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Yamamura’s HNN-extension

[S;A1,A2;ϕ] where S = Inv〈X |R〉 ≃ (X ∪ X−1)+/ω, ϕ : A1 → A2,

A1,A2 inverse subsemigroups of S;

e, f ∈ E(S) s.t. e ∈ A1 ⊆ eSe and f ∈ A2 ⊆ fSf ;

S∗ = Inv〈S, t | t−1at = ϕ(a), t−1t = f , tt−1 = e,∀a ∈ A1〉 is called

the HNN-extension of S associated with ϕ : A1 → A2.

There is another approach that extends the notion of

HNN-extension from groups to inverse semigroups given by

Gilbert. This HNN-extension in the sense of Gilbert embeds into

the HNN-extension in the sense of Yamamura (proved by A.

Yamamura in 2007).
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The word problem under “nice” conditions

In the group case thanks to Britton’s Lemma:

Theorem

Let G∗ = 〈t ,G|t−1at = ϕ(a),a ∈ A1〉 be an HNN-extension of a group

G. If G has solvable word problem and the membership problem for

A1,A2 is solvable, and ϕ,ϕ−1 are effectively calculable, then G∗ has

solvable word problem.
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The word problem under “nice” conditions

In the inverse semigroup case under the same conditions.

Theorem

The word problem for Yamamura’s HNN-extensions S∗ of inverse

semigroups [S;A1,A2;ϕ] is undecidable even if

S has finite R-classes (therefore solvable word problem);

the membership problem for A1, A2 in S is decidable, and A1 ≃ A2

is a free inverse semigroup with zero and finite rank;

ϕ and ϕ−1 are effectively calculable.

Let us sketch the proof
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Schützenberger automata

Definition (Schützenberger graphs, Stephen)

Let S = Inv〈X |R〉 = (X ∪ X−1)+/ρ and w ∈ (X ∪ X−1)+ the

Schützenberger graph SΓ(X ,R;w) is an inverse word graph whose

vertices are the elements of the R-class of wρ and whose edge set is

{(ν, x , µ)|x ∈ X ∪ X−1, ν(xρ) = µ}.

In other words it is the connected component of the Cayley graph of S

containing wρ.

A(X ,R,w) = (ww−1ρ,SΓ(X ,R;w),wρ) is the Schützenberger

automaton of w with respect to 〈X |R〉.

it is a deterministic automaton

L[A(X ,R;w)] = {v ∈ (X ∪ X−1)+|wρ ≤ vρ}

wρ = w ′ρ iff L[A(X ,R;w)] = L[A(X ,R;w ′)].
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How to build a Schützenberger automaton
From the linear automaton of w via two fundamental operations.

Folding/determinization: fold a pair of edges labelled by the same

element starting from the same vertex.

Expansion: if v labels a path from a vertex ν to a vertex µ and

(s, t) ∈ R add a path labelled by t from ν to µ.

Iteratively applying these operations a directed system of inverse

automata is obtained

A1 → A2 → . . .→ Ai → . . .

whose directed limit is the Schützenberger automata A(X ,R;w).
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The Shape of the Schützenberger automata for an

HNN-extension
Inverse graph Γ on X ∪ t ;

A lobe of Γ is a maximal connected component labelled by

elements of X ;

Lobe graph G(Γ): vertices the set of lobes and two lobes are

adjacent if there is a edge p
t

−→q connecting them;

Γ is a weak t-opuntoid if it is deterministic and the lobe graph is a

tree.
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The Shape of the Schützenberger automata for an

HNN-extension

Proposition (Jajcayova)

The Schützenberger automaton of the HNN-extension S∗ with respect

to the presentation 〈S, t | t−1at = ϕ(a), t−1t = f , tt−1 = e,∀a ∈ A1〉 is a

weak t-opuntoid.
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Passing from the amalgamated free product

The proof relies on a analogous undecidability result for

amalgamated free products of inverse semigroups.

Amalgam [S1,S2;U, ω1, ω2] with S1 = Inv〈X1|R1〉 S2 = Inv〈X2|R2〉
with X1 ∩ X2 = ∅, ωi : U →֒ Si , i = 1,2.

The amalgamated free product

S1 ∗U S2 = Inv〈X1 ∪ X2|R1 ∪ R2 ∪ W 〉 where

W = {(uω1,uω2)|u ∈ U}

Theorem (R., Silva)

The word problem for S1 ∗U S2 of inverse semigroups may be
undecidable even if we assume the following conditions.

◮ S1 and S2 have finite R-classes

◮ U is a free inverse semigroup with zero of finite rank

◮ the membership problem of ωi(U) is decidable in Si for i = 1, 2

◮ ω1, ω2 and their inverses are computable functions.
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Associate an HNN-extension to an amalgam

Theorem (Cherubini, R.)

Let [Se1

1 ,S
e2

2 ;U1, ω1
1, ω

1
2 ] be the free product with amalgamation with

adjoint identities, associate the HNN-extension

[Se1

1 ∗ S
e2

2 ;Ue1

1 ,Ue2

2 ; (ω1
1)

−1 ◦ ω1
2] and S∗ = Inv〈X |R ∪ RHNN〉, then

S∗/ρ ≃ (Se1

1 ∗U1 S
e2

2 ) ≃ (S1 ∗U S2)
1

where (S1 ∗U S2)
1 denotes S1 ∗U S2 with adjoint identity 1 and ρ is the

congruence on S∗ generated by the relation t = e1, t = e2.

E. Rodaro (CMUP) ( Centro de Matemática, Universidade do Porto CMUP ) 8 / 16



From the point of view of Schützenberger automata

Schützenberger automaton A(X1 ∪ X2,R1 ∪ R2 ∪ W ,w) of the

word w with respect to S1 ∗U S2 from the Schützenberger

A(X ,RHNN ∪ R,w ′) of the associated HNN-extension;

Factorize w = w1w2...w2n−1w2n, w1 ∈ (X1 ∪ X−1
1 )∗,

w2i ∈ (X2 ∪ X−1
2 )+, w2i+1 ∈ (X1 ∪ X−1

1 )+, 1 ≤ i ≤ n − 1;

Considered the associate separated normal form

w ′ = w1e1te2w2e2t−1e1...e2t−1e1w2n−1e1te2w2n
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From the point of view of Schützenberger automata

Proposition (Cherubini, R.)

A(X1 ∪ X2,R1 ∪ R2 ∪ W ,w) can be obtained from A(X ,RHNN ∪ R,w ′)
of the separated normal form w ′ of w by identifying the initial and

terminal vertices of each t-edge and then deleting all the obtained

loops labelled by t.
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From the point of view of Schützenberger automata

More precisely the lobes are quotients of Schützenberger

automata of either S1 or S2 with a tree-like structure (weak

opuntoid class of inverse graphs denoted by C).

This means that the Schützenberger automaton of the separated

normal form has a particular shape (class of separated weak

t-opuntoid inverse graphs denoted by Ct )
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From the point of view of Schützenberger automata

Proposition

The map ψ : Ct → C, which is defined by identifying the initial vertex

with the terminal vertex of each t-edge and then erasing the formed

loops, is a bijection.

However, it is not a bijection if we extend ψ to the class of inverse

automata since we may identify initial and final states
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From the point of view of Schützenberger automata

Proposition

Let w1,w2 ∈ (X1 ∪ X2 ∪ X−1
1 ∪ X−1

2 )+, and let w ′

1 and w ′

2 be their

corresponding separated normal forms.

Let A(X ,RHNN ∪ R,w ′

1) = (α, Γ1, β), A(X ,RHNN ∪ R,w ′

2) = (α′, Γ2, β
′)

be the corresponding Schützenberger automata which are separated

weak t-opuntoid automata with the property that:

ψ ((α, Γ1, β)) = ψ
(

(α′, Γ2, β
′)
)

then there are ǫ1, ǫ2 ∈ {0,1,−1} such that

tǫ1w ′

1tǫ2 = w ′

2 in S∗
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Sketch of the proof (I)

Consider the amalgam [S1;S2,U;ω1, ω2] associated to this

theorem.

Theorem (R., Silva)

The word problem for S1 ∗U S2 of inverse semigroups may be

undecidable even if we assume the following conditions.

S1 and S2 have finite R-classes

U is a free inverse semigroup with zero of finite rank

the membership problem of ωi(U) is decidable in Si for i = 1,2

ω1, ω2 and their inverses are computable functions.

E. Rodaro (CMUP) ( Centro de Matemática, Universidade do Porto CMUP ) 10 / 16



Sketch of the proof (I)

Consider the amalgam [S1;S2,U;ω1, ω2] associated to this

theorem.

Associate the corresponding HNN-extension as before:

[Se1

1 ∗ S
e2

2 ;Ue1

1 ,Ue2

2 ; (ω1
1)

−1 ◦ ω1
2]

The conditions on [S1;S2,U;ω1, ω2] implies that S
e1

1 ∗ S
e2

2 has

finite R-classes, U
e1

1 ≃ U
e2

2 is a free inverse semigroup with zero

of finite rank, and both (ω1
1)

−1 ◦ω1
2 and (ω1

2)
−1 ◦ ω1

1 are computable

functions. Since the membership problem of ωi(U) is decidable in

Si for i = 1,2, then the same occurs for U
e1

1 ,Ue2

2 in S
e1

1 ∗ S
e2

2 .

Hence the associated HNN-extensions satisfies the conditions of

the statement!
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Sketch of the proof (II)

Using the previous Proposition;

We get the following lemma;

Hence, if the word problem for [Se1

1 ∗ S
e2

2 ;Ue1

1 ,Ue2

2 ; (ω1
1)

−1 ◦ ω1
2]

would be solvable, then the word problem for S1 ∗U S2 would be

solvable, a contradiction.

Proposition

Let w1,w2 ∈ (X1 ∪ X2 ∪ X−1 ∪ X−1
2 )+, and let w ′

1 and w ′

2 be their

corresponding separated normal forms.

Let A(X ,RHNN ∪ R,w ′

1) = (α, Γ1, β), A(X ,RHNN ∪ R,w ′

2) = (α′, Γ2, β
′)

be the corresponding Schützenberger automata which are separated

weak t-opuntoid automata with the property that:

ψ ((α, Γ1, β)) = ψ
(

(α′, Γ2, β
′)
)

then there are ǫ1, ǫ2 ∈ {0,1,−1} such that tǫ1w ′

1tǫ2 = w ′

2 in S∗.
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The “boundaries” decidability/undecidability

Future work: sketch the boundary between

decidability/undecidability both for HNN-extensions and free

product with amalgamations.

By the previous results, we may assume that the starting

semigroups has finite R-classes.

We have some partial results.
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Building the Schützenberger automaton

Starting from the linear automaton of w1tw2t−1w3tw4
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Building the Schützenberger automaton

Close the lobes, i.e. apply all the expansions and foldings relative

to S
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Building the Schützenberger automaton

a ∈ E(A1) labels a loop, but ϕ(a) does not labels a loop. Make an

expansion, then close the lobe.
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Building the Schützenberger automaton
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Building the Schützenberger automaton

In the “limit” the lobe graph is finite, however, each lobe may not

be finite.
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Building the Schützenberger automaton

One to one correspondence: add “t”.
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Building the Schützenberger automaton

Finally one obtains a “graphical normal form”
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The Graphical Normal Form

It is possible to prove that there is a way to build in the limit a new

lobe, let us call it an “external lobe”.
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The Graphical Normal Form

We can glue to the previous automaton and iterate this process
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Decidability conditions

If the lobes in the graphical normal form are finite, and the lobes

that we add are finite ⇒ the word problem is solvable!

Main problem: the closure of a lobe (even if it is finite) is not finite.

Minimality property: a lobe is said to satisfy the m-property, if it

has a minimum idempotent labelling a loop at some vertex.

A lobe having the m-property is finite (not true the converse).

Furthermore, the closure of a lobe with the m-property has the

m-property.
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Decidability conditions

If all the lobes of the “graphical normal form” have the m-property,

what about the added external lobes?

This is similar to the lower-bounded condition considered by

Jajkayova/Bennet conditions. It actually includes both the

lower-bounded and the finite case.

Outside the m-property things become “wild” and very difficult to

control. Therefore, it seems that this chain condition is almost

“necessarily”.
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“necessarily”.

Theorem

The external lobes have the m-property if and only if for any e ∈ E(S)
we get

Ui(e) = {g ∈ E(Ai) : g ≥ e} 6= ∅ ⇒ Ui(e) has a minimum.

for i = 1,2.
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THANK YOU!
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