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Generalized Orlicz spaces

Lebesgue -> Orlicz -> generalized Orlicz
ˆ
|f |p dx to

ˆ
ϕ(|f |) dx to

ˆ
ϕ(x , |f |) dx .

Or Lebesgue -> variable exponent -> generalized Orlicz
Studied since the 1940’s; monograph by Musielak (1983)
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Examples

Lebesgue space
ˆ
ϕ(|f |) dx

Exponential space
ˆ

exp(|f |)− 1 dx

Variable exponent space
ˆ
|f |p(x) dx

log-type space
ˆ
|f |p(x) log(e + |f |)p(x) dx

(p, q)-type space
ˆ
|f |p + a(x)|f |q dx
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Example continued

log-type space
ˆ
|f |p(x) log(e + |f |)p(x) dx studied e.g. in

I Mizuta, Ohno, Shimomura, JMAA 2008
I Hästö, Mizuta, Ohno, Shimomura, Glasgow MJ 2010
I Maeda, Mizuta, Ohno, Shimomure, AASF 2010
I Harjulehto, Hästö, Mizuta, Shimomura, Manus Math 2011
I Mizuta, Shimomura, JMAA 2012
I Mizuta, Nakai, Ohno, Shimomura, Rev Mat Complutense

2012
I Maeda, Mizuta, Shimomura, Nonlinear Anal 2015

Peter Hästö U. of Oulu and U. of Turku June 9, 2015 4 / 12



Example continued

(p, q)-type space
ˆ
|f |p + a(x)|f |q dx studied in

I Baroni, Colombo, Mingione, Nonlinear Anal 2015
I Baroni, Colombo, Mingione, St Petersburg MJ
I Colombo, Mingione, ARMA
I Colombo, Mingione, ARMA 2015
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Motivation

I covers both variable exponent and Orlicz
I fluid dynamics models (Wróblewska-Kamińska, Nonlinearity

2014)
I existence of solutions to parabolic equations with generalized

Orlicz growth (Świerczewska-Gwiazda, Nonlinear Anal 2014)
I regularity of minimizers of energies
ˆ
|∇u|p(x) log(e+|∇u|) dx and

ˆ
|∇u|p +a(x) |∇u|q dx ,

by Giannetti and Passarelli di Napoli (JDE 2013) and
Colombo and Mingione (ARMA 2015), respectively.
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Assumptions

(A0) There exists β ∈ (0, 1) such that 1 6 ϕ(x , 1
β ) and

ϕ(x , β) 6 1,
(A1) There exists β ∈ (0, 1) such that βϕ−1(x , t) 6 ϕ−1(y , t) for

every t ∈
[
1, 1
|B|

]
, every x , y ∈ B and every ball B with

|B| 6 1,
(A2) Lϕ(·)(Rn) ∩ L∞(Rn) = Lϕ∞(Rn) ∩ L∞(Rn), with

ϕ∞(t) := lim sup
|x |→∞

ϕ(x , t).
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The maximal operator

Lemma

Let ϕ ∈ Φ and β > 1 be such that s 7→ s−βϕ(s) is increasing.
Then for each γ ∈ (1, β) there exists ψ ∈ Φ equivalent to ϕ such
that ψ1/γ is convex.

Theorem

Let ϕ ∈ Φ(Rn) satisfy assumptions (A0)–(A2) and suppose that
γ > 1 is such that s 7→ s−γϕ(x , s) is increasing for every x ∈ Rn.
Then

M : Lϕ(·)(Rn)→ Lϕ(·)(Rn)

is bounded.
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Remarks

The boundedness of the maximal operator in generalized Orlicz
spaces was first shown by Maeda, Mizuta, Ohno and Shimomura
(2013) in the doubling case with different methods.

These authors have also studied other operators in generalized
Orlicz spaces since then.

If ϕ(x , t) = tp + a(x)tq, then conditions (A0)–(A2) are equivalent
to the fact that q

p 6 1 + α
n where a ∈ Cα. This is exactly the

same condition found by Colombo and Mingione.
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Proof.
Let ψ ∈ Φ be as in the lemma. It suffices to show that
M : Lψ(Rn)→ Lψ(Rn). Since ψ1/γ is convex, it follows from
Jensen’s inequality that

ψ(εMf ) =
(
ψ

1
γ (εMf )

)γ
6

(
M
(
ψ

1
γ (εf )

))γ
.

Let f ∈ Lψ(Rn) and ε := ‖f ‖−1
ψ so that %ψ(εf ) 6 1. Since M is

bounded in Lγ(Rn), we obtain that
ˆ
Rn

(
M
(
ψ

1
γ (εf )

))γ
dx .

ˆ
Rn

(
ψ

1
γ (εf )

))γ
dx =

ˆ
Rn

ψ(εf ) dx 6 1.

Hence %ψ(εMf ) . 1, which implies that ‖εMf ‖ψ . 1. Dividing by
ε, we find that ‖Mf ‖ψ . 1

ε = ‖f ‖ψ, which completes the
proof.
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Auxiliary results
Shimomura et al.’s results are included, on account of the
following lemma.

Lemma

Suppose that ϕ : [0,∞)→ [0,∞) is doubling and that s 7→ ϕ(s)
s

is increasing. Then ϕ is equivalent to a convex function ψ ∈ Φ.

Every Φ-function satisfying (A0)–(A2) is equivalent to a
normalized Φ-function.

Definition
We say that ϕ ∈ Φ1(Rn) is a normalized Φ-function if
ϕ(x , t) = ϕ∞(t) for t ∈ [0, 1] and there exists β > 0 such that

βϕ−1(x , t) 6 ϕ−1(y , t)

for every t ∈
[
0, 1
|B|

]
, every x , y ∈ B and every ball B .
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