Displacing pre-Lagrangians in contact toric manifolds.

Milena Pabiniak, IST Lisbon based on a joint work with Aleksandra Marinković

AMS-EMS-SPM Meeting, June 11, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Displaceability in Symplectic Geometry

 (M, ω) symplectic manifold $\Phi: M \to M$ is called a **Hamiltonian diffeomorphism** if $\Phi = \Phi_1$ for some isotopy $\{\Phi_t\}$ with $\Phi_0 = Id$, $\frac{d}{dt}\Phi_t = X_t \circ \Phi_t$ and $\omega(X_t, \cdot) = dh_t(\cdot)$ for some $h_t: M \to \mathbb{R}$.

 $L \stackrel{\iota}{\hookrightarrow} M$, $\iota^* \omega = 0$ Lagrangian submanifold

L is called **non-displaceable** if for any Hamiltonian diffeomorphism $\Phi: M \to M$ one has that $\Phi(L) \cap L \neq \emptyset$ Otherwise called **displaceable**.

Symplectic toric manifold

is a symplectic manifold (M^{2n}, ω) equipped with an effective Hamiltonian action of a torus T^n . Then there exists a *T*-invariant **momentum map** $\mu: M \to \mathfrak{t}^* \cong \mathbb{R}^n$, such that

$$\iota(\xi_{\mathcal{M}})\omega = d\langle \mu, \xi \rangle \quad \forall \ \xi \in \mathfrak{t},$$

where ξ_M is the vector field on M corresponding to $\xi \in \mathfrak{t}$.

Atiyah, Guillemin-Sternberg: If M is compact, then the image of Φ is a convex polytope, convex hull of the images of the fixed points.

Delzant:

{Delzant polytopes in \mathbb{R}^n } \Leftrightarrow {cpct, symplectic toric 2*n*-mfds}

Torus orbits: $\mu^{-1}(pt)$ for $pt \in \mu(M)$ If $pt \in Int\mu(M)$ then $\mu^{-1}(pt)$ is a Lagrangian

Displaceability of Lagrangian toric fibers in symplectic toric manifolds

1. Any compact connected symplectic toric manifold contains a non-displaceable Lagrangian toric fiber ([FOOO], [EP], [GW])

2. "Most" of the toric fibers are displaceable by McDuff's method of probes

Displaceability of Lagrangian toric fibers in symplectic toric manifolds

- 1. Any compact connected symplectic toric manifold contains a non-displaceable Lagrangian toric fiber ([FOOO], [EP], [GW])
- "Most" of the toric fibers are displaceable by McDuff's method of probes

Contact manifolds and their Hamiltonian isotopies

 (V^{2n+1},ξ) co-oriented contact manifold, Fix a 1-form α such that $\xi = \ker \alpha$ and $\alpha \wedge (d\alpha)^n \neq 0$. **Reeb vector field:** v.field R_{α} uniquely defined by

$$d\alpha(R_{\alpha},\cdot)=0, \ \ \alpha(R_{\alpha})=1.$$

Again: a time dependent function $h: V \times [0,1] \to \mathbb{R}$ \rightsquigarrow Hamiltonian contact isotopy Φ_t obtained by integrating a time-dependent vector field X_t uniquely defiend by

$$\alpha(X_t) = h_t, \quad d\alpha(X_t, \cdot) = dh_t(R_\alpha)\alpha(\cdot) - dh_t(\cdot)$$

Note:

all contact isotopies starting at identity are Hamiltonian contact isotopies. (Recover h_t as $\alpha(X_t)$).

Pre-Lagrangians

A symplectization SV of (V, ξ) is

 $\{(p, \eta_p) \in T^*V \mid p \in V, \text{ ker } \eta_p = \xi_p, \text{ same orientation}\} \cong V \times \mathbb{R}_+$

with the symplectic structure induced from T^*V . $\pi: SV \to V$ a natural projection

 $L \subset V$ is a **pre-Lagrangian** if there exists a Lagrangian $\widetilde{L} \subset SV$ such that $\pi_{|\widetilde{L}} \colon \widetilde{L} \to L$ is a diffeomorphism.

<u>Rmks:</u>

- If V is a prequantization space, $S^1 \hookrightarrow V^{2n+1} \xrightarrow{p} W^{2n}$, and L' is a Lagrangian in W then $p^{-1}(L')$ is a pre-Lagrangian in V.
- If N is a Legendrian in V, i.e. $TN \subset \xi$, then

 $\bigcup_{p \in N} (\text{ Reeb orbit of } p) \text{ is a pre-Lagrangian in } V$

Question:

Given a pre-Lagrangian L in V does there exist a contact isotopy Φ displacing it?

Contact toric manifolds

 (V^{2n+1},ξ) equipped with an effective action of a torus T^{n+1} by contact transformations. Generic torus orbits are pre-Lagrangians. Call them **pre-Lagrangian toric fibers**.

Any contact form α for ξ can be made T invariant by averaging. Each T-invariant contact form $\alpha \rightsquigarrow$ an α -moment map $\mu_{\alpha} \colon V \to \mathfrak{t}^*$ defined by $\mu_{\alpha}(p)(X) = \alpha_p(X_p)$ Contact moment map:

$$\mu \colon SV \to \mathfrak{t}^*, \ \ \mu(p,\eta_p)(X) = \eta_p(X)$$

Moreover:

►
$$S^{2n-1} \subset \mathbb{C}^n$$
, $\xi = TS^{2n-1} \cap J(TS^{2n-1})$,
torus T^n acts by rotating each copy of \mathbb{C} with speed 1.
Pre-Lagrangian toric fibers are
 $L = \{(z_1, \ldots, z_n) \in S^{2n-1}; |z_1|^2 = c_1^2, \ldots, |z_n|^2 = c_n^2\}$ for
some $0 < c_1, \ldots, c_n < 1$, such that $\sum c_j^2 = 1$

<□ > < @ > < E > < E > E のQ @

• The co-sphere bundle of the torus T^n :

$$\mathbb{P}_+(T^*T^n)=T^n\times S^{n-1}$$

 T^n acts by rotating the T^n factors, thus pre-Lagrangian toric fibers are $T^n \times \{ pt \}$, $pt \in S^{2n-1}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The co-sphere bundle of the torus T^n :

$$\mathbb{P}_+(T^*T^n)=T^n\times S^{n-1}$$

 T^n acts by rotating the T^n factors, thus pre-Lagrangian toric fibers are $T^n \times \{ \text{pt} \}$, $\text{pt} \in S^{2n-1}$.

 Given an integral symplectic toric manifold (M²ⁿ, ω) one can define a toric action on its prequantization p: V²ⁿ⁺¹ → M. Toric fibers are p⁻¹(Lagrangian toric fibers in M).

Is it also true that

 each compact contact toric manifold contains a non-displaceable pre-Lagrangian toric fiber,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

while "most" of them are displaceable?

Is it also true that

 each compact contact toric manifold contains a non-displaceable pre-Lagrangian toric fiber,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

while "most" of them are displaceable?

NO for both!

Is it also true that

- each compact contact toric manifold contains a non-displaceable pre-Lagrangian toric fiber,
- while "most" of them are displaceable?

NO for both!

- ► All pre-Lagrangian toric fibers in S²ⁿ⁻¹, S¹ × S²ⁿ, n > 1, are displaceable!
- All pre-Lagrangian toric fibers in P₊(T*Tⁿ) = Tⁿ × Sⁿ⁻¹, n > 1 are non-displaceable!

Orderability

Eliashberg-Polterovich:

two contact isotopies $\{\Phi\}, \{\Psi\} \in \widetilde{Cont}_0(V, \xi)$ satisfy $\{\Phi\} \leq \{\Psi\}$ if and only if $\{\Psi \circ \Phi^{-1}\}$ is generated by a non-negative Hamiltonian function.

This relation is always reflexive and transitive.

If it is also anti-symmetric then it defines a bi-invariant order on $\widetilde{Cont}_0(V,\xi)$ and the contact manifold (V,ξ) is called **orderable**.

Equivalently, a contact manifold is orderable if there are no contractible loops of contactomorphisms generated by a strictly positive contact Hamiltonian.

Quasimorphisms

$$\lambda : (G, *) \to (\mathbb{R}, +)$$
 is a **quasimorphism** if
 $\exists_{D \in \mathbb{R}} \forall_{g_1, g_2 \in G} |\lambda(g_1 * g_2) - \lambda(g_1) - \lambda(g_2)| < D$
A quasimorphism λ on $\widetilde{Cont}_0(V, \xi)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Quasimorphisms

$$\lambda : (G, *) \to (\mathbb{R}, +) \text{ is a quasimorphism if}$$
$$\exists_{D \in \mathbb{R}} \forall_{g_1, g_2 \in G} |\lambda(g_1 * g_2) - \lambda(g_1) - \lambda(g_2)| < D$$
A quasimorphism λ on $\widetilde{Cont}_0(V, \xi)$
 \blacktriangleright is called **monotone** if $\{\Phi\} \preceq \{\Psi\} \Rightarrow \lambda(\{\Phi\}) \leq \lambda(\{\Psi\})$

Quasimorphisms

 $\lambda \colon ({\mathcal{G}},*) o ({\mathbb{R}},+)$ is a quasimorphism if

$$\exists_{D \in \mathbb{R}} \; orall_{g_1, g_2 \in G} \; |\lambda(g_1 * g_2) - \lambda(g_1) - \lambda(g_2)| < D$$

A quasimorphism λ on $Cont_0(V,\xi)$

- ▶ is called monotone if $\{\Phi\} \preceq \{\Psi\} \Rightarrow \lambda(\{\Phi\}) \le \lambda(\{\Psi\})$
- has a vanishing property if U ⊂ V, open and displaceable, i.e. there exist φ ∈ Cont₀(V, ξ) such that φ(U) ∩ U = Ø, then λ vanishes on all Hamiltonian isotopies {Ψ} ∈ Cont₀(V, ξ) with support in [0, 1] × U.

- (Borman-Zapolsky): existence of a monotone quasimorphism implies orderability (Eliashberg-Polterovich) and, if μ has a vanishing property, it also implies the existence of non-displaceable pre-Lagrangian torus (Entov-Polterovich),
- stable non-displaceability \Rightarrow non-displaceability,
- (Eliashberg-Polterovich): existence of stably non-displaceable pre-Lagrangian implies orderability;

Compact contact toric manifolds that are NOT orderable:

• more generally
$$T^k \times S^{2n+k-1}$$
, $k \ge 1$, $n \ge 2$;

Compact contact toric manifolds that are NOT orderable:

• more generally
$$T^k \times S^{2n+k-1}$$
, $k \ge 1$, $n \ge 2$;

Eliashberg-Kim-Polterovich: For any Liouville manifold (M, ω) the ideal contact boundary of its *n*-stabilization is not orderable provided that $n \ge 2$.

Displaceability in S^{2n-1}

Pre-Lagrangian toric fibers are of the form

$$L = \{(z_1, \ldots, z_n) \in S^{2n-1}; |z_1|^2 = c_1^2, \ldots, |z_n|^2 = c_n^2\}$$

for some $0 < c_1, \ldots, c_n < 1$, such that $\sum c_j^2 = 1$. The map

$$\tau_t(z_1,\ldots,z_n)=\frac{1}{\cosh t+z_1\sinh t}(\sinh t+z_1\cosh t,z_2,\ldots,z_n),$$

is a contactomorphism of S^{2n-1} for all $t \ge 0$. Each pre-Lagrangian L is displaced by τ_t for t big enough (Marinković-P.).

Also: complement of a point in S^{2n-1} is a Darboux ball, thus any non-trivial closed subset of the sphere is displaceable.

Methods for displacing

Rough idea:

▶ find some "well-understood" subset W, s.t. $L \subset W \subset V$,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- find $\phi: W \to W$ displacing L,
- extend ϕ to all of V;

How to find "well-understood" subsets?

Contact reduction

$$L \subset \mu_{G}^{-1}(0) \longrightarrow V$$

$$\downarrow/G$$

$$L_{0} \subset \mu_{G}^{-1}(0)/G =: V_{0}$$

Any $\phi \in Cont_0(V_0, \ker \alpha_0)$ can be lifted to $Cont_0(V, \ker \alpha)$.

If $L \subset \mu_G^{-1}(0) \subset V$ and $L_0 = L/G \subset V_0$ then

- L_0 displaceable in $V_0 \Rightarrow L$ displaceable in V,
- L non-displaceable in $V \Rightarrow L_0$ non-displaceable in V_0 ;

(This is a direct translation of a similar result of Abreu-Macarini in the symplectic setting)

Prequantization

Similarly, if $(V,\xi) \xrightarrow{p} (M,\omega)$ is a prequantization and L' a Lagrangian in M, then $L := p^{-1}(L')$ is a pre-Lagrangian in V and:

- L' displaceable in $M \Rightarrow L$ displaceable in V,
- L non-displaceable in $V \Rightarrow L'$ non-displaceable in M;

$$S^{1} \longrightarrow V \supset L$$

$$\downarrow^{p}$$

$$M \supset L'$$

Prequantization

Similarly, if $(V,\xi) \xrightarrow{p} (M,\omega)$ is a prequantization and L' a Lagrangian in M, then $L := p^{-1}(L')$ is a pre-Lagrangian in V and:

- L' displaceable in $M \Rightarrow L$ displaceable in V,
- L non-displaceable in $V \Rightarrow L'$ non-displaceable in M;

$$S^{1} \longrightarrow V \supset L$$

$$\downarrow^{p}$$

$$M \supset L'$$

In particular, for all $L' \subset M$ displaceable by McDuff's method of probes, $p^{-1}(L')$ is displaceable in V.

Contact cuts (Lerman)

- $(V, \xi = \ker \alpha)$ a contact manifold with S^1 action preserving α ,
- $\mu_{\alpha} \colon V \to \mathbb{R}$ the corresponding moment map,
- S^1 acts freely on $\mu_{\alpha}^{-1}(0)$;

Then the **cut**

$$V_{[0,\infty)}:=\{x\in V\,|\,\mu_lpha(x)\geq 0\}/\sim,$$

where $x \sim x' \Leftrightarrow \mu_{\alpha}(x) = 0 = \mu_{\alpha}(x')$ and $x' = \lambda \cdot x$, some $\lambda \in S^1$, is naturally a contact manifold.

Moreover, the natural embedding of the reduced space $V_0 := \mu_\alpha^{-1}(0)/S^1$ into $V_{[0,\infty)}$ is contact and there is a contactomorphism

$$(V_{[0,\infty)} \setminus V_0) \cong \{x \in V \mid \mu_{\alpha}(x) > 0\}.$$

 $\Rightarrow \text{ Any contact isotopy of the cut } V_{[0,\infty)} \text{ compactly supported in } (V_{[0,\infty)} \setminus V_0) \text{ can be extended to a contact isotopy of } V.$

Example: T^2 toric action on $V = S^1 \times S^2$ (moment cone, $\mathbb{R} \times \mathbb{R}_{\geq 0}$, on the left) Choose $S^1 = \{(t, t) \in T^2\}$. Then the moment cone for $V_{[0,\infty)}$ is as on the right picure and $V_{[0,\infty)}$ is contactomorphic to S^3 with the usual contact structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 (S^3, ξ_{std}) is a prequantization of \mathbb{CP}^1 . All pre-Lagrangian toric fibers in S^3 which map to green region can be displaced by isotopies which are the lifts of the "probes-isotopies".

These isotopies are supported in $(V_{[0,\infty)} \setminus V_0)$ and thus can be extended to isotopies of $S^1 \times S^2$. \Rightarrow All pre-Lagrangian toric fibers in $S^1 \times S^2$ which map to green region are displaceable.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Using this method we can displace

- ▶ all pre-Lagrangian toric fibers in $S^1 \times S^{2n}$, $n \ge 2$,
- ▶ all pre-Lagrangian toric fibers in $T^k \times S^{2n+k-1}$, $k \ge 1$, $n \ge 2$,
- most of pre-Lagrangian toric fibers in $S^1 \times S^2$:

(Non-)existence of a displaceable fiber

Example 1:

 $\mathbb{P}_+(T^*T^n) = T^n \times S^{n-1}$ contact toric manifold, pre-Lagrangian toric fibers are $T^n \times \{ \text{pt} \}$, $\text{pt} \in S^{n-1}$.

ALL are non-displaceable:

Symplectization of $\mathbb{P}_+(T^*T^n)$ is $T^*T^n \setminus \{ \text{ zero section } \}$, Chaperon: Lagrangians $T^n \times \{ \text{pt} \}$ in T^*T^n are non-displaceable by contact isotopies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note: the T^n action on $\mathbb{P}_+(T^*T^n)$ is free.

(Non-)existence of a displaceable fiber

Example 2:

 $(T^3 = S_{(t)}^1 \times T_{(\theta_1,\theta_2)}^2, \xi_k = \ker(\cos(kt) d\theta_1 + \sin(kt) d\theta_2), k > 1$ with a free T^2 action rotating the T^2 component. Pre-Lagrangian toric fibers are $\{t_0\} \times T^2$ and they are all non-displaceable.

(Non-)existence of a displaceable fiber

Example 2:

$$(T^3 = S^1_{(t)} imes T^2_{(heta_1, heta_2)}, \xi_k = \ker(\cos(kt) d heta_1 + \sin(kt) d heta_2), \quad k > 1$$

with a free T^2 action rotating the T^2 component.

Pre-Lagrangian toric fibers are $\{t_0\} \times T^2$ and they are all non-displaceable.

(Isotopy Φ_1 displacing such a fiber could be used to construct a contactomorphism from $[-A, 0] \times T^2$ to $[-A, B] \times T^2$, B > 0, contradicting the classification of tight contact structures on $[a, b] \times T^2$.)

What about other contact toric manifolds with a free toric action?

Lerman's Classification:

Contact toric manifolds with a free toric action are:

•
$$(T^3 = S^1 \times T^2, \xi_k = \ker(\cos(kt) d\theta_1 + \sin(kt) d\theta_2), k > 1,$$

• principal T^n bundles over S^{n-1} , (trivial for $n \neq 3$).

For n = 3 each such bundle is $T^2 \times S^3$ or $T^2 \times (S^3/\mathbb{Z}_p)$. Moreover, it is contactomorphic to $(T^2 \times S^3, \ker \alpha)$, where α is

$$i(z_1\bar{z}_2-\bar{z}_1z_2)d\theta_1+(z_1\bar{z}_2+\bar{z}_1z_2)d\theta_2+\frac{i}{4}(z_1d\bar{z}_1-\bar{z}_1dz_1-(z_2d\bar{z}_2-\bar{z}_2dz_2)),$$

or $T^2 \times (S^3/\mathbb{Z}_p)$ with the induced contact form (Marinković). There we don't know if the toric fibers are non-displaceable. Lerman's Classification \Rightarrow

contact toric manifolds for which the toric action is NOT free are:

- 3-dim lens spaces (include $S^1 \times S^2$),
- prequantizations of toric symplectic orbifolds,
- $T^k \times S^{2n-1-k}$;

All of them contain displaceable pre-Lagrangian toric fibers.

Could it be true that for a compact contact toric manifold

- all pre-Lagrangian toric fibers are displaceable IFF the manifold is not orderable,
- all pre-Lagrangian toric fibers are non-displaceable IFF the toric action is free?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Guesses/Questions:

Which contact toric manifolds contain a non-displaceable toric fiber and a displaceable ones, as symplectic toric manifolds do?

Definitely prequantizations of symplectic toric manifolds (these have displaceable fibers) that can be equipped with a monotone quasimorphism with a vanishing property.

```
Examples:

\mathbb{RP}^{2n+1}, prequantization of \mathbb{CP}^n, with a quasimorphism given by

Givental's non-linear Maslov index.

Also, their quotients: lens spaces L_{2k}^{2n+1}.
```

Project in progress, with Yael Karshon and Sheila Sandon: extend Givental's construction of non-linear Maslov index to other lens spaces, and then to other prequantizations of toric symplectic manifolds.