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Displaceability in Symplectic Geometry

(M, ω) symplectic manifold
Φ: M → M is called a Hamiltonian diffeomorphism if Φ = Φ1

for some isotopy {Φt} with Φ0 = Id , d
dt Φt = Xt ◦ Φt and

ω(Xt , ·) = dht(·) for some ht : M → R.

L
ι
↪→ M, ι∗ω = 0 Lagrangian submanifold

L is called non-displaceable if for any Hamiltonian diffeomorphism
Φ: M → M one has that Φ(L) ∩ L 6= ∅
Otherwise called displaceable.



Symplectic toric manifold

is a symplectic manifold (M2n, ω) equipped with an effective
Hamiltonian action of a torus T n. Then there exists a T -invariant
momentum map µ : M → t∗ ∼= Rn, such that

ι(ξM)ω = d 〈µ, ξ〉 ∀ ξ ∈ t,

where ξM is the vector field on M corresponding to ξ ∈ t.

Atiyah, Guillemin-Sternberg: If M is compact, then the image of Φ
is a convex polytope, convex hull of the images of the fixed points.

Delzant:
{Delzant polytopes in Rn} ⇔ {cpct, symplectic toric 2n-mfds}

Torus orbits: µ−1(pt) for pt ∈ µ(M)
If pt ∈ Intµ(M) then µ−1(pt) is a Lagrangian



Displaceability of Lagrangian toric fibers in symplectic toric
manifolds

1. Any compact connected symplectic toric manifold contains a
non-displaceable Lagrangian toric fiber ([FOOO], [EP], [GW])

2. “Most” of the toric fibers are displaceable by McDuff’s
method of probes
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Contact manifolds and their Hamiltonian isotopies

(V 2n+1, ξ) co-oriented contact manifold,
Fix a 1-form α such that ξ = kerα and α ∧ (dα)n 6= 0.
Reeb vector field: v.field Rα uniquely defined by

dα(Rα, ·) = 0, α(Rα) = 1.

Again: a time dependent function h : V × [0, 1]→ R
 Hamiltonian contact isotopy Φt obtained by integrating a
time-dependent vector field Xt uniquely defiend by

α(Xt) = ht , dα(Xt , ·) = dht(Rα)α(·)− dht(·)

Note:
all contact isotopies starting at identity are Hamiltonian contact
isotopies. (Recover ht as α(Xt)).



Pre-Lagrangians

A symplectization SV of (V , ξ) is

{(p, ηp) ∈ T ∗V | p ∈ V , ker ηp = ξp, same orientation} ∼= V×R+

with the symplectic structure induced from T ∗V .
π : SV → V a natural projection

L ⊂ V is a pre-Lagrangian if there exists a Lagrangian L̃ ⊂ SV
such that π|L̃ : L̃→ L is a diffeomorphism.

Rmks:

I If V is a prequantization space, S1 ↪→ V 2n+1 p→W 2n, and
L′ is a Lagrangian in W then p−1(L′) is a pre-Lagrangian in V .

I If N is a Legendrian in V , i.e. TN ⊂ ξ, then⋃
p∈N

( Reeb orbit of p) is a pre-Lagrangian in V



Question:
Given a pre-Lagrangian L in V does there exist a contact isotopy Φ
displacing it?



Contact toric manifolds

(V 2n+1, ξ) equipped with an effective action of a torus T n+1 by
contact transformations. Generic torus orbits are pre-Lagrangians.
Call them pre-Lagrangian toric fibers.

Any contact form α for ξ can be made T invariant by averaging.
Each T -invariant contact form α  an α-moment map
µα : V → t∗ defined by µα(p)(X ) = αp(Xp)
Contact moment map:

µ : SV → t∗, µ(p, ηp)(X ) = ηp(X )

Moreover:
V

α //

µα !!

SV

µ
��
t∗



Examples

I S2n−1 ⊂ Cn, ξ = TS2n−1 ∩ J(TS2n−1),
torus T n acts by rotating each copy of C with speed 1.
Pre-Lagrangian toric fibers are
L = {(z1, . . . , zn) ∈ S2n−1 ; |z1|2 = c21 , . . . , |zn|2 = c2n} for
some 0 < c1, . . . , cn < 1, such that

∑
c2j = 1

I This induces a toric action on RP2n−1, L2n−1p

I The co-sphere bundle of the torus T n:

P+(T ∗T n) = T n × Sn−1

T n acts by rotating the T n factors, thus pre-Lagrangian toric
fibers are T n × {pt}, pt ∈ S2n−1.

I Given an integral symplectic toric manifold (M2n, ω) one can
define a toric action on its prequantization p : V 2n+1 → M.
Toric fibers are p−1( Lagrangian toric fibers in M).
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Is it also true that

I each compact contact toric manifold contains a
non-displaceable pre-Lagrangian toric fiber,

I while “most” of them are displaceable?

NO for both!

I All pre-Lagrangian toric fibers in S2n−1, S1 × S2n, n > 1, are
displaceable!

I All pre-Lagrangian toric fibers in P+(T ∗T n) = T n × Sn−1,
n > 1 are non-displaceable!
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Orderability

Eliashberg-Polterovich:

two contact isotopies {Φ}, {Ψ} ∈ C̃ont0(V , ξ) satisfy {Φ} � {Ψ}
if and only if {Ψ ◦ Φ−1} is generated by a non-negative
Hamiltonian function.
This relation is always reflexive and transitive.
If it is also anti-symmetric then it defines a bi-invariant order on

C̃ont0(V , ξ) and the contact manifold (V , ξ) is called orderable.

Equivalently, a contact manifold is orderable if there are no
contractible loops of contactomorphisms generated by a strictly
positive contact Hamiltonian.



Quasimorphisms

λ : (G , ∗)→ (R,+) is a quasimorphism if

∃D∈R ∀g1,g2∈G |λ(g1 ∗ g2)− λ(g1)− λ(g2)| < D

A quasimorphism λ on C̃ont0(V , ξ)

I is called monotone if {Φ} � {Ψ} ⇒ λ({Φ}) ≤ λ({Ψ})
I has a vanishing property if U ⊂ V , open and displaceable,

i.e. there exist φ ∈ Cont0(V , ξ) such that φ(U) ∩ U = ∅, then

λ vanishes on all Hamiltonian isotopies {Ψ} ∈ C̃ont0(V , ξ)
with support in [0, 1]× U.
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∃ µ : C̃ont0(V , ξ)→ R

px %-
∃ L non-displaceable V is orderable

∃ L stably non-displ.

KS .6

I (Borman-Zapolsky): existence of a monotone quasimorphism
implies orderability (Eliashberg-Polterovich) and, if µ has a
vanishing property, it also implies the existence of
non-displaceable pre-Lagrangian torus (Entov-Polterovich),

I stable non-displaceability ⇒ non-displaceability,

I (Eliashberg-Polterovich): existence of stably non-displaceable
pre-Lagrangian implies orderability;



Compact contact toric manifolds that are NOT orderable:

I S2n−1, n ≥ 2,

I S1 × S2n, n ≥ 2,
(orderability of S1 × S2 is not known)

I more generally T k × S2n+k−1, k ≥ 1, n ≥ 2;

Eliashberg-Kim-Polterovich: For any Liouville manifold (M, ω) the
ideal contact boundary of its n-stabilization is not orderable
provided that n ≥ 2.
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Displaceability in S2n−1

Pre-Lagrangian toric fibers are of the form

L = {(z1, . . . , zn) ∈ S2n−1 ; |z1|2 = c21 , . . . , |zn|2 = c2n}

for some 0 < c1, . . . , cn < 1, such that
∑

c2j = 1. The map

τt(z1, . . . , zn) =
1

cosh t + z1sinh t
(sinh t + z1cosh t, z2, . . . , zn),

is a contactomorphism of S2n−1 for all t ≥ 0. Each pre-Lagrangian
L is displaced by τt for t big enough (Marinković-P.).

Also: complement of a point in S2n−1 is a Darboux ball, thus any
non-trivial closed subset of the sphere is displaceable.



Methods for displacing

Rough idea:

I find some “well-understood” subset W , s.t. L ⊂W ⊂ V ,

I find φ : W →W displacing L,

I extend φ to all of V ;

How to find “well-understood” subsets?



Contact reduction

L ⊂ µ−1G (0) //

/G
��

V

L0 ⊂ µ−1G (0)/G =: V0

Any φ ∈ Cont0(V0, kerα0) can be lifted to Cont0(V , kerα).

If L ⊂ µ−1G (0) ⊂ V and L0 = L/G ⊂ V0 then

I L0 displaceable in V0 ⇒ L displaceable in V ,

I L non-displaceable in V ⇒ L0 non-displaceable in V0;

(This is a direct translation of a similar result of Abreu-Macarini in
the symplectic setting)



Prequantization

Similarly, if (V , ξ)
p→ (M, ω) is a prequantization and L′ a

Lagrangian in M, then L := p−1(L′) is a pre-Lagrangian in V and:

I L′ displaceable in M ⇒ L displaceable in V ,

I L non-displaceable in V ⇒ L′ non-displaceable in M;

S1 // V ⊃ L

p
��

M ⊃ L′

In particular, for all L′ ⊂ M displaceable by McDuff’s method of
probes, p−1(L′) is displaceable in V .
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Contact cuts (Lerman)

I (V , ξ = kerα) a contact manifold with S1 action preserving α,

I µα : V → R the corresponding moment map,

I S1 acts freely on µ−1α (0);

Then the cut

V[0,∞) := {x ∈ V |µα(x) ≥ 0}/ ∼,

where x ∼ x ′ ⇔ µα(x) = 0 = µα(x ′) and x ′ = λ · x , some λ ∈ S1,
is naturally a contact manifold.
Moreover, the natural embedding of the reduced space
V0 := µ−1α (0)/S1 into V[0,∞) is contact and there is a
contactomorphism(

V[0,∞) \ V0

) ∼= {x ∈ V |µα(x) > 0}.

⇒ Any contact isotopy of the cut V[0,∞) compactly supported in(
V[0,∞) \ V0

)
can be extended to a contact isotopy of V .



Example: T 2 toric action on V = S1 × S2

(moment cone, R× R≥0, on the left)
Choose S1 = {(t, t) ∈ T 2}. Then the moment cone for V[0,∞) is
as on the right picure and V[0,∞) is contactomorphic to S3 with
the usual contact structure.

S1 × S2

(1, 1)

S3
0



(S3, ξstd) is a prequantization of CP1.
All pre-Lagrangian toric fibers in S3 which map to green region can
be displaced by isotopies which are the lifts of the
“probes-isotopies”.

These isotopies are supported in
(
V[0,∞) \ V0

)
and thus can be

extended to isotopies of S1 × S2.
⇒ All pre-Lagrangian toric fibers in S1 × S2 which map to green
region are displaceable.



∼=
SL(2, Z)

∼=



Using this method we can displace

I all pre-Lagrangian toric fibers in S1 × S2n, n ≥ 2,

I all pre-Lagrangian toric fibers inT k × S2n+k−1, k ≥ 1, n ≥ 2,

I most of pre-Lagrangian toric fibers in S1 × S2:



(Non-)existence of a displaceable fiber

Example 1:

P+(T ∗T n) = T n × Sn−1 contact toric manifold,
pre-Lagrangian toric fibers are T n × {pt}, pt ∈ Sn−1.

ALL are non-displaceable:

Symplectization of P+(T ∗T n) is T ∗T n \ { zero section },
Chaperon: Lagrangians T n × {pt} in T ∗T n are non-displaceable
by contact isotopies

Note: the T n action on P+(T ∗T n) is free.



(Non-)existence of a displaceable fiber

Example 2:

(T 3 = S1
(t) × T 2

(θ1,θ2)
, ξk = ker(cos(kt) dθ1 + sin(kt) dθ2), k > 1

with a free T 2 action rotating the T 2 component.

Pre-Lagrangian toric fibers are {t0} × T 2 and they are all
non-displaceable.

(Isotopy Φ1 displacing such a fiber could be used to construct a
contactomorphism from [−A, 0]× T 2 to [−A,B]× T 2, B > 0,
contradicting the classification of tight contact structures on
[a, b]× T 2.)
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What about other contact toric manifolds with a free toric
action?

Lerman’s Classification:
Contact toric manifolds with a free toric action are:

I (T 3 = S1 × T 2, ξk = ker(cos(kt) dθ1 + sin(kt) dθ2), k > 1,

I principal T n bundles over Sn−1, (trivial for n 6= 3).

For n = 3 each such bundle is T 2 × S3 or T 2 × (S3/Zp).
Moreover, it is contactomorphic to (T 2 × S3, kerα), where α is

i(z1z̄2−z̄1z2)dθ1+(z1z̄2+z̄1z2)dθ2+
i

4
(z1dz̄1−z̄1dz1−(z2dz̄2−z̄2dz2)),

or T 2 × (S3/Zp) with the induced contact form (Marinković).
There we don’t know if the toric fibers are non-displaceable.



Lerman’s Classification ⇒
contact toric manifolds for which the toric action is NOT free are:

I 3-dim lens spaces (include S1 × S2),

I prequantizations of toric symplectic orbifolds,

I T k × S2n−1−k ;

All of them contain displaceable pre-Lagrangian toric fibers.



Guesses/Questions:

Could it be true that for a compact contact toric manifold

I all pre-Lagrangian toric fibers are displaceable IFF the
manifold is not orderable,

I all pre-Lagrangian toric fibers are non-displaceable IFF the
toric action is free?



Guesses/Questions:

Which contact toric manifolds contain a non-displaceable toric
fiber and a displaceable ones, as symplectic toric manifolds do?

Definitely prequantizations of symplectic toric manifolds (these
have displaceable fibers) that can be equipped with a monotone
quasimorphism with a vanishing property.

Examples:
RP2n+1, prequantization of CPn, with a quasimorphism given by
Givental’s non-linear Maslov index.
Also, their quotients: lens spaces L2n+1

2k .

Project in progress, with Yael Karshon and Sheila Sandon: extend
Givental’s construction of non-linear Maslov index to other lens
spaces, and then to other prequantizations of toric symplectic
manifolds.


