2012), Cuchi et al. (2013), ...

Consistent/rigorous (*) matching perturbation theory :
first order Battye, Carter (1995) and Mukohyama (2000) (almost) and
second order Mars (2005) in full generality.

More literature on linearised perturbed matching: Cunningham, Price, Moncrief
(1978,79), Gerlach, Sengupta (1979); Martin-Garcia, Gundlach (2001); and
Brizuela et al. (2010) for higher orders

(*) Mars, Mena, Vera (2007)



The setting: Hartle’s model for rotating stars in GR

Static and spherically symmetric star

Global model of a (spher. symm.) non-rotating star

Asymptotically flat vacuum
(exterior): Schwarzschild

@ Egs. for a perfect fluid:
E(ry), P(ry)
+ Barotropic EOS

@ = given £(0) = E,, F and
P are integrated.

gy = = DA% 4 XD drd 42 (A6 + sin® fode?)
N Ly 2@y
Ny ={re=as}, iF=—e 7 O s
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The setting: Hartle’s model for rotating stars in GR

Static and spherically symmetric star

Match the + and — regions to obtain a global model of the star:
Because of [v] = [A\] = 0 (apart from [v/] = 0) the use of
go = —e’Mdt® + N dr? 4 r2(dh? + sin? Odp?)

for some r € (0, 00) is standard in many works. The functions in the
metric are said to be “continuous”.



The setting: Hartle’s model for rotating stars in GR

Static and spherically symmetric star

Match the + and — regions to obtain a global model of the star:
Because of [v] = [A\] = 0 (apart from [v/] = 0) the use of
go = —e’Mdt® + N dr? 4 r2(dh? + sin? Odp?)

for some r € (0, 00) is standard in many works. The functions in the
metric are said to be “continuous”.

However, extending such “continuity” to other settings, in general, can
lead to wrong conclusions. For instance, extending to a perturbative
scheme.

In particular, it does in Hartle’s perturbative setting.



The setting: Hartle’s model for rotating stars in GR

“Slow” rotation

Starting from the spherically symm. and static configuration
(background), stationary and axially symmetric perturbations are
introduced to describe “slow” rotation in equilibrium.

Quantities that arise as a consequence of rotation:

@ J: Angular momentum

@ A (in Hartle's notation): Proportional to the quadrupolar
moment and related to the ellipticity of the star

@ 0M: Change in mass of the rotating configuration, with
respect to the static one, needed to keep the central density
of the star E. unchanged.

In Hartle's model, these constants are calculated joining the fluid
and the vacuum regions assuming the “continuity of the
metric” in some system of coordinates used.




The setting: Hartle’s model for rotating stars in GR

“Slow” rotation

Starting from the spherically symm. and static configuration
(background), stationary and axially symmetric perturbations are
introduced to describe “slow” rotation in equilibrium.

Quantities that arise as a consequence of rotation:

@ J: Angular momentum

@ A (in Hartle's notation): Proportional to the quadrupolar
moment and related to the ellipticity of the star

0M: Change in mass

@ Change in mass of the rotating configuration needed to keep
the central density of the star E. unchanged.

@ The assumed “continuity of the metric” in Hartle's model (in
those coordinates) is not valid to calculate this constant.

o M = ae MIm (a) + ‘% +4WGM3E(G)750(G)




The setting: Hartle’s model for rotating stars in GR

Excess of mass d M

Static star Rotating star
@ Integrate the equations @ Integrate the field equations for
(TOV) with a fixed central the perturbations with the same
energy density E, FE, that in the static case.
@ The mass M is determined @ The star has a mass M plus a

contribution of the second order
rotational perturbations

e

M+ oM



The setting: Hartle’s model for rotating stars in GR

Perturbative setting: Remarks

Explicit assumptions

@ Barotropic equation of state.
@ Stationary model.

@ Axial and equatorial symmetry.
@ Rigid rotation.

Implicit assumptions

@ Absence of convective motions.

@ Explicit global coordinates in which the metric is at least
.




Hartle’s model

Stationary and axially symmetric spacetime: § and 177,
Matter content of the interior: . B, P, fluid flow .
Exterior: vacuum

@ Perturbation parameter ) defined as @ oc £ + Qif (rigid. rot.)

In Hartle’'s model the second order metric is:

2m(r, 0
ds? = — e’ (1 + 2h(r, 0))dt> + X (1 4 2mr, )> dr?
;

+ 72 (1 + 2k(r,0)) (d6? + sin® 8(dyp — w(r,0)dt)?) ,|r € (0,00)

@ Background functions: v(r), A(r).
@ 1st order: w(r,f). Regular origin + asymp. flatness = w(r).
@ 2nd order: h(r,0),m(r,0),k(r,0) (at least C°)

e Surface of the star determined by: r = a+£(a, 0

), Where
P(r+&(r,0),0) = P(r), so that P(a+ &(a,0),0) =



Hartle’s model: 2nd order (1)

Metric at second order: h(r,0), m(r,0) and k(r,0).
Using the decompositions h(r,6) = >, hi(r) Pi(cos 8), etc...
in Hartle's work it is argued that since
@ For [ > 2: homogeneous equations (no sources from w)
@ Equatorial symmetry (only even I's)

then

h(r,0) = ho(r) + ha(r)Py(cos )
m(r,0) = mo(r) + ma(r) Px(cos 6)
k(r,0) = ko(r) + ko(r)Pa(cos 9)
= &(r,0) = &o(r) + &(r) Pa(cos 0)




Hartle’s model: 2nd order (1)

Field equations for the interior and BCs provide:
! = 0 problem: change in mass:

Interior [ = 0 problem:

Hydrostatic equilibrium first integral - — hg = (...)&o + (rotation)?
@ 1st order inhomogeneous system of ODE's for mg and &g
@ BC: imposed at the origin on &, and mg to keep E. unchanged

@ = obtain the values &y(a) and mq(a)

Exterior AF vacuum [ = 0 problem:

= mg() =M -%,  hy(r) = by (6M - %)

for some constant d M.




Hartle’s model: 2nd order (1)

Field equations for the interior and BCs provide:
! = 0 problem: change in mass:

Interior [ = 0 problem:

Hydrostatic equilibrium first integral - — hg = (...)&o + (rotation)?

@ 1st order inhomogeneous system of ODE's for mg and &g
@ BC: imposed at the origin on &, and mg to keep E. unchanged

@ = obtain the values &y(a) and mq(a)

Exterior AF vacuum [ = 0 problem:

= mg() =M -%,  hy(r) = by (6M - %)

for some constant d M.

Matching:

2

Continuity of mg at r =a = SM = mg(a) + (%S




Hartle’s model: 2nd order (1)

Field equations for the interior and BCs provide
! = 2 problem: Shape
@ Hydrostatic equilibrium first integral
0 = ha + (...)& + (rotation)?
@ Algebraic equation for my
@ 1st order inhomogeneous system of ODE's for hsy and ko

@ BC: regularity at the origin for both hs, ko
and hg, ko — 0 at infinity (AF)

@ Matching: Continuity for hy and kg at r = a.
o = &a(a, M, b, Q,w) = € = —3&3(a)/2a




Reuvisiting Hartle's model

Explicit assumptions

Barotropic equation of state
Stationary model

Axial and equatorial symmetry
Rigid rotation

Implicit assumptions
@ Absence of convective motions.

@ Explicit global coordinates in which the metric is, at least, C°.

Our work: global aim and (one) result

@ Put the model on firm grounds (given a consistent theory of
perturbed matchings to second order)




Reuvisiting Hartle's model

Explicit assumptions

Barotropic equation of state
Stationary model

Axial and equatorial symmetry
Rigid rotation

Implicit assumptions
@ Absence of convective motions.

@ Explicit global coordinates in which the metric is, at least, C°.

Our work: global aim and (one) result

@ Put the model on firm grounds (given a consistent theory of
perturbed matchings to second order)

@ Result: that assumption is not consistent: [mg] # 0 in general.
In fact, the resulting expression for the change in mass d M
computed is not correct.
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YT =XT(=1).

(1)

B

Now perturb to first order the metrics by g, D+

and 9op -
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And how does ¥ get deformed? Do we get Z? (Z+?)



Perturbed matching conditions to second order
Aim

o (Ea Qab)
(V" 9a) . (V=UVT, gap)

+
+7gaﬁ)

Properly matched spacetimes (V‘,g;ﬁ) and (V“L,gzﬂ) across
YT =XT(=1).

Now perturb to first order the metrics by 985)_ and g((llgf

Which boundary conditions need to be imposed at points on ¥~
and X1 so that the matching conditions are satisfied in a linearised

sense?

And how does ¥ get deformed? Do we get Z? (Z+7?)

We are going to go to second order: gSB)*, ggg*,@i.



First and second order perturbations

Perturbation theory:

Y -

V.

Vo

@ One parameter family of spacetimes (V-, §.), with diffeomorphically
identified points, through . : Vy — V..

@ Background chosen at ¢ = 0: (Vy, g), with g = go



First and second order perturbations

Perturbation theory:

Y -

V.

Vo

@ One parameter family of spacetimes (V-, §.), with diffeomorphically
identified points, through . : Vy — V..

@ Background chosen at ¢ = 0: (Vy, g), with g = go
@ Define the family of tensors g. on Vy by g. = ¥*(g-)



First and second order perturbations

Perturbation theory:

Y -

V.

Vo

Family of tensors g. on (Vy, g) such that g = g
Metric perturbations: symmetric tensors defined on (Vy, g)

dg. 0%g.
= g (: g(l))a K2 =

0z |._, 0e?

K

e=0



First and second order perturbations

Perturbation theory: is the study of tensor fields K; and K3 satisfying
certain field equations on a fixed background (V, g).

The field equations for K and K5 come from imposing that g. satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: R,z(g) = 0.

ORaslge)|  _ ong TRasled|  _

We need to impose 9 Y D2 o



First and second order perturbations

Perturbation theory: is the study of tensor fields K; and K3 satisfying
certain field equations on a fixed background (V, g).

The field equations for K and K5 come from imposing that g. satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: R,z(g) = 0.
8Ra/3(95) azRaﬁ(ga) 0

e e=0 " 0e? e=0

Relation between Riemann tensors of two arbitrary metrics go and g.:

RS 5(9:) = Rw(go)mvo Csig +2C5,Chlg

We need to impose

where C%5 = $9%*(V%9py + V99epp — V9-v8)



First and second order perturbations

Perturbation theory: is the study of tensor fields K; and K3 satisfying
certain field equations on a fixed background (V, g).

The field equations for K and K5 come from imposing that g. satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: R,z(g) = 0.
8Ra/3(95) azRaﬁ(ga) 0

e e=0 " 0e? e=0

Relation between Riemann tensors of two arbitrary metrics go and g.:

R§ 5(9:) = Rﬁ'yé(gO) +2V{, G55 +2C5,CF)

We need to impose

ply~9]8°
where OS5 = 290m(VY 89y + V9o — Vigers)
OR, (95)
Tﬁg = 32V, VKl — V. VFK a5 — Vo VKL

=0



First and second order perturbations

Perturbation theory: is the study of tensor fields K; and K3 satisfying
certain field equations on a fixed background (V, g).

The field equations for K and K5 come from imposing that g. satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: R,z(g) = 0.

2
We need to impose M =0 and 3Ra752(ga) =0,
Os =0 Oe o

1st order vacuum field equation:

L(Kl) = %(QVMV(aK{LB) o vﬂvﬂKlaﬁ - vﬂvﬁKﬁL) =0



First and second order perturbations

Perturbation theory: is the study of tensor fields K; and K3 satisfying
certain field equations on a fixed background (V, g).

The field equations for K and K5 come from imposing that g. satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: R,z(g) = 0.

Woplge) | _ gpg PRl _g
Oe o 0c? o

1st order vacuum field equation:

L(Kl) = %(QVMV(QK{JB) — VMV”Kh]g — VQV[ijN) =0

We need to impose

2nd order vacuum field equation:
L(K3) 4+ quadratic terms in (K1,VK;) =0



First and second order perturbations

Perturbation theory: is the study of tensor fields K; and K3 satisfying
certain field equations on a fixed background (V, g).

The field equations for K and K5 come from imposing that g. satisfy
the same field equations as the background.

Linearised vacuum field equations:
Background: R,z(g) = 0.

2
We need to impose 81%&7/3@5) =0 and 3Ra752(95) =0,
Os =0 Oe o

1st order vacuum field equation:

L(K1) = 52V, VoKl = Vi V' Kias — VaVKY,) =0

1n
2nd order vacuum field equation:
L(K3) 4+ quadratic terms in (K1,VK;) =0

Non-vacuum 7,3 # 0, then 0 is substituted by the appropriate
perturbations of the matter fields, using T, 5(c).
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First and second order perturbations

Perturbation theory: inherent gauge freedom
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different gauge: say /(") (Vs o)

This defines a e-parameter

diffeomorphism: Qgh) Vo — Vo ~.
Recall g. = ¥*(g.). .
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First and second order perturbations

Perturbation theory: inherent gauge freedom

Taking a different ¢) means a
different gauge: say /(") (Vs o)

This defines a e-parameter

diffeomorphism: Qgh) Vo — Vo ~.
Recall g. = ¥*(g.). .

Since l;‘")gh) =1, 0 ng,

the new family of tensors is given by : Vo, 9)

h) s A h) «
g™ = Mgy = o= (g.)

Define: 51 = ngf g2 = %a(ﬂ%;ﬂzl) olo + V3,51, then
KM =K + Lz g (Bruni et al. (1997))

E§ g = Koag + L3,9as + 2L5, Koag + —25%'s¥ Raypy + 2Vast Vsi,




Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

3 »t

(V71945 (V+59;—5)




Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

(Vihgaﬁ (V+ag:5)

1. Gluing: identify boundaries through ®_ o ®~*: Tt=%"(=Y)
embeddings: @4 : ¥ — NF(¢% = 29 = &G (£9))



Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

1. Gluing: identify boundaries through ®_ o ®~*: Tt=%"(=Y)

embeddings: @4 : ¥ — NF(¢% = 29 = &G (£9))
2. First fundamental forms: q;tb = @*igfﬁ
Push-forwards: d®(0¢a) = %&ca = € = €4% Oz,
Unit normals: n(e,) =0

First fundamental forms: qu;, = €,%€,° gap((£%))



Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

D (E7Qab) E"’

1. Gluing: identify boundaries through ®, o ®~': Tt=%"(=Y)

embeddlngs Oy Y = BE(E = 1Y = 0Y(€Y))
2. First fundamental forms: ¢~ = @*igaﬁ
Push-forwards: d®(d¢a) = %‘?a Opa = 4 = €4"Opa,
Unit normals: n(e,) =0

First fundamental forms: q., = e.®ep” gas(x®(£7))

There 3 a C° metric g on V=~ UVt with gly+ = g% iff ¢/, = ¢,
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Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

(Ea Qab)

(V_vg;ﬁ)

(V_ U V+7 gaﬁ)

+
V+7 gaﬁ)

1. Gluing: identify boundaries through ®, o ®~': Tt=%"(=Y)
embeddings: @4 : ¥ — NF(¢% = 29 = &G (£9))
2. Preliminary junction conditions: qab =G = Gab

3. Second fundamental forms: +3, = &% Ving
The distributional Riemann tensor of g contains no Dirac § part with
support on X iff k1, = Kk,



Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

(Ea Qab)

(V_vg;ﬁ)

(V_ U V+7 gaﬁ)

+
V+7 gaﬁ)

1. Gluing: identify boundaries through ®_ o ®~*: Tt=%"(=Y)
embeddings: @4 : ¥ — NF(¢% = 29 = &G (£9))
2. Preliminary junction conditions: 4l = a0 = dab

. e . + - _
3. Second matching conditions: Ky = Koy = Kab



Standard (Darmois) matching conditions

We are given two spacetimes with (no null) boundary:

(Ea Qab)

(V_vg;,B)

(V_ U V+7 gaﬁ)

+
V+7 gaﬁ)

1. Gluing: identify boundaries through ®_ o ®~*: Tt=%"(=Y)

embeddings: @4 : ¥ — NF(¢% = 29 = &G (£9))
2. Preliminary junction conditions: 4l = a0 = dab
3. Second matching conditions: Kl =Ko, = Kab

For two families (V=,9-,%2) and (V, g5, XF) we get a family of diff.

1>
related ¥, (= diff. related to X), and the corresponding ¢, ¢=, kT

and x_, and matching equations ¢ = q_, kT = K




Take a matched background configuration:
(Vi gd) matched to (Vy , gy ) accross $¢ = 55 = X:



Take a matched background configuration:
(Vi gd) matched to (Vy , gy ) accross $¢ = 55 = X:

The linearised matching conditions are just -0 =0 = 0-q |-=0
O-kt |e=0 = 0=k |e=0




Take a matched background configuration:
(Vi gd) matched to (Vy , gy ) accross $¢ = 55 = X:

The linearised matching conditions are just -0 =0 = 0-q |-=0
O-kt |e=0 = 0=k |e=0




Take a matched background configuration:
(Vi gd) matched to (Vy , gy ) accross $¢ = 55 = X:

And, to second order ngjlazo = 6§2q;|5:0
asﬁg_|5=0 = 85H5_|€=0




Standard (Darmois) matching conditions

Take a matched background configuration:
(Vi gd) matched to (Vy , gy ) accross $¢ = 55 = X:

We want to write these equations in terms of Ki|s+ (and K|y ) and
background objects only. Recall these will be equations in Y.

How to construct the tensors ¢. and x.:



For £: take V. as a submanifold with
boundary X. in a larger W..




First and second order deformations of hypersurfaces

For +: take V. as a submanifold with
boundary Y. in a larger W-.

Each . projects down via ¢ to Wy.
This defines a e-family

of hypersurfaces ¥. on Wy:

5= N2

(Wo, 9)
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First and second order deformations of hypersurfaces

For +: take V. as a submanifold with
boundary Y. in a larger W-.

Each . projects down via ¢ to Wy.
This defines a e-family
of hypersurfaces ¥. on Wy:

5= N2

Not enough for ¢ derivatives:
how does p maps onto X.7

Need a prescription on how p is
mapped through X.:
hypersurface gauge freedom.

The composition of ©)=* o ¢ provides, for any p € ¥ a path 7,(s) C W.

The tangent of ~,(¢) defines a vector 7y at points on g. In terms of the
coordinated embedding ®. = ="' o ¢. it reads Z{(£") = 9-P*(£%, €)|.=o0
And the acceleration Zs:

78 (£) = 820%(€", €)|-=0 + g, (za(6")) 27 () Z] (€%)




First and second order deformations of hypersurfaces

For +: take V. as a submanifold with
boundary Y. in a larger W-.

Each . projects down via ¢ to Wy.
This defines a e-family
of hypersurfaces ¥. on Wy:

5= N2

Not enough for ¢ derivatives:
how does p maps onto X.7

Need a prescription on how p is
mapped through X.:
hypersurface gauge freedom.

The composmon of =" o ¢ provides, for any p € 3¢ a path v,(e) C Wh.
= Zl, ZQ

By construction, under spacetime gauges 51 and 52, Z's transform as
7" =7 - &

Z(h) ZQ So — szl 51+ 2V§1 51



First and second order deformations of hypersurfaces

For +: take V. as a submanifold with
boundary Y. in a larger W-.

Each . projects down via ¢ to Wy.
This defines a e-family
of hypersurfaces ¥. on Wy:

25 = 15/';1(25)

Not enough for ¢ derivatives:
how does p maps onto X.7

Need a prescription on how p is
mapped through X.:
hypersurface gauge freedom.

The composition of ©)=* o ¢ provides, for any p € ¥y a path 7,(s) C W.
= 71, 2>

We can decompose Z% = Qn® + T|s,,
and take instead quantities defined in 3o: @ and T Q & ®*Q, T = dd(T%)



First and second order deformations of hypersurfaces

For +: take V. as a submanifold with

boundary Y. in a larger W-. W-.4.)

Each . projects down via ¢ to Wy.
This defines a e-family
of hypersurfaces ¥. on Wy:

So=yli(2)

Not enough for ¢ derivatives:

. (Wo, g)
how does p maps onto X.7

Need a prescription on how p is
mapped through X.:
hypersurface gauge freedom.

The composition of ©)=* o ¢ provides, for any p € ¥ a path 7,(s) C W.

Deformation vectors Z;" and Z; (at either side +)

2+ £ gt e + mat
Z7 = Q7,17 Zy = Q3,13

+

By construction, @Q's and T“'s depend on the spacetime gauges v, and

T“'s also depend on the hypersurface gauge ¢ (but not Q's)



First order perturbed matching conditions

Take the background configuration: the spacetime VSE with metrics g&, the
embeddings ®* from a timelike (codim 1) ¥ (= %), € = d®(d,), and
corresponding (unit) normals n |5z .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: ¢ = Oeqe|e=0 and kM = Ockel|e=0:

@ Perturbed metric tensor K1

@ 1st order deformation vector of ¥ (unknown): 7y — Q1,Th



First order perturbed matching conditions

Take the background configuration: the spacetime VSE with metrics g&, the
embeddings ®* from a timelike (codim 1) ¥ (= %), € = d®(d,), and
corresponding (unit) normals n |5z .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: ¢ = Oeqe|e=0 and kM = Ockel|e=0:

@ Perturbed metric tensor K1

@ 1st order deformation vector of ¥ (unknown): 7y — Q1,Th

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.
) = L7 qab + 2Q1Kab + elel Kiagls,
/-@flt) = Lz kab — DaDpQ1 + Ql(n“n”Raugyeg‘ef + Kack’p)

1 1
+ §K1agn°‘n5ﬁab - n#S((lg”egeg\g,




First order perturbed matching conditions

Take the background configuration: the spacetime VSE with metrics g&, the
embeddings ®* from a timelike (codim 1) ¥ (= %), € = d®(d,), and
corresponding (unit) normals n |5z .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: ¢ = Oeqe|e=0 and kM = Ockel|e=0:
@ Perturbed metric tensor K

@ 1st order deformation vector of ¥ (unknown): Z— Qi Th

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.
@) = L7 qab + 2Q1Kap + exey Kiapls,
D = L kab — DaDpQ1 + Ql(n“nuRau@yegebB + Kack®p)

ab

1 1
+ iKlagn“nﬁfiab — nMS((lﬁ)“egef\z,

where D, is the three dimensional covariant derivative of (X, gas) and

2S00 =V K1 + Vo K1 — V* Kig,



First order perturbed matching conditions

Take the background configuration: the spacetime VSE with metrics g&, the
embeddings ®* from a timelike (codim 1) ¥ (= %), € = d®(d,), and
corresponding (unit) normals n |5z .

Ingredients: to compute the 1st order perturbations of the first and second
fund. forms: ¢ = Oeqe|e=0 and kM = Ockel|e=0:

@ Perturbed metric tensor K1

@ 1st order deformation vector of ¥ (unknown): 7y — Q1,Th

Theorem (Battye, Carter (1995)): perturbations of hypersurfs.
) = L7 qab + 2Q1Kab + elel Kiagls,
’“‘2)) = Lz kab — DaDpQ1 + Ql(n“nuRa,Lg,,eg‘ef + Kack’p)

1 1
+ §K1a;;n°‘n6ﬁab - n#S((lB)”egef\g,

Theorem (Mars (2005)): 1st order matching conditions are fulfilled:

iff 3 Qli and fli such that qéi” = q(lb)f7 H((11b>+ = /1((1117)7

a




Second order perturbed matching conditions

Take the first order matched configuration.
Ingredients: to compute the 2nd order perturbations of the first and second
fund. forms: ¢® = 82¢.|.—0 and k® = 82k |.—o:

@ Perturbed metric tensor Ky

@ 1st order deformation vector of ¥ (unknown): Zo — Q2,Th



Second order perturbed matching conditions

Take the first order matched configuration.
Ingredients: to compute the 2nd order perturbations of the first and second
fund. forms: ¢® = 82¢.|.—0 and k® = 82k |.—o:

@ Perturbed metric tensor Ky

@ 1st order deformation vector of ¥ (unknown): Zo — Q2,Th

Theorem (Mars (2005)): perturbations of hypersurfs.

02 = Lpde+2Qekes + Koagelel + 2L q3) — L1 Lo qa +
+ £2Q17’72Q1~(T1)7DT-1 7 dab + 2Da @1 DpQ1
+ 2(Ti°Ta%kea — 214(Q1) +2Q1Y") ko +
+ 20?7 (fn”nVRa,,g,,eaaebB 4E nac/sf,) — 4Q1nu$'gﬁegebﬁ

2
’f((],b) = Lgkay — DaDyQ2 — an“nuRaugyeZ‘ef + Qakacky —

where Kiag = Y'nang +nat's + ngma + Ki'as



Second order perturbed matching conditions

Take the first order matched configuration.
Ingredients: to compute the 2nd order perturbations of the first and second
fund. forms: ¢® = 82¢.|.—0 and k® = 82k |.—o:

@ Perturbed metric tensor K>

@ 1st order deformation vector of ¥ (unknown): Za = Qa,Th

Theorem (Mars (2005)): perturbations of hypersurfs.

dy =
N
N
N
G =

L7 qab + 2Q2kKap + Koqpelel + ZE:FI‘IS)) — L5 L7 qab +
£2Q19,2Q1N(ﬁ),pﬂﬁQab +2DaQ1DyQ1

2 (Tlchchd — 2T} (@) + 2Q1Y') Kab +

203 (—n”n”Rauguegef + /iacng) = 4Q1nMS'ZBegef

['T“Q/fab — Do DpQ2 — an“n”Rauﬁyeg‘ef + QQHGCHE — ...

Theorem (Mars (2005)): 2nd order matching conditions are fulfilled:

iff 3 QF and T5" such that ¢(2)F = ¢ = &+ — x2)-




Perturbed matching

Perturbed matching conditions to second order:

gOF ==+ = @ @)= @+ @)=

° (1((,1))v flb), qf)b), fj,} are gauge invariant under spacetime

perturbation gauge transformations by construction. But they are
not hypersurface-gauge invariant.

@ However, the equations are gauge invariant under both spacetime
and hypersurface perturbation gauge transformations

@ Fulfilling the matching conditions at each order requires showing the
existence of two vectors Z* (at each order) such that these
equations are satisfied

o Z* are gauge dependent (both spacetime and hypersurface).
Both (%) can be set to zero simultaneously using spacetime gauges.
But one has to be careful, then.

@ A hypersurface gauge can be used to set either T or T~ to zero,
but not both.



Reuvisiting Hartle's model

Geometric approach
1) Build a static and spher. symm. background configuration

2) Add stationary and axisymm. metric and hypersurface
perturbations
3) Perturbed matching

3.1) 1st order
3.2) 2nd order

Model of isolated rotating star in equilibrium
4) Matter content

5) Particularize the previous matching conditions




1) Build a static and spher. symm. background configuration

2) Add stationary and axisymm. metric and hypersurface
perturbations
3) Perturbed matching

3.1) 1st order
3.2) 2nd order




1) Build a static and spher. symm. background configuration v/

2) Add stationary and axisymm. metric and hypersurface
perturbations
3) Perturbed matching

3.1) First order
3.2) Second order




ge = —’D(1+2%h(r,0)) dt* + 7 (14 26°m(r, 0)) dr?
+r2(1 + 2€%k(r, 0)) [d6? + sin® 0(dyp — ew(r, 0)dt)’] + O(e?).

Perturbation tensors: Take e—derivatives in € =0

K, = asge|e=Oa
K2 = 6396'6:0

Introduce axisymmetric deformation vectors (unknowns)

ZE = QE(r,0)i + T (r,0)8 + T (r,0)8 + TP (r,0)E;
— o 5 o + .
7F = QE(r 9+ T (1, 0)e + T8 (1, 0)8 + T (1,0)



Geometric approach

Family of metrics

g = —e' (1+ 22 h(r, 9)) dt? + ™ (1+ 2e2m(r, 6)) dr®
+r°(1 + 2e%k(r, 0)) [dé’2 + sin® 0(dy — ew(r, 9)dt)2] + 0(e).

Perturbation tensors: Take e—derivatives in € =0

K, = —2r?sin® fwdtdyp
Ky = (—4€"h(r,0) + 2r?sin® 0w?(r,0)) dt* + 4e*m(r, )dr?
+4r2k(r, 0)dQ?

Introduce axisymmetric deformation vectors (unknowns)

— . . 5 i .
ZE = QE(r,0)A+ T (1,0)8 + TP (r,0)8 + T (1,0)é;
ZE = QE(r,9)i + T (r,9)8 + T (1, 0)8 + T (1, 9)E



Reuvisiting Hartle's model

Geometric approach
1) Build a static and spher. symm. background configuration v/

2) Add stationary and axisymm. metric and hypersurface
perturbations v

3) Perturbed matching
3.1) First order




First order perturbations

Building the 1st order perturbation of the 1st and 2nd fundamental forms
@ Background (already matched)

o Metric: g3
e Unit normal 7+

@ First order

o Hypersurface-deformation vector Z; (unknown) — Q1. T,
@ Metric-perturbation tensor K3

Perturbed first fundamental form

@ = e (%e*le - Tf,f) dr® + 2r8 sin® 9(T¥ ,, —w)drde
+2 (rng,T _e'TE 4 ) drdd + 12 sin 20T dg* + 2r2 sin 9TF 9 ddd

+27”0(—6_A/2Q1 + ’r’on,ﬁ )dﬁQ




First order perturbations

Building the 1st order perturbation of the 1st and 2nd fundamental forms

@ Background (already matched)
o Metric: g(jf
e Unit normal i+

@ First order

e Hypersurface-deformation vector Z (unknown) — Q1. T
o Metric-perturbation tensor Ky

Perturbed second fundamental form

1 A
1 - A
WD = (3 (@ (e =2 (v 402)) + a0 T ) = Quirr ) ar®

+2rge” 2 sin? 9(w — TF 7 +row,r )drde
A
+ (5_ 2 (e”u,r Tt 5 —2rT?,, ) —2Q1,r,9 ) drdd

oA, r
2

. =2 A . 2.0 2
— sin de cosVe” Q1,9 + sin —1) Q1 +2rgcosde2 Ty deo

_ ) 1 2
—2rge” M 2sin? 9TF d¢dﬁ+{—Q1,1919—5e A (roA,r —2) Q1 — 2rge 2Tf,19} 9>




First order perturbations

@ Theorem 1 in [Mars2005]: Find Z* that solve the system
[gae] =0, [res] = 0.

@ Integrate it to determine [w], [w,.], [T1] and QF

@ Results in

[w] = by, [wﬂ ] =0,
@] =0, QF[\/]=

[T1] = C1, [TY] 1T+C2» [TY] = 0.

(1 and C5 cannot be determined due to the isometries of the
background (M.Mars, F.C.Mena, R.Vera (2007))



Reuvisiting Hartle's model

Geometric approach
1) Build a static and spher. symm. background configuration v/
2) Add stationary and axisymm. metric and hypersurface
perturbations v

3) Perturbed matching

3.1) First order v/
3.2) Second order




Second order perturbations

Building the perturbation of the first and second fundamental
forms
@ Background (matched)

o Metric: g(jf
o Tangent basis and unit normal {¢}, 7+

@ First order (matched)

e Hypersurface deformation vector 7
o Metric-perturbation tensor K
@ Second order

e Hypersurface deformation vector Z, (unknown)
o Metric-perturbation tensor Ko

qfﬁ,) ...(really long expression)...,

K,l(j?) = ...(much longer)...



Second order perturbations

Theorem 1 in [Mars2005]. Find Z; that solve the system
[hgb] =0 5 [K/::L/b] =0.

Results (2nd order integration constants in blue)

(T3] = —Hor + Hi,
T§] = 2b1(T% + 7TY cot 9) + Do,
Tg] = (biTcosd(biT — 2TY) — Fp) sin 9,
[Qz] = gqcos?+ Q,
Vyr ei)\/ZQVQ H[)
-] =
]/77. €7>\/2 V77'
[h7r] - |:( 4 ) " 2:| = 2 [m]a
VR0 R
(k] 270 = 3 cos ¥,

e N2 ~ eM2qcosdd [m)]
[k/‘”"} - {(7) T QQ} - Tg + Ey



Reuvisiting Hartle's model

Geometric approach
1) Build a static and spher. symm. background configuration v/
2) Add stationary and axisymm. metric and hypersurface
perturbations v

3) Perturbed matching

3.1) First order v/
3.2) Second order v/

Model of isolated rotating star in equilibrium
© Matter content




@ KVFs: timelike £ and (unique) axial 7

@ We consider a perturbed perfect fluid: Energy momentum tensor of
the e-family Tg 5 = (E° + P*)uguj + Pg; 5 with P. = P.(E.)

@ 4-velocity : g.(4.,u.) = —1 and @ x £+ Qi

@ Also expand 4. = i + =i + 124 + O(<%) and
2
E = E+4:EW 4 EE(Q) +0(£%)

2
Pro= P—|—5P(1)—|—%P(2)+O(a3)



Second order field equations

In progress: show that the second order functions must finally be of the
form h(r,0) = ho(r) + ha(r)Ps(cos @) and the same for m and k, given
the two problems linked by the matching conditions found.



Second order field equations

In progress: show that the second order functions must finally be of the
form h(r,0) = ho(r) + ha(r)Ps(cos @) and the same for m and k, given
the two problems linked by the matching conditions found.
I = 0 sector:
] 1
Perfect fluid Asymptotically flat vacuum

@ Perturbed 4-velocity @(®) o 9, @ Solutions of the EFE’s

@ Define the pressure _ 1 J?
hy(ro) = ————— (M —
perturbation factor o (r-) r_ —2M < rd )’
(following Hartle): o J2
Po = P/ (2(E + P)). roettmg (ro) =M — S5

@ 1st order ODE system for
{mg,Po} and algebraic
equation for A .

@ BCon {m{, Py} so that
central density is fixed.



Second order matching in the [ = 0 sector

{[q@b)] =0, [ﬁ;ﬁ)] = 0} and field equations for [ = 0 imply:

a

For the metric functions

a= ad .~
W;V‘][\/[)[mo] , [mo] = —4r—[E]Po(a)

lhol = 52, [14] = <

The matching condition on mg determines the excess of mass 6 M in
terms of interior quantities. In terms of Hartle's functions and notation:

CL3
i) = —4r (o — 2M) B(@)pll* (@)

2 3

SM = mil (@) + T3 + dm o (a — 2M)B(a)pll* (a).
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