An Arrow-like theorem for aggregation procedures over median algebras

Miguel Couceiro

LORIA

(CNRS, INRIA Nancy G.–E., Université de Lorraine)

Joint work with J-L Marichal and B. Teheux (Luxembourg), G. Meletiou (Greece)

Outline

I. Brief overview on aggregation theory :

- I.1. Aggregation functions : motivation
- I.2. An impossibility result : Arrow's theorem

II. Aggregation over median algebras :

- II.1. Median algebras : motivation and examples
- II.2. Conservative median algebras
- II.3. Median preserving aggregation : An Arrow-like theorem
- II.4. Final remarks and further directions...

I.1 Aggregation functions

Traditionally : an **aggregation function** is a mapping $F: X^n \rightarrow X$ **s.t.**

- X is a linear order with bottom 0 and top 1
- F preserves 0 and 1 and the order of X

Typical examples : Weighted means, Choquet and Sugeno integrals ...

Main Idea : Aggregation procedure $x_1, ..., x_n \in X \longrightarrow F(x_1, ..., x_n) \in Y$ **Application :** Preference modelling (MCDA) ...

Main Problems :

- Classify and axiomatise aggregation procedures
- Explicitly describe procedures with desired properties
- Computational aspects

I.1 Aggregation functions

Traditionally : an **aggregation function** is a mapping $F: X^n \rightarrow X$ **s.t.**

- X is a linear order with bottom 0 and top 1
- F preserves 0 and 1 and the order of X

Typical examples : Weighted means, Choquet and Sugeno integrals ...

Main Idea : Aggregation procedure $x_1, \ldots, x_n \in X \longrightarrow F(x_1, \ldots, x_n) \in Y$ **Application :** Preference modelling (MCDA) ...

Main Problems :

- Classify and axiomatise aggregation procedures
- Explicitly describe procedures with desired properties
- Computational aspects

I.1 Aggregation functions

Traditionally : an **aggregation function** is a mapping $F: X^n \rightarrow X$ **s.t.**

- X is a linear order with bottom 0 and top 1
- F preserves 0 and 1 and the order of X

Typical examples : Weighted means, Choquet and Sugeno integrals ...

Main Idea : Aggregation procedure $x_1, \ldots, x_n \in X \longrightarrow F(x_1, \ldots, x_n) \in Y$ **Application :** Preference modelling (MCDA) ...

Main Problems :

- Classify and axiomatise aggregation procedures
- Explicitly describe procedures with desired properties
- Computational aspects

I.2. An impossibility result : Arrow's theorem

Setting : Aggregation of rankings (social well-fare function)

- *n* voters, a set *A* of outcomes and the set of linear orderings *L*(*A*)
- $F: L(A)^n \rightarrow L(A)$ procedure that merges rankings R_1, \ldots, R_n into a single one

 $R_1,\ldots,R_n \implies R_T = F(R_1,\ldots,R_n)$

- Some reasonable properties in this setting :
 - **1. Unanimity or Pareto efficiency :** if aR_ib for all $i \in [n]$, then aR_Tb
 - Independence of irrelevant alternatives : if a and b have the same order in R_i and S_i for all i ∈ [n], then a and b have the same order in R_T and S_T
 - **3. Non-dictatorship** : There is no $i \in [n]$ **s.t.** for all $R_1, \ldots, R_n \in L(A)$

 $F(R_1,\ldots,R_n)=R_i$

Arrow's Theorem : There is no well-fare function satisfing these conditions !

I.2. An impossibility result : Arrow's theorem

Setting : Aggregation of rankings (social well-fare function)

- *n* voters, a set *A* of outcomes and the set of linear orderings *L*(*A*)
- $F: L(A)^n \rightarrow L(A)$ procedure that merges rankings R_1, \ldots, R_n into a single one

 $R_1,\ldots,R_n \implies R_T = F(R_1,\ldots,R_n)$

- Some reasonable properties in this setting :
 - **1.** Unanimity or Pareto efficiency : if aR_ib for all $i \in [n]$, then aR_Tb
 - **2.** Independence of irrelevant alternatives : if *a* and *b* have the same order in R_i and S_i for all $i \in [n]$, then *a* and *b* have the same order in R_T and S_T
 - **3.** Non-dictatorship : There is no $i \in [n]$ s.t. for all $R_1, \ldots, R_n \in L(A)$

$$F(R_1,\ldots,R_n)=R_i$$

I.2. An impossibility result : Arrow's theorem

Setting : Aggregation of rankings (social well-fare function)

- *n* voters, a set *A* of outcomes and the set of linear orderings *L*(*A*)
- $F: L(A)^n \rightarrow L(A)$ procedure that merges rankings R_1, \ldots, R_n into a single one

 $R_1,\ldots,R_n \implies R_T = F(R_1,\ldots,R_n)$

- Some reasonable properties in this setting :
 - **1.** Unanimity or Pareto efficiency : if aR_ib for all $i \in [n]$, then aR_Tb
 - **2.** Independence of irrelevant alternatives : if *a* and *b* have the same order in R_i and S_i for all $i \in [n]$, then *a* and *b* have the same order in R_T and S_T
 - **3.** Non-dictatorship : There is no $i \in [n]$ s.t. for all $R_1, \ldots, R_n \in L(A)$

$$F(R_1,\ldots,R_n)=R_i$$

Arrow's Theorem : There is no well-fare function satisfing these conditions !

II.1. Median algebras : motivation

Median operations appear in several structures pertaining to decision making :

- Linear orders : "in betweeness"
- Distributive lattices : $m(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$

Theorem : A function $f: X^n \to X$ is a lattice polynomial function iff

$$f(\mathbf{x}) = \mathbf{m}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1))$$
 for every $\mathbf{x} \in X^n, k \in [n]$

Median algebra : Structure $\mathbf{A} = (A, \mathbf{m})$ where $\mathbf{m} : A^3 \rightarrow A$ (median) verifies

$$\mathbf{m}(x, x, y) = x$$
$$\mathbf{m}(x, y, z) = \mathbf{m}(y, x, z) = \mathbf{m}(y, z, x)$$
$$\mathbf{m}(\mathbf{m}(x, y, z), t, u) = \mathbf{m}(x, \mathbf{m}(y, t, u), \mathbf{m}(z, t, u))$$

II.1. Median algebras : motivation

Median operations appear in several structures pertaining to decision making :

- Linear orders : "in betweeness"
- Distributive lattices : $m(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$

Theorem : A function $f: X^n \to X$ is a lattice polynomial function iff

$$f(\mathbf{x}) = \mathbf{m}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1))$$
 for every $\mathbf{x} \in X^n, k \in [n]$

Median algebra : Structure $\mathbf{A} = (A, \mathbf{m})$ where $\mathbf{m} : A^3 \to A$ (median) verifies

$$\mathbf{m}(x, x, y) = x$$
$$\mathbf{m}(x, y, z) = \mathbf{m}(y, x, z) = \mathbf{m}(y, z, x)$$
$$\mathbf{m}(\mathbf{m}(x, y, z), t, u) = \mathbf{m}(x, \mathbf{m}(y, t, u), \mathbf{m}(z, t, u))$$

II.1. Median algebras : motivation

Median operations appear in several structures pertaining to decision making :

- Linear orders : "in betweeness"
- Distributive lattices : $m(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$

Theorem : A function $f: X^n \to X$ is a lattice polynomial function iff

$$f(\mathbf{x}) = \mathbf{m}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1))$$
 for every $\mathbf{x} \in X^n, k \in [n]$

Median algebra : Structure $\mathbf{A} = (A, \mathbf{m})$ where $\mathbf{m} : A^3 \to A$ (median) verifies

$$\mathbf{m}(x, x, y) = x$$
$$\mathbf{m}(x, y, z) = \mathbf{m}(y, x, z) = \mathbf{m}(y, z, x)$$
$$\mathbf{m}(\mathbf{m}(x, y, z), t, u) = \mathbf{m}(x, \mathbf{m}(y, t, u), \mathbf{m}(z, t, u))$$

II.1. Median algebras : equivalent structures

Other known median algebras :

• Median semilattices : For *a* ∈ *A*, ↓ *a* is a DBLattice and every *x*, *y*, *z* ∈ *A* have a common upper bound whenever each pair of them is bounded above.

NB1: If A median algebra, set $x \leq_a y \iff \mathbf{m}(a, x, y) = x$

NB2: If A median semilattice, set $\mathbf{m}(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$

Median graphs : For all x, y, z, there is a unique w in the shortest paths
NB1 : Every median semilattice (with finite intervals) has a median Hasse diag.
NB2 : Every median graph is the Hasse diagram of a median semilattice

References : Barthélemy-Leclerc-Monjardet'86, Bandelt'83, Isbell'80, Avann'61, ... Generalisations : Bandelt-Meletiou'92, Barthélemy-Janowitz'91, Bandelt'90, ...

II.1. Median algebras : equivalent structures

Other known median algebras :

• Median semilattices : For *a* ∈ *A*, ↓ *a* is a DBLattice and every *x*, *y*, *z* ∈ *A* have a common upper bound whenever each pair of them is bounded above.

NB1: If A median algebra, set $x \leq_a y \iff \mathbf{m}(a, x, y) = x$

NB2: If A median semilattice, set $\mathbf{m}(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$

• Median graphs : For all x, y, z, there is a unique w in the shortest paths

NB1: Every median semilattice (with finite intervals) has a median Hasse diag.

NB2 : Every median graph is the Hasse diagram of a median semilattice

References : Barthélemy-Leclerc-Monjardet'86, Bandelt'83, Isbell'80, Avann'61, ...

Generalisations : Bandelt-Meletiou'92, Barthélemy-Janowitz'91, Bandelt'90, ...

II.2. Conservative median algebras

Conservative median algebra : If $m(x,y,z) \in \{x,y,z\}, x,y,z \in A$

Social choice motivation : the median candidate is one of the candidates

Problem : How do they look like ?

II.2. Conservative median algebras

Conservative median algebra : If $\mathbf{m}(x, y, z) \in \{x, y, z\}, x, y, z \in A$

Social choice motivation : the median candidate is one of the candidates

Problem : How do they look like?

II.2. Conservative median algebras

Conservative median algebra : If $\mathbf{m}(x, y, z) \in \{x, y, z\}, x, y, z \in A$

Social choice motivation : the median candidate is one of the candidates

Problem : How do they look like ?

Representation of conservative median algebras

Theorem : Let **A** be a median algebra with $|A| \ge 5$. T.F.A.E.

- (i) A is conservative.
- (ii) There is an $a \in A$ and lower bounded chains C_0 and C_1 such that $\langle A, \leq_a \rangle$ is isomorphic to $C_0 \perp C_1$.
- (iii) For every *a* ∈ *A*, there are lower bounded chains C₀ and C₁ such that (*A*, ≤_{*a*}) is isomorphic to C₀⊥C₁.
- (iv) For every $a \in A$ the ordered set $\langle A, \leq_a \rangle$ does not contain a copy of the poset

Open problem : Representation of arbitrary median algebras

II.3. Median preserving aggregation

Idea : Score of a median profile is the median of the scores of the profiles

Problem : Aggregation functions $f: X^n \to Y$ that preserve medians : $f(\mathbf{m}(\mathbf{x},\mathbf{y},\mathbf{z})) = \mathbf{m}(f(\mathbf{x}), f(\mathbf{y}), f(\mathbf{z})),$

Remark : median preserving maps are not necessarily order-preserving (reversing) !

An order-preserving map that is not median preserving

A median preserving map that is not order-preserving (or reversing)

II.3. Median preserving aggregation

Idea : Score of a median profile is the median of the scores of the profiles

Problem : Aggregation functions $f: X^n \to Y$ that preserve medians :

$$f(\mathbf{m}(\mathbf{x},\mathbf{y},\mathbf{z})) = \mathbf{m}(f(\mathbf{x}),f(\mathbf{y}),f(\mathbf{z})),$$

Remark : median preserving maps are not necessarily order-preserving (reversing) !

An order-preserving map that is not median preserving

A median preserving map that is not order-preserving (or reversing)

Characterization of median preserving maps

NB: Every conservative median algebra A can be thought of as a chain C(A)

Theorem : Let \mathbf{A}, \mathbf{B} be conservative median algebras with \geq 5 elements. T.F.A.E. :

- (i) $f : \mathbf{A} \rightarrow \mathbf{B}$ is a median preserving map
- (ii) the induced map $f' : C(A) \rightarrow C(B)$ is order-preserving or order-reversing

Problem : How to lift it to $f : \mathbf{A}^n \to \mathbf{B}$

Characterization of median preserving maps

NB: Every conservative median algebra A can be thought of as a chain C(A)

Theorem : Let **A**, **B** be conservative median algebras with \geq 5 elements. T.F.A.E. : (i) $f : \mathbf{A} \rightarrow \mathbf{B}$ is a median preserving map (ii) the induced map $f' : \mathbf{C}(\mathbf{A}) \rightarrow \mathbf{C}(\mathbf{B})$ is order-preserving or order-reversing

Problem : How to lift it to $f : \mathbf{A}^n \to \mathbf{B}$

Characterization of median preserving maps

NB: Every conservative median algebra A can be thought of as a chain C(A)

Theorem : Let **A**, **B** be conservative median algebras with \geq 5 elements. T.F.A.E. : (i) $f : \mathbf{A} \rightarrow \mathbf{B}$ is a median preserving map

(ii) the induced map $f': C(A) \rightarrow C(B)$ is order-preserving or order-reversing

Problem : How to lift it to $f : \mathbf{A}^n \to \mathbf{B}$

Back to aggregation functions...

Theorem : Let $\mathbf{A} = \mathbf{C}_1 \times \cdots \times \mathbf{C}_n$ and $\mathbf{B} = \mathbf{D}_1 \times \cdots \times \mathbf{D}_k$ be products of chains. T.F.A.E. :

- (i) $f : \mathbf{A} \to \mathbf{B}$ is median preserving
- (ii) there exist $\sigma: [k] \rightarrow [n]$ and order-preserving or order-reversing maps

$$f_i: \mathbf{C}_{\sigma(i)} \to \mathbf{D}_i \quad \text{ for } i \in [k] \quad \text{s.t. } f(\mathbf{x}) = (f_1(x_{\sigma(1)}), \dots, f_k(x_{\sigma(k)}))$$

Corollary : Let C_1, \dots, C_n and **D** (in part., k = 1) be chains. T.F.A.E. :

(i) $f: \mathbf{C}_1 \times \cdots \times \mathbf{C}_n \to \mathbf{D}$ is median preserving

(ii) there is $j \in [n]$ and order-preserving or reversing map $g : \mathbf{C}_j \to \mathbf{D}$ s.t. $f = g \circ \pi_j$

Consequence : Arrow-like theorem over median algebras

Aggregation procedures that preserve medians are dictatorial!

Back to aggregation functions...

Theorem : Let $\mathbf{A} = \mathbf{C}_1 \times \cdots \times \mathbf{C}_n$ and $\mathbf{B} = \mathbf{D}_1 \times \cdots \times \mathbf{D}_k$ be products of chains. T.F.A.E. :

- (i) $f : \mathbf{A} \to \mathbf{B}$ is median preserving
- (ii) there exist $\sigma: [k] \rightarrow [n]$ and order-preserving or order-reversing maps

$$f_i: \mathbf{C}_{\sigma(i)} \to \mathbf{D}_i \quad \text{ for } i \in [k] \quad \text{s.t. } f(\mathbf{x}) = (f_1(x_{\sigma(1)}), \dots, f_k(x_{\sigma(k)}))$$

- **Corollary :** Let C_1, \dots, C_n and **D** (in part., k = 1) be chains. T.F.A.E. :
 - (i) $f: \mathbf{C}_1 \times \cdots \times \mathbf{C}_n \to \mathbf{D}$ is median preserving
- (ii) there is $j \in [n]$ and order-preserving or reversing map $g : \mathbf{C}_i \to \mathbf{D}$ s.t. $f = g \circ \pi_i$

Consequence : Arrow-like theorem over median algebras

Aggregation procedures that preserve medians are dictatorial!

Back to aggregation functions...

Theorem : Let $\mathbf{A} = \mathbf{C}_1 \times \cdots \times \mathbf{C}_n$ and $\mathbf{B} = \mathbf{D}_1 \times \cdots \times \mathbf{D}_k$ be products of chains. T.F.A.E. :

- (i) $f : \mathbf{A} \to \mathbf{B}$ is median preserving
- (ii) there exist $\sigma: [k] \rightarrow [n]$ and order-preserving or order-reversing maps

$$f_i: \mathbf{C}_{\sigma(i)} \to \mathbf{D}_i$$
 for $i \in [k]$ s.t. $f(\mathbf{x}) = (f_1(x_{\sigma(1)}), \dots, f_k(x_{\sigma(k)}))$

- **Corollary :** Let C_1, \dots, C_n and **D** (in part., k = 1) be chains. T.F.A.E. :
 - (i) $f: \mathbf{C}_1 \times \cdots \times \mathbf{C}_n \to \mathbf{D}$ is median preserving
 - (ii) there is $j \in [n]$ and order-preserving or reversing map $g : \mathbf{C}_j \to \mathbf{D}$ s.t. $f = g \circ \pi_j$

Consequence : Arrow-like theorem over median algebras

Aggregation procedures that preserve medians are dictatorial!

II.4 Final remarks and further directions...

Merci de votre attention !

Thank you for your attention !

Obrigado pela vossa atenção !