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The study of the free idempotent generated semigroup IG(E) over a
biordered set E began with the seminal work of Nambooripad [7] in the
1970s and has seen a recent revival with a number of new approaches,
both geometric and combinatorial. A particular focus, which this talk
explores, has been on the maximal subgroups of IG(E). A long-standing
conjecture that all such subgroups were free was shown to be false, first
by a counterexample of Brittenham, Margolis and Meakin [1], and later
by a proof by Gray and Ruskuc [5] that any group arises in this way.

It follows from a result of Easdown [3] that we may assume that E is the
biordered set of idempotents of an idempotent generated semigroup S.
Given such a ‘natural’ S, what is the relation between the maximal sub-
groups of IG(E) and those of S? In particular, when is H, (the maximal
subgroup of S with identity e € E) isomorphic to H; (the corresponding
subgroup of IG(E))?

Here we consider IG(E) in the case E is the biordered set of a wreath
product G 7,, where G is a group and 7, is the full transformation
monoid on 7n elements. This wreath product is isomorphic to the en-
domorphism monoid of the free G-act End F,(G) on n generators, and
this provides us with a convenient approach.

We say that the rank of an element of End F, (G) is the minimal number
of (free) generators in its image. Let ¢ = ¢* € End F,(G). For rather
straightforward reasons it is known that if ranke = n — 1 (respectively,
n), then the maximal subgroup of IG(E) containing ¢ is free (respec-
tively, trivial). Taking r = 1 a relatively elementary argument gives
He = H = G, providing an alternative approach to the result of Gray
and Ruskuc [4]. For higher ranks, we need to build on the sophisti-
cated techniques developed in [5]. We show that if ranke = r where
1 <r <n—2, then Hg is isomorphic to H, and hence to G S;, where S,



is the symmetric group on r elements. Taking G to be trivial, we obtain
an alternative proof of a result of Gray and Ruskuc [6] for the biordered
set of idempotents of 7.

This is joint work with Yang Dandan and Igor Dolinka [2].
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